光纤传输的特点优势及传输原理

合集下载

光纤传输_实验报告

光纤传输_实验报告

一、实验目的1. 了解光纤传输的基本原理和结构。

2. 掌握光纤传输系统的基本组成和功能。

3. 学习光纤传输的实验方法和测试技术。

4. 熟悉光纤传输中常见问题的解决方法。

二、实验原理光纤传输是一种利用光导纤维传输光信号的技术。

光导纤维由纤芯、包层和涂覆层组成,纤芯具有较高的折射率,包层折射率较低,通过全内反射原理实现光信号的传输。

光纤传输具有以下特点:1. 传输速率高:光纤传输速率可达数十吉比特/秒。

2. 传输距离远:光纤传输距离可达数公里至数十公里。

3. 抗干扰性强:光纤传输不受电磁干扰。

4. 保密性好:光纤传输不易被窃听。

三、实验仪器与设备1. 光纤传输实验装置2. 光源3. 光纤连接器4. 光功率计5. 光频谱分析仪6. 光时域反射计(OTDR)四、实验内容1. 光纤连接器测试2. 光纤传输系统测试3. 光功率测试4. 光频谱分析5. OTDR测试五、实验步骤1. 光纤连接器测试(1)将光纤连接器插入光源,调整光源输出功率。

(2)将光纤连接器插入光功率计,测量输出功率。

(3)比较实际输出功率与理论输出功率,分析误差原因。

2. 光纤传输系统测试(1)搭建光纤传输系统,包括光源、光纤、光功率计等。

(2)测量系统传输速率,记录测试数据。

(3)分析测试数据,评估系统性能。

3. 光功率测试(1)将光功率计插入光纤传输系统,测量系统输出功率。

(2)记录实际输出功率与理论输出功率,分析误差原因。

4. 光频谱分析(1)将光频谱分析仪连接到光纤传输系统。

(2)测量系统输出信号的频谱,记录测试数据。

(3)分析测试数据,了解系统频谱特性。

5. OTDR测试(1)将OTDR连接到光纤传输系统。

(2)测量系统传输损耗,记录测试数据。

(3)分析测试数据,评估系统传输损耗。

六、实验结果与分析1. 光纤连接器测试结果显示,实际输出功率与理论输出功率基本一致,误差在允许范围内。

2. 光纤传输系统测试结果显示,系统传输速率达到预期目标,系统性能良好。

光传输通信基本原理

光传输通信基本原理

光传输通信基本原理光传输通信是一种基于光波传输信息的通信方式,它利用光的特性来传输数据和信息。

光传输通信具有高速、大容量、低延迟等优势,因此在现代通信领域得到广泛应用。

本文将详细介绍光传输通信的基本原理。

一、光的特性光是一种电磁波,它具有波动性和粒子性。

光波的特性由其频率和波长决定,频率越高,波长越短,能量越大。

光的传播速度非常快,约为每秒30万公里,远远快于电磁波和声波。

二、光纤传输原理光纤是一种用于传输光信号的特殊材料,它由一个或多个玻璃或塑料纤维组成。

光纤的传输原理基于全反射现象。

当光线从光纤的一端进入时,它会在光纤中发生多次全反射,从而沿着光纤传输到另一端。

光纤传输中的关键部件是光纤芯和包层。

光纤芯是光的传输介质,光信号通过光纤芯进行传输。

包层是光纤芯的外部保护层,用于保护光纤芯免受损坏。

光纤还包括护套和连接器等组件,用于保护和连接光纤。

三、光的调制与解调光传输通信中,需要将电信号转换为光信号进行传输,这就需要进行光的调制。

光的调制是通过改变光的强度、频率或相位来表示信息。

常用的光调制方式有强度调制、频率调制和相位调制。

光信号到达接收端后,需要将其转换为电信号,这就需要进行光的解调。

光的解调是将光信号转换为电信号的过程,常用的光解调方式有光电效应、光学干涉和光学散射等。

四、光的传输损耗与衰减光在传输过程中会发生损耗和衰减,主要包括吸收损耗、散射损耗和弯曲损耗。

吸收损耗是指光在光纤材料中被吸收而损失能量,散射损耗是指光在光纤中发生散射而损失能量,弯曲损耗是指光纤被弯曲时光的能量发生损失。

为了减小光的传输损耗和衰减,可以采取一系列措施,如使用低损耗的光纤材料、优化光纤结构、增加光纤的直径和改善光纤连接等。

五、光的调制解调技术光传输通信中的调制解调技术是实现光信号的调制和解调的关键。

常用的调制解调技术有直接调制、外差调制、相位调制和频率调制等。

直接调制是将电信号直接作用于光源,通过改变光源的强度、频率或相位来实现光的调制。

光纤传输的特点优势及传输原理

光纤传输的特点优势及传输原理

光纤传输的特点优势及传输原理光纤传输是一种利用光信号将数据传输的通信技术。

相比传统的电缆传输,光纤传输具有许多明显的优势。

接下来,我将详细介绍光纤传输的特点优势以及传输原理。

1.高传输速度:光纤传输采用光信号传输,光的速度约为3×10^8m/s,因此能够提供更高的传输速率。

目前,光纤传输的速度可以达到每秒数十亿比特。

2.大带宽:光纤传输能够提供更大的带宽,这意味着可以传输更多的数据。

大带宽对于高清视频、虚拟现实、云计算等大数据传输和处理的应用非常重要。

3.长传输距离:光纤传输能够实现长距离的传输。

由于光信号的衰减较小,光纤传输的信号损失较小,因此可以实现几十公里甚至上百公里的传输距离。

4.低延迟:光传输速度快,因此可以实现低延迟的数据传输。

低延迟对于需要实时响应的应用非常重要,如在线游戏、高频交易等。

5.抗干扰能力强:光纤传输不受电磁波的干扰,也不会产生电磁波干扰其他设备。

因此,光纤传输对于电磁环境较恶劣的地区或设备密集的地方非常适用。

光纤传输是基于光信号的传输原理。

它利用了光纤的特殊结构和光的全反射现象。

光纤是由两部分组成的,核和包层。

核是光传输的主要部分,具有较高的折射率。

包层的折射率则较低,形成了一种光信号的波导结构。

当光线射入光纤时,光线在包层和核的交界面上发生全反射,从而沿着光纤的轴线传播,而不会产生辐射。

当光线穿过光纤时,保持着较小的衰减和信号失真程度。

为了实现光纤之间的信号传输,常常使用调制技术。

调制技术通过改变光的强度、频率或相位,将信号转换成光信号。

最常见的调制技术是脉冲编码调制(PCM),它将数字信号转换成相应的脉冲光信号。

在光纤传输系统中,光纤传输设备通常包括发送端和接收端。

发送端将电信号转换成光信号,并通过光纤传输。

接收端接收到光信号后,将其转换成对应的电信号。

总的来说,光纤传输是一种高速、大带宽、低延迟、抗干扰能力强的通信技术。

它通过利用光的全反射现象实现了光信号在光纤中的传输。

光纤传输的物理原理

光纤传输的物理原理

光纤传输的物理原理光纤传输是指利用光纤作为传输媒介,将信息通过光的折射、反射和传输等实现的一种传输方式。

光纤传输的物理原理是基于光学和电学的理论,在光学领域中主要涉及光的传播、反射和折射等基本现象,而在电学领域中主要涉及光、电转换和信号放大等电学技术。

一、光的传播特性1.折射光纤的传输主要依靠光的折射传输。

当光线通过材质界面时,由于在不同介质间传播速度不同,会产生折射现象。

其折射率与材料的折射率有关。

2.反射当光线从一个密度较大的材料射入到密度较小的材料中时,在两者交界面上会发生反射现象。

3.散射光传播过程中会受到环境中粒子的干扰,导致光的方向随机变化,这种现象叫做散射。

二、光纤传输技术1.光纤制作光纤可由石英玻璃或塑料制成。

传输质量最优的光纤采用单模光纤,由于其芯径更细(仅有几个微米)且无长界面的影响,使得光波在传输时不易散失。

2.光源和检测器光源电信号可以是一个脉冲电平,也可以是一个调制的光信号。

检测器用于检测传输回来的光信号,将其转换为电信号。

3.信号放大和提取由于信号在传输过程中会受到衰减,所以需要使用光放大器对其进行放大。

还需要使用光检测器提取信号。

4.光学分波器和集成光学器件光学分波器可将光信号分成多个分支,以进行多路传输。

集成光学器件可直接将电信号转换为光信号。

三、光纤传输的优点1.传输距离远,传输带宽高。

光纤传输距离可达几十甚至几百公里,同时传输带宽也能达到1TB/s以上。

2.抗干扰能力强。

光纤传输克服了金属导线引起的电磁干扰和信号衰减等问题。

3.光纤传输不会产生火花、电弧和静电等问题,具有很高的安全性。

四、光纤传输的应用领域光纤传输技术逐渐在各个领域得到应用。

1.通讯领域。

光纤传输技术应用于电话、网络通信、卫星通信等领域。

2.医疗领域。

光纤传输技术用于光子治疗、心脏起搏器等医疗设备。

3.工业领域。

光纤传输技术用于工业自动化、激光加工等领域。

4.军事与航空领域。

光纤传输技术用于军事通讯、导航、雷达、导弹等领域。

光纤通信的基本原理

光纤通信的基本原理

光纤通信的基本原理光纤通信是一种通过光信号传输信息的通信技术,其基本原理是利用光的衍射和反射特性在光纤中传输信号。

相对于传统的电信号传输方式,光纤通信具有更大的带宽和更高的传输速度,成为现代通信领域的重要技术。

一、光的传播特性光的传播特性是光纤通信的基石。

光可以沿直线传播,遵循光的衍射和反射原理。

当光遇到边界时,会发生折射和反射,使光能在光纤中传输。

二、光纤的结构与工作原理光纤由纤芯和包层组成,其中纤芯是光信号的传输介质,包层则起到光的泄漏和保护作用。

当光信号进入光纤时,会在纤芯中传播,并通过光的衍射和反射在光纤中不断传输,直到到达目的地。

三、光的调制与解调为了在光纤中传输信息,需要将电信号转换成光信号进行调制。

光的调制有直接调制和间接调制两种方式。

直接调制是通过改变光源的电流或电压来改变光的强度,间接调制则是通过改变光的相位或频率来调制光信号。

解调则是将光信号转换回电信号,以便接收方进行处理和解析。

解调可以通过光探测器,如光电二极管、光电转换器等实现,将光信号转换为电信号。

四、光的放大与传输在光纤通信中,需要保证光信号能够在长距离传输而不损失太多信号强度。

为了解决光信号的衰减问题,光纤通信系统采用光纤放大器对光信号进行放大。

光纤放大器通过掺入掺杂物改变光纤中的折射率,使光信号在光纤中传输时得到补偿。

常见的光纤放大器有光纤放大器、光纤激光器等。

通过光的放大,光信号可以在光纤中传输较长距离。

五、光纤通信的优点与应用相对于传统的电信号传输方式,光纤通信具有很多优点。

首先,光纤通信具有更大的传输带宽和更高的传输速度,能够满足大容量、高速率的通信需求。

其次,光纤通信不受电磁干扰,信号传输稳定可靠。

另外,光纤通信具有小尺寸、轻量化的特点,便于安装和维护。

光纤通信广泛应用于各个领域,如电信、互联网、有线电视等。

特别是在互联网普及和数据传输需求增长的背景下,光纤通信在数据中心、企业网络、移动通信等领域发挥着重要作用。

光纤通信 知识点总结

光纤通信 知识点总结

光纤通信知识点总结引言光纤通信是一种通过光纤传输光信号的通信技术,它使用光纤作为传输媒质,通过光的反射、折射和传播来实现信息的传输。

光纤通信具有带宽大、传输速度快、抗干扰性强、安全可靠等优点,因此在现代通信中得到了广泛的应用。

本文将对光纤通信的相关知识点进行总结,包括光纤通信的基本原理、组成结构、传输特点、光纤通信系统的组成和工作原理、光纤通信的发展趋势等内容。

一、光纤通信的基本原理1. 光的特性光波是一种电磁波,具有波粒二象性,既可以表现为波动又可以表现为微粒。

光波的主要特性包括波长、频率、相速度、群速度等。

2. 光纤的基本原理光纤是一种通过光的全反射来传输光信号的一种传输媒质。

它的基本结构是由一根纤维芯和包覆在外的包层组成,通过这样的结构使得光信号可以沿着光纤的传输方向不断进行反射和传播。

二、光纤通信的组成结构1. 光纤的结构光纤由芯和包层构成,芯是由单质或复合材料制成,包层是由低折射率的材料构成,使得光可以在芯和包层的界面上发生全反射。

2. 光纤的连接器连接器是光纤通信中的重要部分,它用于将光纤连接在一起,保证光信号的传输质量。

3. 光纤的光源和接收器光源是产生光波的设备,用于向光纤中输入光信号;接收器是用于接收光纤传输过来的光信号,并将其转换为电信号。

三、光纤通信的传输特点1. 带宽大光纤通信的带宽远远大于传统的铜线通信,可以传输更多的信息。

2. 传输距离远光纤通信的传输距离远远大于铜线通信,可以满足更长距离的通信需求。

3. 传输速度快光纤通信的传输速度远远快于铜线通信,可以实现更快的数据传输。

4. 抗干扰性强光纤通信的信号传输过程中不受电磁干扰,抗干扰性能强。

5. 安全可靠光纤信号传输过程中不会泄露电磁波,安全可靠。

四、光纤通信系统的组成和工作原理1. 光纤通信系统的组成光纤通信系统由光源、光纤、接收器、调制解调器、复用器、解复用器等组成。

2. 光纤通信系统的工作原理光源产生光信号,光信号经过调制解调器进行调制,然后通过光纤进行传输,接收器接收光信号并将其转换为电信号,经过复用器和解复用器将多个信号合并或分解,最终传输到目标设备。

当前通信工程传输技术特点及应用

当前通信工程传输技术特点及应用

当前通信工程传输技术特点及应用随着科技的不断发展,通信工程的传输技术也在不断创新和变革。

新的传输技术不仅提高了通信速度和质量,而且让人们的生活更加便利和舒适。

本文将就当前通信工程传输技术的特点及应用进行探讨。

一、光纤传输技术的特点及应用光纤通信是一种利用玻璃或塑料制成的纤维来传输数据的通信方式。

光纤传输技术具有以下特点:1. 高速传输。

光纤传输速度快,数据传输率可达Gbps级别,远远高于传统的铜缆传输速度。

这种高速传输能力使得光纤传输技术在各种通信场景中得到广泛应用,包括互联网、电视信号传输、电话通讯等。

2. 抗干扰能力强。

由于光纤传输是利用光的传输原理,不受电磁干扰和信号衰减的影响,因此在高电磁干扰环境下仍能保持高质量的通信数据传输。

3. 信号传输距离远。

光纤传输技术在传输距离方面具有明显优势,能够实现数十公里乃至数百公里的信号传输,这使得光纤成为长距离通信的首选方式。

光纤传输技术的应用非常广泛,不仅在通信领域得到了广泛的应用,也在其他行业有不少应用场景。

医疗设备、工业自动化、交通信号控制等领域都在使用光纤传输技术,以实现大量数据的高速传输和远距离传输。

二、5G通信技术的特点及应用5G通信技术是近年来备受瞩目的通信技术之一,其特点主要表现在以下几个方面:1. 高速率传输。

5G通信技术的传输速率非常高,可以支持极大带宽的传输,为用户提供更快速的通信体验。

这种高速率传输能够满足当今大数据时代的需求,能够支持更多的终端设备和复杂的应用场景。

2. 低时延传输。

5G通信技术的时延非常低,可以在毫秒级的时间内完成数据传输,这使得5G通信技术可以在实时控制、虚拟现实、远程医疗等场景中得到广泛应用。

3. 大连接能力。

5G通信技术支持更多的连接设备,可以实现百万级的连接数量,这使得5G通信技术在物联网领域有很大的应用前景。

5G通信技术的应用前景非常广阔,除了提供更快的移动通信速度和更多的连接设备外,5G技术还将在智能城市、智能交通、工业互联网等领域发挥重要作用。

光纤传输优点、原理、速率及传输距离介绍

光纤传输优点、原理、速率及传输距离介绍

光纤传输优点、原理、速率及传输距离介绍光纤传输简介光纤传输,即以光导纤维为介质进行的数据、信号传输。

光导纤维, 不仅可用来传输模拟信号和数字信号,而且可以满足视频传输的需求。

光纤传输一般使用光缆进行,单根光导纤维的数据传输速率能达几Gbps,在不使用中继器的情况下,传输距离能达几十公里。

光纤传输优点(1)频带宽、通信容量大、传输距离远;(2)损耗小,中继距离长;(3)重量轻,体积小;(4)抗电磁干扰,传输质量佳;(5)无电火花,泄漏小,保密性好;(6)节约金属材料,有利用资源合理使用(石英SiO2);(7)具有抗腐蚀能力和抗辐射能力强的特点。

能适应高盐雾、潮湿的海洋环境,在舰船中主要应用于在船舶视频监控,网络接入及水下水声信号传输等方面。

光纤传输(通信)是利用光波作载波,以光纤作为传输媒质将信息从一处传至另一处的通信方式,被称之为“有线”光通信。

严格来说是工作在电磁频谱的近红外频段(通常是770-1675nm范围),正好处于石英玻璃光纤的低损耗区域。

光纤传输的原理光独立传播定律认为,从不同光源发出的光线,以不同的方向通过介质某点时,各光线彼此互不影响,好象其他光线不存在似的。

光的直线传播和折射、反射定律认为,光在各向同性的均匀介质(折射率n不变)中,光线按直线传播。

光在传播中遇到两种不同介质的光滑界面时,光发生反射和折射现象。

光在均匀介质中的传播速度为:V=c/n,式中c是光在真空中的传播速度;n是介质的折射率。

反射定律为反射线位于入射线和法线所决定的平面内,反射线和入射线处于法线的两侧,反射角等于入射角。

折射定律为折射线位于入射线和法线所决定的平面内,折射线和入射线位于法线的两侧。

光在传播过程中,若从一种介质传播到另一种介质的交界面时,因两种介质的折射率不等,将会在交界面上发生反射和折射现象。

一般将折射率较大的介质称为光密媒质,折射率小的称为光疏媒质。

为了保证光信号在光纤中能进行远距离传输,一定要使光信号在光纤中反复进行全反射,才能保证衰减最小,色散最小,到达远端。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤传输的特点优势及传输原理
优点
光缆传输的实现与发展形成了它的几个优点。

相对于铜线每秒1.54MHZ的速率 光纤网络的运行速率达到了每秒2.5GB。

从带宽看,很大的优势是:光纤具有较大的信息容量,这意味着能够使用尺寸很小的电缆,将来就不用更新或增强传输光缆中信号。

光纤电缆对诸如无线电、电机或其他相邻电缆的电磁噪声具有较大的阻抗,使其免于受电噪声的干扰。

从长远维护角度来看,光缆最终的维护成本会非常低。

光纤使用光脉冲沿光线路传输信息,以替代使用电脉冲沿电缆传输信息。

在系统的一端是发射机,是信息到光纤线路的起始点。

发射机接收到的已编码电子脉冲信息来自于铜线电缆,然后将信息处理并转换成等效的编码光脉冲。

使用发光二极管或注入式激光器产生光脉冲,同时采用透镜,将光脉冲集中到光纤介质,使光脉冲沿线路在光纤介质中传输。

由内部全反射原理可知,光脉冲很容易眼光纤线路运动,光纤内部全反射原理说明了当入射角超过临界值时,光就不能从玻璃中溢出;相反,光纤会反射回玻璃内。

应用这一原理制作光纤的多芯电缆,使得与光脉冲形式沿光线路传输信息成为可能。

光纤传输具有衰减小、频带宽、抗干扰性强、安全性能高、体积小、重量轻等优点,所以在长距离传输和特殊环境等方面具有无法比拟的优势。

传输介质是决定传输损耗的重要因素,决定了传输信号所需中继的距离,光纤作为光信号的传输介质具有低损耗的特点,光纤的频带可达到1.0GHz以上,一般图像的带宽只有8MHz,一个通道的图象用一芯光纤传输绰绰有余,在传输语音、控制信号或接点信号方面更为优势t光纤传输中的载波是光波,光波是频率极高的电磁波,远远比电波通讯中所使用的频率高,所以不受干扰。

且光纤采用的玻璃材质,不导电,不会因断路、雷击等原因产生火花,因此安全性强,在易燃,易爆等场合特别适用。

组成部分
光源(又称光发送机),传输介质、检测器(又称光接收机)。

计算机网络之间的光纤传输中,光源和检测器的工作一般都是用光纤收发器完成的,光纤收发器简单的来说就是实现双绞线与光纤连接的设备,其作用是将双绞线所传输的信号转换成能够通过光纤传输的信号(光信号)。

当然也是双向的,同样能将光纤传输的信号转换能够在双绞线中传输的信号,实现网络间的数据传输。

在普通的视、音频、数据等传输过程中,光源和检测器的工作一般都是由光端机完成的,光端机就是将多个E1信号变成光信号并传输的设备,所谓E1是一种中继线路数据传输标准,我国和欧洲的标准速率为2.048Mbps,光端机的主要作用就是实现电一光、光一电的转换。

由其转换信号分为模拟式光端机和数字式光端机。

因此,光纤传输系统按传输信号可分为数字传输系统和模拟传输系统。

模拟传输系统是把光强进行模拟调制,将输入信号变为传输信号的振幅(频率或相位)的连续变化。

数字传输系统是把输入的信号变换成“1”,“O”脉冲信号,并以其作为传输信号,在接受端再还原成原来的信号。

当然,随着光纤传输信号的不同所需要的设备有所不同。

光纤作为传输介质,是光纤传输系统的重要因素。

可按不同的方式进行分类:按照传输模式来划分:光线只沿光纤的内芯进行传输,只传输主模我们称之为单模光纤(Single—Mode)。

有多个模式在光纤中传输,我们称这种光纤为多模光纤(Multi-Mode)。

按照纤芯直径来划分:缓变型多模光纤、缓变增强型多模光纤和缓变型单模光纤按照光纤芯的折射率分布来划分:阶跃型光纤(Step index fiber),简称SIF;梯度型光纤(Graded index f iber),简称GIF;环形光纤(r iv er f iber);W 型光纤。

光缆:点对点光纤传输系统之间的连接通过光缆。

光缆含1根光纤(称单纤),有2根光纤(称双纤),或者更多。

单、多模光纤传输设备的原理
光纤传输设备传输方式可简单的分成:多模光纤传输设备和单模光纤传输设备。

1. 多模光纤传输设备
多模光纤传输设备所采用的光器件是LED,通常按波长可分为850nm和1300nm两个波长,按输出功率可分为普通L ED和增强LED——EL ED。

多模光纤传输所用的光纤,有62.5mm和50mm两种。

在多模光纤上传输决定传输距离的主要因素是光纤的带宽和L ED的工作波长,例如,如果采用工作波长1300nm的L ED和50微米的光纤,其传输带宽是400 MHz.km,链路衰减为0.7dB/km,如果基带传输频率F为150MHz,对于出纤功率为-18dBm,接收灵敏度为-25 dBm的光纤传输系统,其最大链路损耗为7 dB,则可计算:
ST连接器损耗:
2dB(两个ST连接器)
光学损耗裕量:2
则理论传输距离:
L=(7 dB-2 dB-2 dB)/0.7dB/km=4.2 km
L为传输距离,而根据光纤的带宽计算:
L=B/F=400 MHz .km/150MHz=2.6km
其中B为光纤带宽,F为基带传输频率,那么实际传输测试时,L£2.6km,由此可见,决定传输距离的主要因素是多模光纤的带宽。

2. 单模传输设备
单模传输设备所采用的光器件是L D,通常按波长可分为850nm和1300nm两个波长,按输出功率可分为普通LD、高功率L D、DFB-LD(分布反馈光器件)。

单模光纤传输所用的光纤最普遍的是G.652,其线径为9微米。

1310nm波长的光在G.652光纤上传输时,决定其传输距离限制的是衰减因数;因为在1310nm波长下,光纤的材料色散与结构色散相互抵消总的色散为0,在1310nm波长上有微小振幅的光信号能够实现宽频带传输。

1550nm波长的光在G.652光纤上传输时衰减因数很小,单纯从衰减因数考虑,1550nm波长的光在相同的光功率下传输的距离大于1310nm波长的光下的传输的距离,但是实际情况并非如此,单模光纤带宽B与色散因数D的关系为:
B=132.5/(Dlx DxL)GHz
其中L为光纤的长度,Dl为谱线宽度,对于1550nm波长的光,其色散因数如表3为20 ps/(nm . km),假设其光谱宽度等于1nm,传输距离为L=50公里,则有:
B=132.5/(Dx L)GHz=132.5MHz
也就是说,对于模拟波形,采用1550nm波长的光,当传输距离为50公里时,传输带宽已经小于1 32.5 MHz,如果基带传输频率F为150MHz,那么传输距离已经小于50km,况且实际应用中,光源的谱线宽度往往大于1nm。

从上式可以看出,1550nm波长的光在G.652光纤上传输时决定其传输距离限制的主要是色散因数。

评价
今天,人们使用光纤系统承载数字电视、语音和数字是很普通的一件事,在商用与工业领域,光纤已成为地面传输标准。

在军事和防御领域,快速传递大量信息是大范围更新换代光纤计划的原动力。

尽管光纤仍在初期发展阶段,但总有一天光控飞行控制系统会用重量轻、直径小又使用安全的光缆取代线控飞行系统。

光导纤维与卫星和其他广播媒体一起,代表着在航空电子学、机器人学、武器系统、传感器、交通运输及其他高性能环境使用条件下的商用通信和专业应用的新的世界潮流。

相关文档
最新文档