最大公因数和最小公倍数2
第二讲—最大公因数和最小公倍数(教案)

练习2:把53块水果糖和49块巧克力分别平均分给一个组的同学,结果水果糖剩3块,巧克力剩4块,这个组最多有几位同学?
重难点五:易混淆题型
例题1、把若干个长12厘米、宽9厘米的长方形拼成一个正方形,正方形边长至少是多少?至少需要多少个这样的长方形?
例题4从小明家到学校原来每隔50米安装一根电线杆加上两端的两根一共是55根电线杆现在改成每隔60米安装一根电线杆除两端的两根不用移动外中途还有多少根不必移动
学生姓名:
科目:
年级
授课时间:2015年月日至
讲次:第讲
授课教师:老师
【教学目标】
1、认识和掌握公因数和公倍数的概念。
2、能准确求出几个数的最大公因数和最小公倍数。
重难点3:和公因数相关的应用题
例1、把长120厘米,宽80厘米的铁板裁成面积相等,最大的正方形而且没有剩余,可以裁成多少块?
例题2、用某数去除218,170,290都余2,问某数最大是多少?
【巩固拓展】
1、把一张长72厘米,宽60厘米的长方形纸,裁成同样大小、面积尽可能大的正方形纸,纸无剩余,至少能裁多少张?
例题4、从小明家到学校原来每隔50米安装一根电线杆,加上两端的两根一共是55根电线杆,现在改成每隔60米安装一根电线杆,除两端的两根不用移动外,中途还有多少根不必移动?
练习:学校操场长96米,从一端起到另一端每隔4米插有一面小红旗。现在要改成每隔6米插一面红旗。问可以不必拔出来的小红旗有多少面?
例题5、每筐梨,按每份两个梨分多1个,每份3个梨分多2个,每份5个梨分4个,则筐里至少有多少个梨?
12和30 52和12 35和25 24和36 51和17 91和26
最大公因数与最小公倍数(二)

人的数量是:(5+1)×6=36(人)
2.一盒钢笔可以平均分给2、3、4、5、6个同学,这 盒钢笔最少有多少枝?
分析:求最小公倍数
解:[2,3,4,5,6]=60
答:这盒钢笔最少有60支。
拓展演练
例1、用长9厘米、宽6厘米、高4厘米的长方体木块叠 成一个正方体,至少要用这样的木块多少块?
答案:6块
例3、两个自然数的最大公约数是7,最小公倍数是 210。这两个自然数的和是77,求这两个自然数。
分析与解:如果将两个自然数都除以7,则原题变为: “两个自然数的最大公约数是1,最小公倍数是30。这两 个自然数的和是11,求这两个自然数。”
改变以后的两个数的乘积是1×30=30,和是11。
例5、公路上一排电线杆,共25根,每相邻两根间的距 离原来是45米,现在要改成60米,可以有多少根不需要 移动?
分析与解:根据题意可知:不需要移动的电线杆数, 必须是处于45米与60米最小公倍数位置上的电线杆数, 才能不需要移动;那就要先求出两种间距米数的最小 公倍数,再求出公路总长,最后算一算公路总长里有 几个最小公倍数,又因为起点的一根肯定是不动的, 最后再加上起点的那根即可解决。
分析与解:由两个数的最小公倍数与最大公约数的乘 积等于这两个数的乘积。
可知另一个自然数是(6×72)÷18=24。
归纳总结
性质1:如果a、b两数的最大公约数为d, 则a=md,b=nd,并且(m,n)=1。
性质2:两个数的最小公倍数与最大公约数 的乘积等于这两个数的乘积。
பைடு நூலகம்
当堂演练
1.用长6厘米、宽4厘米的长 方形瓷砖拼成一个最小的正 方形,要用这样的瓷砖多少 块?
2最大公因数与最小公倍数

[多選題][-].設a 、b 、c 均為整數,下列何者為真? (A)若c|a 或c|b ,則c|ab (B)若a|c 且b|c ,則ab|c (C)若(a,c)=(b,c),則a=b (D)若ab|c ,則a|c 且b|c (E)若c|a 且c|b ,則(a,b)|c 。
解答:AD.設a,b,c 都是異於零的整數,p 為質數,(a,b)表a 與b 的最大公因數,則下列何者恆成立? (A)若(a,c)=1且b ∣c ,則(a,b)=1 (B)若(a,c)=1,則(a,b)=(a,bc) (C)若p ∣ab ,則p ∣a 或p ∣b (D)若(a,b)=1,則(a+b,a -b)=1 (E)若(a,b)=1,則(a -b,ab)=1。
解答:ABCE.a,b,c ∈Z ,下列何者為真? (A)若a|bc 則a|b 或a|c (B)若a|b+c 則a|b 或a|c (C)若a|bc 且(a,b)=1則a|c (D)若a 為質數且a|bc 則a|b 或a|c (E)若a|b 且a|c 則a|b+c 。
解答:CDE.下列敘述何者正確?(a,b)表a 、b 之最大公因數。
(A)若(a,b)=1,則(a+b,ab)=1 (B)若(a,b)=1,則(a+b,a-b)=1 (C)若a|bc ,則a|b 或a|c (D)若(a,b)=1,則(2a,3b)=1 (E)若a|b,b|c ,則a|c 。
解答:ADE[計算題][-] .(1)試求最大公因數(713,1173)與最小公倍數[713,1173] (2)若(713,1173)=d ,試求一組整數m ,n ,使得713m +1173n =d .解答:23,36363,m=-23,n=14.設二自然數的和是528 ,最小公倍數是5797 ,求此二數.解答:341,187.兩個二位自然數最大公因數為12 ,其乘積為5040 ,求此二數.解答:60,84.設a,b 為二正整數,若2+b a =512++b a ,最小公倍數[a,b ]=144 ,最大公因數(a,b )>4 ,求二正整數a,b . 解答:a=72,b=16.設a ,b ∈N,a <b ,若(a ,b )+[a ,b ]=15 ,則數對(a ,b )共多少組?解答:2組.求最大公因數(540,504,810)與最小公倍數[540,504,810].解答:18,22680.二自然數a 與b ,其和為214,二者之最大公因數為14,設22b a +之最小值為)1010(1422r q p +⨯+⨯,其中p,q,r 為阿拉伯數碼,求p,q,r .解答:p=1,q=0,r=6.設a,b,c ∈N 且a+3b=2c ,22a +2c =32b ,又[a,b,c ]=300,求a,b,c 之值。
最大公因数和最小公倍数

最大公因数和最小公倍数什么是最大公因数?最大公因数(GCD)是指两个或多个数中能够整除它们的最大正整数。
在数学中,最大公因数也被称为最大公约数或者最大公因子。
如何计算最大公因数?有多种方法可以计算最大公因数,其中最常用的方法是欧几里得算法。
这个算法基于如下的数学原理:两个整数a和b的最大公因数即为a除以b的余数c与b的最大公因数。
举个例子,假设我们要计算12和16的最大公因数。
我们可以通过以下步骤来执行欧几里得算法:1.令a等于较大的数字(16),令b等于较小的数字(12)。
2.用b除以a,并计算余数c。
在这种情况下,16除以12等于1,余数为4。
3.然后将b设置为a,而将c设置为新的b。
4.重复上述步骤,直到余数c为0。
此时,b即为最大公因数。
在这个例子中,最大公因数是4。
最大公因数的应用最大公因数在数学中有广泛应用。
例如,在分数运算中,我们可以通过求分子和分母的最大公因数来简化分数。
最大公因数还在密码学中发挥着关键作用。
一些加密算法,如RSA算法,依赖于对两个大质数进行运算,其中最大公因数的计算是一个关键步骤。
什么是最小公倍数?最小公倍数(LCM)是指两个或多个数中能够被它们整除的最小正整数。
最小公倍数也被称为最小公倍数或者最小公倍数。
如何计算最小公倍数?有多种方法可以计算最小公倍数,其中一种常用的方法是通过最大公因数来计算。
假设我们要计算12和16的最小公倍数,我们可以使用以下公式:LCM(a,b) = (a * b) / GCD(a,b)在这个公式中,LCM表示最小公倍数,a和b分别表示两个数字的值,而GCD 表示最大公因数。
使用这个公式,我们可以计算出12和16的最小公倍数:LCM(12,16) = (12 * 16) / 4 = 48所以,12和16的最小公倍数是48。
最小公倍数的应用最小公倍数在数学和实际生活中都有应用。
例如,在时间单位转换中,我们可以通过求两个时间单位的最小公倍数来进行换算。
两数最大公因数和最小公倍数关系

两数最大公因数和最小公倍数关系好吧,今天咱们来聊聊数学里的两位“老朋友”:最大公因数和最小公倍数。
这两位,听起来有点严肃,但其实它们的关系可有趣了,像一对打打闹闹的兄弟,让我们慢慢来捋一捋。
你想想,最大公因数就像是最强的“拼图块”,它把两个数的共同因素都找出来,找出最大的那个。
而最小公倍数嘛,就像是“团结就是力量”,把两个数的共同倍数都找出来,最小的那个。
所以啊,这俩在一起,就像是麻辣火锅里的豆腐和牛肉,缺一不可。
想象一下,咱们有两个数字,嘿,假设是12和18。
先说最大公因数,咱们来找找这俩数字的“亲戚”。
12的因数是1、2、3、4、6、12,18的因数是1、2、3、6、9、18。
看吧,最大的共同因数就是6。
没错,6就是这俩数的“家长”,把它们紧紧联系在一起,真是个好家长啊,给它们找到了共同的根源。
再来看看最小公倍数,咱们要找的就是12和18的最小倍数。
12的倍数有12、24、36、48……18的倍数有18、36、54……你瞧,最小的共同倍数就是36!这就像是说,兄弟俩有了共同的“舞台”,在36这个时刻一起闪亮登场。
可能有的小伙伴就会问了,哎,这俩有啥关系呢?让我告诉你,最大公因数和最小公倍数之间有个神奇的关系,那就是:这俩数相乘等于最大公因数乘以最小公倍数。
也就是说,12乘以18,结果是216,而6乘以36也是216。
简直是巧合吧,像偶然间碰到的老友,仿佛命中注定要相遇。
数学里就是这么神奇,貌似毫不相干的东西,竟然可以联手搞出这么大的新闻。
我常常想,这就像人生一样。
有时候你觉得两个看似不搭界的人,竟然能在某个时刻产生奇妙的联系。
就像最大公因数和最小公倍数,都是为了更好地理解和解决问题。
听起来有点高大上,但其实就是把复杂的事情简单化,和朋友一起分享生活中的小乐趣。
说到这里,咱们不妨想想,生活中其实也充满了这样的例子。
比如说,团队合作,大家各自带着不同的技能,有的人擅长沟通,有的人擅长分析,结合起来就是最大的力量。
最小公倍数与最大公因数的求法

最小公倍数与最大公因数的求法最小公倍数和最大公因数,听起来像是数学课上那些让人头疼的概念,不过别担心,咱们轻松点儿聊聊。
最小公倍数,简称最小公倍数,其实就是找到几个数共同的倍数,越小越好。
就像找个大家都能接受的时间,约个饭局,大家都好安排。
比如,咱们找 4 和 6 的最小公倍数,4 的倍数有 4、8、12、16,6 的倍数有 6、12、18,嘿,12 是个大家都能接受的选择,最小公倍数就定了。
说到最大公因数,咱们就像在找一群人里能一起干活的那几个,大家干得最起劲儿。
最大公因数,就是能同时整除几个数的最大数。
比如说,8 和 12,这俩数的公因数有 1、2、4,4 就是最大的一个。
想象一下,四个人一起去旅行,大家都能住的地方,就是最大公因数,能同时容得下所有人的那个地方。
找最小公倍数的时候,最简单的办法就是把数列写出来,然后找出最小的那个。
不过,咱们也可以用一种更聪明的方法,叫做“分解质因数”。
这就像拆家,把数拆成最基本的元素。
比如,4 可以拆成2 × 2,6 拆成2 × 3,然后把所有质因数取个最大次数,比如这里的 2 最大出现 2 次,3 最大出现 1 次,最后把它们乘在一起,结果就是 12,哎,这方法简单又高效。
说到最大公因数,咱们同样可以用分解质因数的办法,先把每个数拆解成质因数,然后找出相同的部分。
就像寻找团队里最能干的那几个人,留住最牛的,最终把他们的力量汇聚起来。
比如 8 拆成2 × 2 × 2,12 拆成2 × 2 × 3,嘿,能一起干活的就是2 × 2,最后最大公因数就是 4,找个合适的地方,大家一起把事情做好。
当你在生活中碰到这些数学问题时,别觉得这难上加难。
找最小公倍数和最大公因数其实就像在生活中寻求平衡。
像朋友间的关系,偶尔得妥协,找到一个大家都满意的折中点,才能继续走得更远。
用数学的眼光来看,生活的方方面面都有这些公因数和倍数在潜藏,只是我们未必注意到罢了。
最大公因数和最小公倍数定义

最大公因数和最小公倍数定义最大公因数和最小公倍数是数学中两个重要的概念。
它们可以帮助我们解决许多实际问题,例如求解分数的最简形式、解决整数倍数关系等等。
本文将从定义、性质和求解方法等方面介绍最大公因数和最小公倍数的相关知识。
最大公因数定义两个或多个整数的最大公因数,简称最大公因数,是能够整除每一个给定整数的最大正整数。
最大公因数一般用符号“gcd”表示,例如gcd(a,b)表示整数a和b的最大公因数。
性质最大公因数有以下几个重要性质:1.gcd(a,b) = gcd(b,a):最大公因数具有交换律。
2.gcd(a,b) = gcd(a-b,b):欧几里得算法,也称为辗转相除法,利用这一性质求解最大公因数。
3.若c是a和b的公因数,且c是a和b的最大公因数,则c是a和b的最大公因数的倍数。
求解方法求解最大公因数有多种方法,这里介绍两种常用的方法:欧几里得算法和素因数分解法。
欧几里得算法欧几里得算法是一种通过不断求出两个数的余数来迭代计算最大公因数的方法。
算法的步骤如下:1.用较大的数除以较小的数,得到商和余数。
2.用较小的数除以余数,再次得到商和余数。
3.重复上述过程,直到余数为0为止。
4.最大公因数就是最后一次运算中的被除数。
例如,求解gcd(12, 8):12 ÷ 8 = 1 余 48 ÷ 4 = 2 余 0最大公因数为4。
素因数分解法素因数分解法是通过将两个数分别分解成素数因子的乘积,并取两个数相同部分的乘积作为最大公因数。
算法的步骤如下:1.将两个数分别进行素因数分解,得到各自的素因子乘积。
2.取两个数相同部分的乘积作为最大公因数。
例如,求解gcd(12, 8):12 = 2² × 38 = 2³相同部分为2²,最大公因数为4。
最小公倍数定义两个或多个整数的最小公倍数,简称最小公倍数,是能够同时整除每一个给定整数的最小正整数。
最小公倍数一般用符号“lcm”表示,例如lcm(a,b)表示整数a和b的最小公倍数。
第九讲 最大公因数和最小公倍数(二)(学生)

最大公因数和最小公倍数(二)例1、把一块长90厘米,宽42厘米的长方形铁板剪成边长都是整厘米,面积都相等的小正方形铁板,恰无剩余。
至少能剪块。
【分析】:根据题意,剪得的小正形的边长必须是90和42的最大公约6。
所以原长方形的长要分90÷6=15段,宽要分42÷6=7段,至少能剪17×7=105(块)解:(1)求90和42的最大公约数2 90 423 45 2115 7(90,42)=60(2)求至少剪多少块正方形铁板90÷6=1545÷6 =715×7=105(块)答:至少可以剪105块正方形铁板。
练习1、把一块长90厘米宽35厘米的长方形铁板加工成边长是整厘米数。
并面积相等的最大正方形铁片。
并且无剩余,至少可以加工成多少块?2、用96朵红花和72朵白花做成花束,如果每束花里红花的朵数相同,白花的朵数也相同,每束花里最少有几朵花?3、38支钢笔,41只计算器,平均奖给四、五年级评比的优秀学生,结果钢笔多出2支,计算器差1只。
问:评出的优秀学生最多有几人?例2、求437和551的最大公约数。
分析:用较大的数除以较小的数,得到商和余数,然后再用上一式中的除数和得到的余数中较大的除以较小的,以此类推,当整除时,就得到要求的最大公约数。
∴437和551的最大公约数为19。
练习:1、437与323的最大公约数是多少?2、24871和3468的最小公倍数是多少?3、254216933的最简分数是多少?例3、求289,3512,5615的最大公约数。
例4、求289,3512,5615的最小公倍数。
1、求2518、3527、509的最大公约数。
2、求2518、3527、509的最小公倍数。
3、苹果每个重283千克,梨每个重245千克,橘子每个重212千克。
如果苹果、梨、橘子的总重量都相等,苹果、梨、橘子最少各有多少个?思考题:1、动物园的饲养员给三群猴子分花生,如果只分给第一群,则每只猴子可得12粒;如果只分给第二群,则每只猴子可得15粒;如果只分给第三群,则每只猴子可得20粒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用短除法求两个数的最大公因 数和最小公倍数的计算方法:
用短除法求两个数的最大公因数或最小公倍数, 一般都用两个数除以它们的公因数, 一直除到所得的两个商只有公因数1为止。
把所有的除数连乘起来,就得到这两个数的
最大公因数。 把所有的除数和最后的两个商连乘起来
就得到这两个数的最小公倍数。 作业:自己任意出2个非0自然数,求出它们 的最大公因数和最小公倍数。
例题 求28和42的最大公因数和最小公倍数
2 28 42 7 14 21 23
28和42的最大公因数 2×7=14
28和42的最小公倍数 2×7×2×3=84
总数
用短除的形式分解质因 数,直到两个商是互质 数为止.
把所有的除数乘起来.
求两个数的 最小公倍数
同左
人教版五年级下册数学
.
用这一种方法还能 求最小公倍数。 短除法:求最大公因数
先同时除以公因数2 2 12 18
再同时除以公因数3 3 6 9
除到两个商,只
有公因数1为止.
23
商
把所有的除数连乘, 得到12和18的最大公因数是2×3 = 6 把所有的除数和最后的两个商连乘,
得到12和18的最小公倍数是: 2×3×2×3 = 36.
谢谢 观. 赏