第九章 串行口RS485通讯协议
第九章 串行口RS485通讯协议

第九章串行口RS485通讯协议9.1通讯概述本公司系列变频器向用户提供工业控制中通用的RS485通讯接口。
通讯协议采用MODBUS标准通讯协议,该变频器可以作为从机与具有相同通讯接口并采用相同通讯协议的上位机(如PLC控制器、PC机)通讯,实现对变频器的集中监控,另外用户也可以使用一台变频器作为主机,通过RS485接口连接数台本公司的变频器作为从机。
以实现变频器的多机联动。
通过该通讯口也可以接远控键盘。
实现用户对变频器的远程操作。
本变频器的MODBUS通讯协议支持两种传送方式:RTU方式和ASCII方式,用户可以根据情况选择其中的一种方式通讯。
下文是该变频器通讯协议的详细说明。
9.2通讯协议说明9.2.1通讯组网方式(1) 变频器作为从机组网方式:图9-1 从机组网方式示意图(2) 多机联动组网方式:单主机单从机单主机多从机图9-2 多机联动组网示意图9.2.2通信协议方式该变频器在RS485网络中既可以作为主机使用,也可以作为从机使用,作为主机使用时,可以控制其它本公司变频器,实现多级联动,作为从机时,PC 机或PLC可以作为主机控制变频器工作。
具体通讯方式如下:(1)变频器为从机,主从式点对点通信。
主机使用广播地址发送命令时,从机不应答。
(2)变频器作为主机,使用广播地址发送命令到从机,从机不应答。
(3)用户可以通过用键盘或串行通信方式设置变频器的本机地址、波特率、数据格式。
(4) 从机在最近一次对主机轮询的应答帧中上报当前故障信息。
9.2.3通讯接口方式通讯为RS485接口,异步串行,半双工传输。
默认通讯协议方式采用ASCII 方式。
默认数据格式为:1位起始位,7位数据位,2位停止位。
默认速率为9600bps,通讯参数设置参见P3.09~P3.12功能码。
9.3 ASCII通讯协议字符结构:10位字符框(For ASCII)(1-7-2格式,无校验)(1-7-1格式,奇校验)(1-7-1格式,偶校验)11位字符框(For RTU)(1-8-2格式,无校验)(1-8-1格式,奇校验)(1-8-1格式,偶校验)通讯资料结构:ASCII模式通讯地址:00H:所有变频器广播(broadcast)01H:对01地址变频器通讯。
RS485通信协议

RS485通信协议协议名称:RS485通信协议一、介绍RS485通信协议是一种用于实现多节点通信的串行通信协议,广泛应用于工业自动化、仪器仪表等领域。
本协议旨在规范RS485通信的物理层和数据链路层,确保数据的可靠传输和通信的稳定性。
二、物理层规范1. 电气特性RS485通信使用差分信号进行数据传输,要求传输线路采用平衡的双绞线,其中A线和B线分别为正负极性信号线。
通信设备的发送端应具备驱动能力,接收端应具备较高的抗干扰能力。
2. 传输速率RS485通信支持多种传输速率,常见的有9600bps、19200bps、38400bps等。
通信双方应事先约定并设置相同的传输速率。
三、数据链路层规范1. 帧格式RS485通信采用固定长度的数据帧进行数据传输。
数据帧包括起始位、数据位、校验位和停止位。
起始位为逻辑低电平,用于表示数据帧的开始;数据位为8位,用于传输数据;校验位为奇偶校验位或循环冗余校验位,用于检测数据传输的错误;停止位为逻辑高电平,用于表示数据帧的结束。
2. 数据传输RS485通信采用半双工通信方式,即通信双方可以交替发送和接收数据。
发送端将数据按照帧格式发送到传输线路上,接收端接收到数据后进行校验,并发送确认信号给发送端。
发送端在接收到确认信号后才能发送下一帧数据。
3. 多节点通信RS485通信支持多节点通信,每个节点都有一个唯一的地址。
通信时,发送端在数据帧中指定接收端的地址,只有地址匹配的节点才会接收到数据。
其他节点应将传输线路上的数据忽略。
四、错误处理1. 帧错误如果接收端在接收数据帧时发现帧格式错误或校验错误,应发送错误信号给发送端,发送端应重新发送数据帧。
2. 超时处理如果发送端在发送数据帧后一定时间内未收到确认信号,应认为数据传输失败,需要重新发送数据帧。
五、应用示例以下是一个简单的RS485通信协议应用示例:1. 确定通信双方的地址和传输速率。
2. 发送端将待发送的数据按照帧格式封装,并指定接收端的地址。
RS485通信协议

RS485通信协议协议名称:RS485通信协议1. 引言RS485通信协议是一种用于串行通信的标准协议,常用于工业自动化领域。
该协议定义了数据传输的物理层和数据链路层规范,确保了多个设备之间的可靠通信。
本协议旨在详细描述RS485通信协议的标准格式和相关要求。
2. 范围本协议适用于使用RS485通信协议的设备和系统,包括但不限于工业控制系统、仪器仪表、数据采集设备等。
3. 术语和定义3.1 RS485:一种串行通信标准,支持多主多从的半双工通信方式。
3.2 数据传输速率:数据在物理介质上传输的速率,单位为bps。
3.3 帧:数据传输的最小单元,包括起始位、数据位、校验位和停止位。
3.4 主站:RS485通信网络中具有控制和管理功能的设备。
3.5 从站:RS485通信网络中执行主站指令的设备。
4. 物理层规范4.1 电气特性4.1.1 通信线路:使用双绞线作为通信介质,具有较好的抗干扰能力。
4.1.2 电压标准:通信线路的电平范围为-7V至+12V,其中-7V表示逻辑“1”,+12V表示逻辑“0”。
4.1.3 驱动能力:通信设备应具备足够的驱动能力,以确保信号在长距离传输时的稳定性。
4.2 连接方式4.2.1 线缆连接:使用双绞线连接主站和从站,其中一对线缆用于数据传输,另一对线缆用于信号地。
4.2.2 端子连接:使用标准的RS485通信端子连接主站和从站,确保连接的可靠性和稳定性。
5. 数据链路层规范5.1 帧格式5.1.1 起始位:一个起始位,逻辑为低电平。
5.1.2 数据位:8个数据位,按照LSB(Least Significant Bit)先传输。
5.1.3 校验位:可选的奇偶校验位,用于检测数据传输的错误。
5.1.4 停止位:一个或多个停止位,逻辑为高电平。
5.2 数据传输5.2.1 主从通信:主站发起通信,从站响应并回复数据。
5.2.2 数据传输速率:根据实际需求,可选择不同的数据传输速率,如9600bps、19200bps等。
RS485通信协议

RS485通信协议协议名称:RS485通信协议一、引言RS485通信协议是一种用于在多个设备之间进行数据传输和通信的标准协议。
本协议旨在规范RS485通信的数据格式、传输方式和通信协议,以确保设备之间的可靠通信和数据交换。
二、范围本协议适用于使用RS485通信接口的各种设备,包括但不限于工业自动化设备、仪器仪表、数据采集设备等。
三、术语定义1. RS485通信:使用差分信号进行数据传输的半双工通信方式。
2. 主设备:发起通信请求的设备。
3. 从设备:响应通信请求的设备。
4. 数据帧:包含数据信息的通信单元。
5. 起始位:数据帧的起始标识位。
6. 终止位:数据帧的结束标识位。
7. 奇偶校验:用于检测数据传输中的错误的校验机制。
8. 波特率:数据传输速率,以每秒传输的比特数表示。
四、通信协议1. 物理层RS485通信使用差分信号进行数据传输,其中A线和B线分别代表正向和反向信号线。
通信设备应符合RS485标准的物理层要求,包括信号电平、线路阻抗等。
2. 数据帧格式RS485通信使用数据帧进行数据传输。
数据帧格式如下:起始位 | 数据位 | 奇偶校验位 | 停止位起始位:一个字节的起始标识位,用于标识数据帧的开始。
数据位:包含要传输的数据信息,可以是一个或多个字节。
奇偶校验位:用于检测数据传输中的错误,可以选择奇校验、偶校验或无校验。
停止位:一个字节的停止标识位,用于标识数据帧的结束。
3. 通信流程RS485通信的通信流程如下:主设备发送请求帧 -> 从设备接收请求帧并解析 -> 从设备执行请求操作 -> 从设备发送响应帧 -> 主设备接收响应帧并解析4. 数据传输RS485通信使用半双工通信方式,即同一时间只能有一方发送数据。
通信设备应在发送数据前先检测总线是否空闲,以避免冲突。
5. 错误处理RS485通信中可能发生的错误包括数据传输错误、通信超时等。
通信设备应具备错误处理机制,能够检测和处理这些错误,例如重新发送数据、重置通信连接等。
RS485通信协议

RS485通信协议协议名称:RS485通信协议一、引言RS485通信协议是一种用于实现多节点通信的串行通信协议,适用于工业自动化领域。
本协议旨在规范RS485通信的物理层、数据链路层和应用层的通信规则,以确保通信的稳定性和可靠性。
二、术语和定义1. RS485:一种串行通信标准,支持多节点通信。
2. 主节点:RS485网络中负责发起通信请求的节点。
3. 从节点:RS485网络中响应主节点通信请求的节点。
4. 帧:通信数据的最小单位,包含起始位、数据位、校验位和停止位。
三、物理层规定1. 电气特性:a. 差分信号:使用两个信号线A和B,A线为正向信号,B线为反向信号。
b. 电平范围:高电平+1.5V至+5V,低电平-1.5V至-5V。
c. 驱动能力:RS485驱动器应具备足够的驱动能力,以确保信号传输的稳定性。
d. 终端电阻:每个RS485网络的两端应设置120欧姆的终端电阻。
2. 信号传输规则:a. 逻辑1:A线高电平,B线低电平。
b. 逻辑0:A线低电平,B线高电平。
c. 数据传输:通过在逻辑1和逻辑0之间切换来传输二进制数据。
d. 帧同步:通信双方通过一组起始位和停止位来确保帧的同步。
四、数据链路层规定1. 帧格式:a. 起始位:1个起始位,逻辑0,表示帧的开始。
b. 数据位:8个数据位,用于传输数据。
c. 校验位:1个校验位,用于验证数据的正确性。
d. 停止位:1个停止位,逻辑1,表示帧的结束。
2. 通信规则:a. 主从通信:主节点发送请求帧,从节点响应并返回应答帧。
b. 从节点地址:每个从节点都有一个唯一的地址,主节点通过地址识别从节点。
c. 通信速率:通信双方应事先约定通信速率,例如9600bps、19200bps等。
d. 重发机制:通信双方应实现重发机制,以确保数据的可靠传输。
五、应用层规定1. 数据传输:a. 数据格式:通信双方应事先约定数据的格式,例如ASCII码、二进制等。
b. 数据解析:接收方应能正确解析接收到的数据,以获取有效信息。
rs485通讯协议

rs485通讯协议RS485是一种常用的串行通信协议,广泛应用于工业自动化领域。
它是一种差分信号传输方式,可以实现远距离、高速、抗干扰的通信。
RS485通信协议定义了物理层和数据链路层的规范,确保了设备之间的稳定通信。
首先,RS485定义了通信的物理层,包括电气特性和连接方式。
电气特性规定了通信线路的电压范围和电平差异,通常使用正负两个信号线传输数据。
连接方式有两种,一种是点对点连接,即一个主设备和一个从设备之间的连接;另一种是多点连接,即一个主设备与多个从设备之间的连接。
在RS485通信中,数据链路层是关键。
它定义了帧格式、传输控制和错误检测等内容。
帧格式包括起始位、数据位、停止位和校验位,确保数据的正确传输。
传输控制定义了主设备与从设备之间的通信规则,例如主设备发送请求,从设备回应应答等。
错误检测使用循环冗余校验(CRC)算法,检测并纠正传输过程中产生的误码。
RS485通信具有以下优点。
首先,它可以实现长距离通信,最远可达1200米,适用于分布式控制系统。
其次,RS485可以支持多个设备之间的通信,灵活且方便。
再次,RS485具有高速传输能力,传输速率可达10Mbps,满足实时性要求。
此外,RS485还能够抵抗电磁干扰和噪声干扰,提高通信的可靠性。
在实际应用中,RS485通信广泛应用于各种工控设备之间的通信。
例如,工业自动化领域中的PLC、传感器、伺服驱动器等设备常使用RS485通信协议进行数据交互。
此外,RS485通信协议也被广泛应用于配电系统、楼宇自动化系统、视频监控系统等领域。
总之,RS485通信协议是一种可靠、高效的串行通信协议,适用于工业自动化等领域。
它通过定义物理层和数据链路层规范,实现了长距离、高速、抗干扰的通信。
在实际应用中,RS485通信协议发挥着重要作用,推动着工业自动化技术的发展。
rs485通讯

RS485通讯1. 引言RS485是一种串行通信协议,用于在多个设备之间进行双向数据传输。
它是一种高性能的通讯协议,常用于工业自动化、仪器仪表、门禁系统等领域。
本文将介绍RS485通讯的基本原理、使用方法以及常见的应用场景。
2. 基本原理RS485通讯使用差分信号传输,可以抵抗电磁干扰和噪声。
它采用两条相对独立的传输线(A线和B线),通过不同的电平表示逻辑1或逻辑0。
其中,逻辑1对应线A为高电平,线B为低电平;逻辑0对应线A为低电平,线B为高电平。
通过这种方式,数据可以在多个设备之间进行可靠的传输。
3. 硬件连接在使用RS485通讯时,需要将所有设备连接到一个共享的总线上。
每个设备都需要两条连接线(A线和B线)以及一个共享的地线。
通常,可以使用终端电阻来匹配总线阻抗并提高信号质量。
4. 传输方式RS485通讯可以采用两种传输方式:全双工和半双工。
4.1 全双工通讯在全双工通讯中,设备可以同时发送和接收数据。
发送数据的设备需要将数据发送到总线上,并通过差分信号传输给其他设备。
同时,接收数据的设备可以监听总线上的数据并将其解析。
4.2 半双工通讯在半双工通讯中,设备的发送和接收操作是交替进行的。
设备在发送数据时,需要先将总线设置为发送模式,并将数据发送到总线上。
其他设备在接收数据时,将总线设置为接收模式,并监听数据。
5. 通讯协议RS485通讯可以使用多种协议进行数据交换,常见的有MODBUS、DMX512等。
这些协议定义了数据的传输格式、通讯方式和功能码等。
5.1 MODBUS协议MODBUS是一种常用的通讯协议,适用于工业自动化领域。
它定义了数据的传输格式,并提供了读写寄存器等功能。
MODBUS协议支持点对点和多点通讯。
5.2 DMX512协议DMX512是一种用于舞台灯光控制的通讯协议。
它定义了数据的传输格式和通讯方式。
DMX512通讯一般采用全双工方式进行。
6. 应用场景RS485通讯在许多领域都有广泛的应用。
RS485通信协议

RS485通信协议
RS485通信协议使用差分信号进行通信,即发送端通过差分驱动方式将1和0分别表示为正负信号,接收端通过判断两个线之间的电压差来确定数值。
这种差分信号的方式使得RS485具有较强的抗干扰能力,可以在较长距离上进行可靠的通信。
在RS485通信协议中,数据被组织为一个个数据帧,每个数据帧包括起始位、数据位、校验位和结束位。
起始位用于同步接收端的时钟,数据位用于传输实际的数据,校验位用于检测数据传输过程中的错误,结束位用于标记数据帧的结束。
除了数据帧的格式,RS485通信协议还定义了通信规则。
例如,通信的发起方先发送起始位,然后发送数据位,接收方在接收到数据位后进行校验并给出响应。
在多个设备同时通信的情况下,RS485通信协议通过设备的物理地址来区别接收方。
RS485通信协议还支持多种不同的工作模式,例如点对点通信、多点通信和主从通信。
点对点通信是最简单的模式,一对发送端和接收端直接进行通信。
多点通信允许多个设备共享同一总线,但同时只有一个设备能够发送数据。
主从通信中,主设备负责发起通信并提供时钟同步信号,从设备负责响应主设备的请求。
总之,RS485通信协议是一种常用的串行通信协议,它提供了可靠的远距离通信能力和较强的抗干扰能力。
通过定义数据帧格式和通信规则,RS485通信协议可以实现多个设备之间的可靠数据传输。
在工业自动化等领域,RS485通信协议被广泛应用,提供了稳定可靠的通信解决方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章串行口RS485通讯协议
9.1通讯概述
本公司系列变频器向用户提供工业控制中通用的RS485通讯接口。
通讯协议采用MODBUS标准通讯协议,该变频器可以作为从机与具有相同通讯接口并采用相同通讯协议的上位机(如PLC控制器、PC机)通讯,实现对变频器的集中监控,另外用户也可以使用一台变频器作为主机,通过RS485接口连接数台本公司的变频器作为从机。
以实现变频器的多机联动。
通过该通讯口也可以接远控键盘。
实现用户对变频器的远程操作。
本变频器的MODBUS通讯协议支持两种传送方式:RTU方式和ASCII方式,用户可以根据情况选择其中的一种方式通讯。
下文是该变频器通讯协议的详细说明。
9.2通讯协议说明
9.2.1通讯组网方式
(1) 变频器作为从机组网方式:
图9-1 从机组网方式示意图(2) 多机联动组网方式:单主机单从机
单主机多从机
图9-2 多机联动组网示意图
9.2.2通信协议方式
该变频器在RS485网络中既可以作为主机使用,也可以作为从机使用,作为主机使用时,可以控制其它本公司变频器,实现多级联动,作为从机时,PC 机或PLC可以作为主机控制变频器工作。
具体通讯方式如下:
(1)变频器为从机,主从式点对点通信。
主机使用广播地址发送命令时,从机不应答。
(2)变频器作为主机,使用广播地址发送命令到从机,从机不应答。
(3)用户可以通过用键盘或串行通信方式设置变频器的本机地址、波特率、数据格式。
(4) 从机在最近一次对主机轮询的应答帧中上报当前故障信息。
9.2.3通讯接口方式
通讯为RS485接口,异步串行,半双工传输。
默认通讯协议方式采用ASCII 方式。
默认数据格式为:1位起始位,7位数据位,2位停止位。
默认速率为9600bps,通讯参数设置参见P3.09~P3.12功能码。
9.3 ASCII通讯协议
字符结构:
10位字符框(For ASCII)
(1-7-2格式,无校验)
(1-7-1格式,奇校验)
(1-7-1格式,偶校验)
11位字符框(For RTU)(1-8-2格式,无校验)
(1-8-1格式,奇校验)
(1-8-1格式,偶校验)
通讯资料结构:
ASCII模式
通讯地址:
00H:所有变频器广播(broadcast)
01H:对01地址变频器通讯。
0FH:对15地址变频器通讯。
10H:对16地址变频器通讯。
以此类推……….,最大可到254(FEH)。
功能码(Function)与资料内容(DAT A):
03H:读出寄存器内容。
06H:写入一笔资料到寄存器。
08H:回路侦测。
功能码03H:读出一个寄存器内容:
例如:读出寄存器地址2104H内容(输出电流):
ASCII模式:
RTU模式:
功能码06H:写入一笔资料到寄存器。
例如:对变频器地址01H,写P0.02=50.00HZ功能码。
ASCII模式:
RTU模式:
命令码:08H通讯回路测试
此命令用来测试主控设备与变频器之间通讯是否正常。
变频器将收到的资料原封不动送给主控设备。
RTU模式:
校验码:
ASCII模式:双字节ASCII码。
计算方法:对于消息发送端,LRC的计算方法是将要发送消息中“从机地址”到“运行数据”没有转换成ASCII码的全部字节连续累加,结果丢弃进位,得到的8位字节按位取反,后再加1(转换为补码),最后转换成ASCII码,放入校验区,高字节在前,低字节在后。
对于消息接收端,采取同样的LRC方法计算接收到消息的校验和,与实际接收到的校验和进行比较,如果相等,则接收消息正确。
如果不相等,则接收消息错误。
如果校验错误,则丢弃该消息帧,并不作任何回应,继续接收下一帧数据。
RTU模式:双字节16进制数。
CRC 域是两个字节,包含一16 位的二进制值。
它由发送端计算后加入到消息中;添加时先是低字节,然后是高字节,故CRC 的高位字节是发送消息的最后一个字节。
接收设备重新计算收到消息的CRC,并与接收到的CRC 域中的值比较,如果两值不同则接收消息有错误,丢弃该消息帧,并不作任何回应,继续接收下一帧数据。
CRC校验计算方法具体参考MODBUS协议说明。