2010年宁夏中考数学试卷及答案
宁夏中考《数学》试题及答案完整篇.doc

2013宁夏中考《数学》试题及答案-中考文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第2页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第3页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第4页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第5页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第6页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第7页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第8页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第9页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第10页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第11页-
中考
文章责编:zhongzexing。
宁夏自治区中考真题.doc

2.查结果:住户(户)2 4 51 月用水量(方7户)2 4 6 10(绝密)2010年6月29LI11: 00前宁夏回族自治区2010年初中毕业暨高中阶段招生数学试卷注意事项:1. 考试时间120分钟,全卷总分120分.2. 答题前将密封线内的项目填写清楚.3. 答卷一律使用黑、蓝钢笔或圆珠笔.4. 凡使用答题卡的考生,答卷前务必将答题卡上的有关项目填写清楚.选择题的每小题选 出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后, 再选涂其他答案.不使用答题卡的考生,将选择题的答案答在试卷上.把多项式x 3- 2x 2+ x 分解因式结果正确的是 A. x (x 2- 2x ) B. X 2(X -2) C. X (X + 1)(X -1) D. x (x-l )23. 把61万用科学记数法可表示为 ()A. 6.1X104B. 6.1xl05C. 6.0xl05D. 61xl044. 用一个平面去截一个几何体,不能截得三角形截面的几何体是 ()A.圆柱B.圆锥C.三棱柱。
.正方体5. 为了解居民节约用水的情况,增强居民的节水意识,下表是某个单元的住户当月用水量的调则关于这12户居民月用水量,下列说法错误的是()• •A.中位数6方B.众数6方C.极差8方D.平均数5方6.点A 、B 、C 是平面内不在同一条宜线上的三点,点。
是平面内任意一点,若A 、B 、C 、D 四点恰能构成一个平行四边形,则在平面内符合这样条件的点。
有()D .3)3=/A. a 1= a bB. a 5io' = a 2C. a 2+A. 1个B. 2个C. 3个D. 4个7.把抛物线y =-尸向左平移1个单位,然后向上平移3个单位,则平移后抛物线的表达式x + y = 100(l + 10%)x + (l-40%)y = 100x(l + 20%)x+),= 100(l-10%)x 4-(1 + 40%)y = 100x 20%x+v = 100 J(l-10%)x+(l+40%)y = 100x(l + 20%)x+ y = 100(1 +10%)x + (1 - 40%)),= 100x20%A. y = —(x — 1)" + 3B. y = -(x + l)~+3C. y = -(x — I)2 — 3D. y = -(x +1)2— 3 .8.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%, 调价后两种商品的单价和比原来的单价和提高了20%.若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是二、填空题(每小题3分,共24分)评卷人9.若分式工与1互为相反数,则x的值是.x — 110.如图,BC1AE,垂足为C,过C作CD//AB.若ZECD=48° 则匕B=11.矩形窗户上的装饰物如图所示,它是山半径均为力的两个四分之一圆组成,则能射进阳光部分的面积是.12.商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销侣:若购买不超过5 件,按原价付款;若一次性购买5件以上,超过部分打八折.如果用27元钱,最多可以购买该商品的件数是 .[X〉213.若关于x的不等式组」的解集是x>2,则功的取值范围是.x> m14.将半径为l(km,弧长为\17rcm的扇形围成圆锥(接缝忽略不计),那么圆锥的母线与圆锥高的夹角的余弦值是__________ . 一、15.如图是三根外径均为1米的圆形钢管堆积图和主视图,厂)则其最高点与地而的距离是___________ 米.16.关于对位似图形的表述,下列命题正确的〔顼一芬"是.(只填序号)%1相似图形一定是位似图形,位似图形一定是相似图形;%1位似图形一定有位似中心;%1如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;%1位似图形上任意两点与位似中心的距离之比等于位似比.三、解答题(共2417. (6 分)计算:(^-3.14)° + Vi8 + (-|)-,-|l-V2|.18. (6 分)x-3(x-2)<4解不等式组\[ + 2x----- > x-1 3其中。
初三数学试卷附答案解析

初三数学试卷附答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题 1.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .B .C .D .2.(2011•宁夏)如图,△ABO 的顶点坐标分别为A (1,4)、B (2,1)、O (0,0),如果将△ABO 绕点O 按逆时针方向旋转90°,得到△A′B′O′,那么点A′、B′的对应点的坐标是( )A .A′(﹣4,2),B′(﹣1,1)B .A′(﹣4,1),B′(﹣1,2)C .A′(﹣4,1),B′(﹣1,1)D .A′(﹣4,2),B′(﹣1,2)3.某校九年级(1)班50名学生中有20名团员,他们都积极报名参加学校开展的“文明劝导活动”.根据要求,该班从团员中随机抽取1名参加,则该班团员京京被抽到的概率是( ) A . B . C . D .4.如图:等腰直角三角形ABC 位于第一象限,AB=AC=2,直角顶点A 在直线y=x 上,其中A 点的横坐标为1,且两条直角边AB 、AC 分别平行于x 轴、y 轴,若双曲线y=(k≠0)与△ABC 有交点,则k 的取值范围是( )A .1<k <2B .1≤k≤3C .1≤k≤4D .1≤k <4 5.已知整式的值为3,则的值为( )A .18B .12C .9D .76.若关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有实数根,则k 的取值范围是( )A .k >B .k ≥C .k >且k ≠1D .k ≥且k ≠1 7.的相反数是【 】A .2B .-2C .D .8.已知关于x 的一元二次方程x 2-bx +c =0的两根分别为x 1=1,x 2=-2,则b 与c 的值分别为( ) A .b =-1,c =2 B .b =1,c =-2 C .b =1,c =2 D .b =-1,c =-29.下列运算正确的是( )A .a 6÷a 2=a 4B .2(a+b )="2a+b"C .(ab )﹣2=ab ﹣2D .a 3+a 3=a 610.给定一列按规律排列的数:,则这列数的第6个数是 A .B .C .D .二、判断题 11.解方程:(1) x (2x -5)=4x -10 (2) x 2-4x -7=0 12.(1)解方程:x 2-6x -6=0; (2)解不等式组:13.某探测队在地面A 、B 两处均探测出建筑物下方C 处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C 的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)14.如图,反比例函数与一次函数的图象交于、两点.(1)求、两点的坐标;(2)求的面积;(3)若,分别是双曲线和直线上的两动点,写出的的取值范围.15.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,图①、图②、图③均为顶点都在格点上的三角形(每个小方格的顶点叫格点),(1)在图1中,图①经过一次变换(填“平移”或“旋转”或“轴对称”)可以得到图②;(2)在图1中,图③是可以由图②经过一次旋转变换得到的,其旋转中心是点(填“A”或“B”或“C”);(3)在图2中画出图①绕点A顺时针旋转90°后的图④.三、填空题16.在△ABC中,AB=AC=10,sinC=,则BC=_____.17.某工厂共有50名员工,他们的月工资方差=20,现在给每个员工的月工资增加300元,那么他们新工资的方差是.18.某药品原价每盒16元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒9元,则该药品平均每次降价的百分率是.19.如图,等腰△ABC的顶角∠A=40°,以AB为直径的半圆与BC、AC分别交于D、E两点,则∠EBC= , 的度数为 .20.为了解某校九年级学生体能情况,随机抽查了其中的25名学生,测试了1分钟仰卧起坐的次数,并绘制成频数分布直方图(如图所示),那么仰卧起坐的次数在20~25的频率是.四、计算题21.(本题6分)计算:22.计算:(1)()-1-3tan60°+;(2)(a+2)(a-2)-(a-1)2.五、解答题23.某市“佳美”房地产开发公司于2011年5月份完工一商品房小区,6月初开始销售,其中6月的销售单价为,7月的销售单价为,且每月销售价格(单位:)与月份为整数)之间满足一次函数关系;每月的销售面积为(单位:),其中为整数).(1)求与月份的函数关系式;(2)6~11月中,哪一个月的销售额最高?最高销售额为多少万元?(3)因受到房产调控政策的持续影响,从2011年12月份开始,该公司月销售额大幅减少,2012年1月份的销售额仅为800万元,请根据以上条件求出该公司这两个月每月销售额的平均降低率.24.(8分)小明想从“天猫”某网店购买计算器,经査询,某品牌A号计算器的单价比B型号计算器的单价多10元,5台A型号的计算器与7台B型号的计算器的价钱相同,问A、B两种型号计算器的单价分别是多少?参考答案1 .C【解析】试题分析:由随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有3种情况,直接利用概率公式求解即可求得答案.解:∵在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,∴使与图中阴影部分构成轴对称图形的概率是:3÷5=.故选C.考点:概率公式;轴对称图形.2 .B【解析】∵图形旋转后大小不变,∴OA=OA′==,∴A、D显然错误;同理OB=OB′==.∴C错误.故选B.3 .C【解析】试题分析:让1除以团员总数即为该班团员京京被抽到的概率.解:全部是20名团员,抽取1名,所以被抽到的概率是.故选C.考点:概率公式.4 .C【解析】试题分析:先根据题意求出A点的坐标,再根据AB=AC=2,AB、AC分别平行于x轴、y轴求出B、C两点的坐标,再根据双曲线y=(k≠0)分别经过A、B两点时k的取值范围即可.解:点A在直线y=x上,其中A点的横坐标为1,则把x=1代入y=x解得y=1,则A的坐标是(1,1),∵AB=AC=2,∴B点的坐标是(3,1),∴BC的中点坐标为(2,2)当双曲线y=经过点(1,1)时,k=1;当双曲线y=经过点(2,2)时,k=4,因而1≤k≤4.故选C.考点:反比例函数图象上点的坐标特征;等腰直角三角形.点评:本题考查一定经过某点的函数应适合这个点的横纵坐标.5 .B【解析】分析:先把代数式进行适当的变形,然后直接把已知整式的值代入代数式即可求出代数式的值.解答:解:2x2-4x+6=2(x2-2x)+6,将x2-2x=3代入上面的代数式得,2x2-4x+6,=2×3+6,=12,故选B.6 .D【解析】试题分析:因为关于x的一元二次方程(k-1)x2+2x-2=0有实数根,所以,所以k≥,又因为k-1≠0,所以k≠1,所以k的取值范围是k≥且k≠1,故选:D.考点:根的判别式.7 .C。
((完整版))宁夏中考数学试卷及答案,推荐文档

)
x
y
y
y
y
x
x
x
x
A
B
C
D
7 如图是某几何体的三视图,其侧面积( )
A.6
B. 4
C. 6 D. 12
左视图
主视图
3
A
2
2
C
B
俯视图
第7题
第8题
8.如图,以等腰直角△ABC 两锐角顶点 A、B 为圆心作等圆,⊙A 与⊙B 恰好外切,若
AC=2,那么图中两个扇形(即阴影部分)的面积之和为
(
)
A.
总分
一
二
三
四
复核人
得分 评卷人
1.计算 (a2 )3 的结果是
( )
A. a5
B. a6
C. a8
2. 一元二次方程 x(x 2) 2 x 的根是
D. a9
()
A. 1
B. 0
C. 1 和 2
D. 1和 2
3.如图是某水库大坝横断面示意图.其中 AB、 CD 分别表示 水库上下底面 的水平线 ,
结 DE 并延长,与 BC 的延长线交于点 F.且 BD=BF.
(1) 求证:AC 与⊙O 相切. (2) 若 BC=6,AB=12,求⊙O 的面积.
A D
O ·
B
E
□ C
F
得分 24.(8 分)
如图,抛物线与 x 轴交于 A、B 两点,与 y 轴交 C 点,点 A 的坐标为(2,0),点 C 的
4
B.
2
2
C.
2
D. 2
得分
评卷人
二、填空题(每小题 3 分,共 24 分)
2010年中考数学试题及答案

2010年中考数 学 试 卷*考试时间120分钟 试卷满分150分一、选择题(本大题共7小题,每小题4分,共28分)每题所给的四个选项中只有一项是符合题目要求的,请将所选项的代号字母填在答卷的相应位置处. 1) A. BC.-D2.反比例函数23m y x--=的图象位于( )A .第一、三象限B .第二、四象限C .第二、三象限D .第一、二象限3.从2、3、4、5这四个数中,任取两个数()p q p q ≠和,构成函数2y px y x q =-=+和,并使这两个函数图象的交点在直线2x =的右侧,则这样的有序数对()p q ,共有( ) A .12对 B .6对 C .5对 D .3对4.把多项式2288x x -+分解因式,结果正确的是( ) A .()224x -B .()224x -C .()222x -D .()222x +5.某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( ) A .9cm B .12cm C .15cm D .12cm 或15cm6.一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式0kx b +>的解集是A .2x >-;B .0x >;C .2x <-;D .0x <7.若0a >且2x a =,3y a =,则x ya -的值为( )A .1-B .1C .23D .32二、填空题(本大题共6小题,每小题4分,共24分)把答案直接填在答卷的相应位置处.xb +8.将点(12),向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 .9.幼儿园把新购进的一批玩具分给小朋友.若每人3件,那么还剩余59件;若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有 件.10.李师傅随机抽查了本单位今年四月份里6天的日用水量(单位:吨)结果如下:7,8,8,7,6,6,根据这些数据,估计四月份本单位用水总量为 吨.11.我们知道利用相似三角形可以计算不能直接测量的物体的高度,阳阳的身高是1.6m ,他在阳光下的影长是 1.2m ,在同一时刻测得某棵树的影长为 3.6m ,则这棵树的高度约为 m . 12.如图所示的半圆中,AD 是直径,且3AD =,2AC =,则sin B 的值是 .13.某个圆锥的侧面展开图形是一个半径为6cm ,圆心角为︒120的扇形,则这个圆锥的底面半径为______________cm .三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分)解答时应在答卷的相应位置处写出文字说明、证明过程或演算过程. Ⅰ.(本题满分12分,第14题6分,第15题6分)14.计算:230116(2)(πtan60)3-⎛⎫--÷-+-- ⎪⎝⎭.15.先化简,再求值:221111121x x x x x +-÷+--+,其中1x =. Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)C BD A16.如图,线段AB 与⊙O 相切于点C ,连结OA ,OB ,OB 交⊙O 于点D ,已知6OA OB ==,AB =(1)求⊙O 的半径; (2)求图中阴影部分的面积.17.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超..过.132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?18.甲、乙两名运动员进行长跑训练,两人距终点的路程y (米)与跑步时间x (分)之间C OABD的函数图象如图所示,根据图象所提供的信息解答问题:(1) 他们在进行 米的长跑训练,在0<x <15的时段内,速度较快的人是 ;(2) 求甲距终点的路程y (米)和跑步时间 x (分)之间的函数关系式; (3) 当x =15时,两人相距多少米?在15<x <20的时段内,求两人速度之差.Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分)19.把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5)洗匀后正面朝下放在桌面上.(1)如果从中随机抽取一张牌,那么牌面数字是4的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字.当2张牌面数字相同时,小王赢;当2张牌面数字不相同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.20.如图,河流两岸a b ,互相平行,C D ,是河岸a 上间隔50m 的两个电线杆.某人在河分)岸b 上的A 处测得30DAB ∠= ,然后沿河岸走了100m 到达B 处,测得60CBF ∠=,求河流的宽度CF 的值(结果精确到个位).21.三个生产日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为12个月.工商部门为了检查他们宣传的真实性,从三个厂家各抽取11只日光灯管进行检测,灯管的使用寿命(单位:月)如下:试问:(1)这三个厂家的广告,分别利用了统计中的哪一个特征数(平均数、中位数、众数)进行宣传?(2)如果三种产品的售价一样,作为顾客的你选购哪个厂家的产品?请说明理由.Ⅳ(本题满分8分)BED CFab A22.如图, 已知等边三角形ABC 中,点D ,E ,F 分别为边AB ,AC ,BC 的中点,M 为直线BC 上一动点,△DMN 为等边三角形(点M 的位置改变时, △DMN 也随之整体移动) . (1)如图①,当点M 在点B 左侧时,请你判断EN 与MF 有怎样的数量关系?点F 是否在直线NE 上?都请直接....写出结论,不必证明或说明理由; (2)如图②,当点M 在BC 上时,其它条件不变,(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;(3)若点M 在点C 右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.Ⅴ(本题满分14分)图① 图② 图③A·BCD EF··N MFEDCB ANMF EDCBA·23.如图,在平面直角坐标系中,以点(11)C ,为圆心,2为半径作圆,交x 轴于A B ,两点,开口向下的抛物线经过点A B ,,且其顶点P 在C 上.(1)求ACB 的大小;(2)写出A B ,两点的坐标; (3)试确定此抛物线的解析式;(4)在该抛物线上是否存在一点D ,使线段OP 与CD 互相平分?若存在,求出点D 的坐标;若不存在,请说明理由.2010年中考数学试题参考答案及评分标准二、填空题(本大题共6小题,每小题4分,共24分) 8.(00),;9.152;10.210;11.4.8;12.23;13.4 三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分) Ⅰ.(本题满分12分,第14题6分,第15题6分) 14.解:原式=9-16÷(-8)+1-23×23……………………2分 =9+2+1-3.……………………………………4分 =9 ………………………………6分15.解:原式211(1)1(1)(1)1x x x x x -=-++-+······································································ 2分 2211(1)(1)1(1)(1)x x x x x x -+--=-=+++ ······························································· 4分 22(1)x =+ ········································································································ 5分当1x =时,原式23== ··································································· 6分 Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)16.(1)连结OC ,则 OC AB ⊥. …………………………………………………1分∵OA OB =,∴1122AC BC AB ===⨯ ………………………………………2分在Rt AOC △中,3OC ===.∴ ⊙O 的半径为3. …………………………………………………………3分 (2)∵ OC =12OB , ∴ ∠B =30o , ∠COD =60o . ……………………………………5分 ∴扇形OCD 的面积为OCD S 扇形=260π3360⨯⨯=32π. …………………………………5分阴影部分的面积为:Rt Δ=OBC OCD S S S -阴影扇形=12OC CB ⋅-3π2-3π2.…………………………7分 17.解:(1)设购买乙种电冰箱x 台,则购买甲种电冰箱2x 台,丙种电冰箱(803)x -台,根据题意,列不等式: ································································ 1分120021600(803)2000132000x x x ⨯++-⨯≤. ···························································· 3分解这个不等式,得14x ≥. ·································································································· 4分 ∴至少购进乙种电冰箱14台. ····························································································· 5分 (2)根据题意,得2803x x -≤. ····················································································· 6分 解这个不等式,得16x ≤. ·································································································· 7分 由(1)知14x ≥. 1416x ∴≤≤. 又x 为正整数, 141516x ∴=,,. ···················································································································· 8分 所以,有三种购买方案:方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台; 方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台; 方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台. ··················· 10分 18.解:(1)5000…………………………………2分甲 ………………………………4分(2)设所求直线的解析式为:y =kx +b (0≤x ≤20), ………5分由图象可知:b =5000,当x =20时,y =0, ∴0=20k +5000,解得k = -250. …7分即y = -250x +5000 (0≤x ≤20) ……………7分(3)当x =15时,y = -250x +5000= -250×15+5000=5000-3750=1250. ………8分 两人相距:(5000 -1250)-(5000-2000)=750(米)………………9分 两人速度之差:750÷(20-15)=150(米/分)……………11分Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分) 19解:(1)P (抽到牌面数字是4)13=; ········································································ 2分(2)游戏规则对双方不公平. ················································································· 5分 理由如下:由上述树状图或表格知:所有可能出现的结果共有9种. P (抽到牌面数字相同)=3193=, P (抽到牌面数字不相同)=6293=.∵1233<,∴此游戏不公平,小李赢的可能性大. ············································ 12分 (说明:答题时只需用树状图或列表法进行分析即可)20.解:过点C 作CE AD ∥,交AB 于E CD AE ∥,CE AD ∥ ····································································································· 2分∴四边形AECD 是平行四边形 ······························································································ 4分 50AE CD ∴==m ,50EB AB AE =-=m ,30CEB DAB ∠=∠= ···························· 6分又60CBF ∠=,故30ECB ∠=,50CB EB ∴==m ···················································· 8分∴在Rt CFB △中,sin 50sin 6043CF CB CBF =∠=≈m ········································ 11分 答:河流的宽度CF 的值为43m . ······················································································ 12分21.答:(1)甲厂的广告利用了统计中的平均数. ····························································· 2分乙厂的广告利用了统计中的众数. ············································································ 4分 丙厂的广告利用了统计中的中位数. ············································································ 7分分…………………………8分11F B C (2) 选用甲厂的产品. 因为它的平均数较真实地反映灯管的使用寿命 ······················· 10分 或选用丙厂的产品.因为丙厂有一半以上的灯管使用寿命超过12个月 ··························· 10分Ⅳ.(本题满分8分)22.(1)判断:EN 与MF 相等 (或EN=MF ),点F 在直线NE 上, ········ 2分(2)成立. ······························ 3分 证明:法一:连结DE ,DF .∵△ABC 是等边三角形, ∴AB =AC =BC .又∵D ,E ,F 是三边的中点,∴DE ,DF ,EF 为三角形的中位线.∴DE =DF =EF ,∠FDE =60°.又∠MDF +∠FDN =60°, ∠NDE +∠FDN =60°,∴∠MDF =∠NDE .在△DMF 和△DNE 中,DF =DE ,DM =DN , ∠MDF =∠NDE ,∴△DMF ≌△DNE . 8∴MF =NE . ·························· 6分法二:延长EN ,则EN 过点F .∵△ABC 是等边三角形, ∴AB =AC =BC .又∵D ,E ,F 是三边的中点, ∴EF =DF =BF .∵∠BDM +∠MDF =60°, ∠FDN +∠MDF =60°,∴∠BDM =∠FDN .又∵DM =DN , ∠ABM =∠DFN =60°,∴△DBM ≌△DFN .∴BM =FN .∵BF =EF , ∴MF =EN . ·························· 6分(3)画出图形(连出线段NE ), 6MF 与EN 相等的结论仍然成立(或MF =NE 成立). ·············· 8分Ⅴ.(本题满分14分)23.解:(1)作CHN C A B F M D E NC A B F MD E12 1CH = ,半径2CB = ·························································· 1分60BCH ∠= ,120ACB ∴∠= ········································· 3分(2)1CH = ,半径2CB =HB ∴=(1A ,················································ 5分(1B ··············································································· 6分 (3)由圆与抛物线的对称性可知抛物线的顶点P 的坐标为(13), ······································· 7分 设抛物线解析式2(1)3y a x =-+ ·························································································· 8分把点(1B 代入上式,解得1a =- ·············································································· 9分 222y x x ∴=-++ ·············································································································· 10分 (4)假设存在点D 使线段OP 与CD 互相平分,则四边形OCPD 是平行四边形 ·········· 11分 PC OD ∴∥且PC OD =.PC y ∥轴,∴点D 在y 轴上. ····················································································· 12分又2PC = ,2OD ∴=,即(02)D ,. 又(02)D ,满足222y x x =-++, ∴点D 在抛物线上 ··············································································································· 13分 所以存在(02)D ,使线段OP 与CD 互相平分. ·································································· 14分。
宁夏年中考数学试卷及答案解析

一、选择题1.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是()A.10℃B.﹣10℃C.6℃D.﹣6℃2.下列计算正确的是()A .+=B.(﹣a2)2=﹣a4C.(a﹣2)2=a2﹣4 D .÷=(a≥0,b>0)3.已知x,y 满足方程组,则x+y的值为()A.9 B.7 C.5 D.34.为响应“书香校响园”建设的号召,在全校形成良好的阅读氛围,随机调查了部分学生平均每天阅读时间,统计结果如图所示,则本次调查中阅读时间为的众数和中位数分别是()A.2和1B.1.25和1 C.1和1D.1和1.255.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2B .C.6D.86.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()组成这个几何体的小正方形个数是()A.3 B.4 C.5 D.67.某校要从甲、乙、丙、丁四名学生中选一名参加“汉字听写”大赛,选拔中每名学生的平均成绩及其方差s2如表所示,如果要选拔一名成绩高且发挥稳定的学生参赛,则应选择的学生是()甲乙丙丁2017年宁夏中考数学试卷8.9 9.5 9.5 8.9s20.92 0.92 1.01 1.03 A.甲B.乙C.丙D.丁8.正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B、两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>2二、填空题(本题共8小题,每小题3分,共24分)9.分解因式:mn2﹣m= .10.若二次函数y=x 2﹣2x+m的图象与x轴有两个交点,则m的取值范围是.11.实数a在数轴上的位置如图,则|a﹣3|= .12.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为.13.在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且,若平行四边形ABCD的周长是16则EC等于.14.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为.15.已知正△ABC的边长为6,那么能够完全覆盖这个正△ABC的最小圆的半径是.16.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC 绕点P旋转得到,则点P的坐标为.三、解答题(本题共6道题,每题6分,共36分)17.解不等式组.18.化简求值:(),其中a=2+.19.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣1),B(3,﹣3),C(0,﹣4)(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2.20.为了解学生的体能情况,随机选取了1000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,长跑短跑跳绳跳远200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑、则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?21.在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.22.某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?四、解答题(本题共4道题,其中23题、24题每题8分,25题、26题每题10分,共36分)23.已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.24.如图,Rt△ABO的顶点O在坐标原点,点B在x轴上,∠ABO=90°,∠AOB=30°,OB=2,反比例函数y=(x>0)的图象经过OA的中点C,交AB于点D.(1)求反比例函数的关系式;(2)连接CD,求四边形CDBO的面积.25.某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元.现要对在购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购买笔芯上所需要的费用(单位:元),n 表示购买水彩笔的同时购买的笔芯个数.(1)若n=9,求y与x的函数关系式;(2)若要使这30支水彩笔“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,确定n的最小值;(3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯所需费用的平均数,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个笔芯.26.在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C 移动,连接QP,QD,PD.若两个点同时运动的时间为x秒(0<x≤3),解答下列问题:(1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值;(2)是否存在x的值,使得QP⊥DP?试说明理由.2016年宁夏中考数学试卷一、选择题1.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是()A.10℃B.﹣10℃C.6℃D.﹣6℃【解答】解:根据题意得:8﹣(﹣2)=8+2=10,则该地这天的温差是10℃,故选A【点评】此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.2.下列计算正确的是()A .+=B.(﹣a2)2=﹣a4C.(a﹣2)2=a2﹣4 D .÷=(a≥0,b>0)【解答】解:A 、+无法计算,故此选项错误;B、(﹣a2)2=a4,故此选项错误;C、(a﹣2)2=a2﹣4a+4,故此选项错误;D 、÷=(a≥0,b>0),正确.故选:D.3.已知x,y 满足方程组,则x+y的值为()A.9 B.7 C.5 D.3【解答】解:,①+②得:4x+4y=20,则x+y=5,4.为响应“书香校响园”建设的号召,在全校形成良好的阅读氛围,随机调查了部分学生平均每天阅读时间,统计结果如图所示,则本次调查中阅读时间为的众数和中位数分别是()A.2和1 B.1.25和1 C.1和1 D.1和1.25【分析】由统计图可知阅读时间为1小数的有19人,人数最多,所以众数为1小时;总人数为40,得到中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),即可确定出中位数为1小时.【解答】解:由统计图可知众数为1小时;共有:8+19+10+3=40人,中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),则中位数是1小时.故选C.①给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.②给定一组数据,出现次数最多的那个数,称为这组数据的众数.如果一组数据存在众数,则众数一定是数据集里的数.5.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2B .C.6D.8【解答】解:∵E,F分别是AD,CD边上的中点,EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面积S=×AC×BD=×2×2=2,故选:A.6.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3 B.4 C.5 D.6【解答】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.故选:C.7.某校要从甲、乙、丙、丁四名学生中选一名参加“汉字听写”大赛,选拔中每名学生的平均成绩及其方差s2如表所示,如果要选拔一名成绩高且发挥稳定的学生参赛,则应选择的学生是()甲乙丙丁8.9 9.5 9.5 8.9s20.92 0.92 1.01 1.03 A.甲B.乙C.丙D.丁【解答】解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,因此要选择一名成绩高且发挥稳定的学生参赛,因选择乙;故选B.【点评】此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2【分析】由正、反比例函数的对称性结合点B的横坐标,即可得出点A的横坐标,再根据两函数图象的上下关系结合交点的横坐标,即可得出结论.【解答】解:∵正比例和反比例均关于原点O对称,且点B的横坐标为﹣2,∴点A的横坐标为2.观察函数图象,发现:当x<﹣2或0<x<2时,一次函数图象在反比例函数图象的下方,∴当y1<y2时,x的取值范围是x<﹣2或0<x<2.故选B.【点评】本题考查了反比例函数与一次函数交点的问题、反比例函数的性质以及正比例函数的性质,解题的关键是求出点A的横坐标.本题属于基础题,难度不大,根据正、反比例的对称性求出点A的横坐标,再根据两函数的上下位置关系结合交点坐标即可求出不等式的解集.二、填空题(本题共8小题,每小题3分,共24分)9.分解因式:mn2﹣m= m(n+1)(n﹣1).【解答】解:mn2﹣m,=m(n2﹣1),=m(n+1)(n﹣1).10.若二次函数y=x2﹣2x+m的图象与x轴有两个交点,则m的取值范围是m<1 .【解答】解:∵二次函数y=x2﹣2x+m的图象与x轴有两个交点,∴△>0,∴4﹣4m>0,∴m<1.故答案为m<1【点评】本题考查抛物线与x轴的交点,解题的关键是记住△=0?抛物线与x 轴只有一个交点,△>0?抛物线与x轴有两个交点,△<0?抛物线与x轴没有交点,属于中考常考题型.11.实数a在数轴上的位置如图,则|a﹣3|= 3﹣a .【解答】解:由数轴上点的位置关系,得a<3.|a﹣3|=3﹣a,故答案为:3﹣a.12.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为 2 .【解答】解:设这个圆锥的底面圆的半径为R,由题意:2πR=,解得R=2.故答案为2.13.在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于 2 .【分析】由平行四边形的性质和已知条件证出∠BAE=∠BEA,证出AB=BE=3;求出AB+BC=8,得出BC=5,即可得出EC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠DAE,∵平行四边形ABCD的周长是16,∴AB+BC=8,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE=3,∴BC=5,∴EC=BC﹣BE=5﹣3=2;故答案为:2.14.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为(,)..【分析】作O′C⊥y轴于点C,首先根据点A,B的坐标分别为(,0),(0,1)得到∠BAO=30°,从而得出∠OBA=60°,然后根据Rt△AOB沿着AB对折得到Rt△AO′B,得到∠CBO′=60°,最后设BC=x,则OC′=x,利用勾股定理求得x的值即可求解.【解答】解:如图,作O′C⊥y轴于点C,∵点A,B的坐标分别为(,0),(0,1),∴OB=1,OA=,∴tan∠BAO==,∴∠BAO=30°,∴∠OBA=60°,∵Rt△AOB沿着AB对折得到Rt△AO′B,∴∠CBO′=60°,∴设BC=x,则OC′=x,∴x2+(x)2=1,解得:x=(负值舍去),∴OC=OB+BC=1+=,∴点O′的坐标为(,).故答案为:(,).15.已知正△ABC的边长为6,那么能够完全覆盖这个正△ABC的最小圆的半径是2.【分析】能够完全覆盖这个正△ABC的最小圆的半径是△ABC外接圆的半径,求出△ABC外接圆的半径即可解决问题.设⊙O是△ABC的外接圆,连接OB,OC,作OE⊥BC于E,∵△ABC是等边三角形,∴∠A=60°,∠BOC=2∠A=120°,∵OB=OC,OE⊥BC,∴∠BOE=60°,BE=EC=3,∴sin60°=,∴OB=2,故答案为2.16.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为(1,﹣1).【分析】连接AA′,CC′,线段AA′、CC′的垂直平分线的交点就是点P.【解答】解:连接AA′、CC′,作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心.∵直线MN为:x=1,设直线CC′为y=kx+b,由题意:,∴,∴直线CC′为y=x+,∵直线EF⊥CC′,经过CC′中点(,),∴直线EF为y=﹣3x+2,由得,∴P(1,﹣1).故答案为(1,﹣1).三、解答题(本题共6道题,每题6分,共36分)17.解不等式组.【解答】解:,由①得,x<3,由②得,x≥2,故不等式组的解集为:2≤x<3.18.化简求值:(),其中a=2+.【解答】解:原式=[+]?+=?+ ==,当a=2+时,原式=+1.坐标系中,△ABC的三个顶点坐标分别为A(2,﹣1),B(3,﹣3),C(0,﹣4)(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2.【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示.20.为了解学生的体能情况,随机选取了1000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.长跑短跑跳绳跳远200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××【解答】解:(1)同时喜欢短跑和跳绳的概率==;(2)同时喜欢三个项目的概率==;(3)同时喜欢短跑的概率==,同时喜欢跳绳的概率==,同时喜欢跳远的概率==,∵,∴同时喜欢跳绳的可能性大.21.在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.【分析】先证明△DEC是等边三角形,再在RT△DEC中求出EF即可解决问题.【解答】解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在RT△DEC中,∵∠DEC=90°,DE=2,∴DF=2DE=4,∴EF===2.22.某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?【解答】解:(1)设每行驶1千米纯用电的费用为x元,=解得,x=0.26经检验,x=0.26是原分式方程的解,即每行驶1千米纯用电的费用为0.26元;(2)从A地到B地油电混合行驶,用电行驶y千米,0.26y+(﹣y)×(0.26+0.50)≤39解得,y≥74,即至少用电行驶74千米.四、解答题(本题共4道题,其中23题、24题每题8分,25题、26题每题10分,共36分)23.已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.【考点】圆周角定理;等腰三角形的判定与性质;勾股定理.【分析】(1)由等腰三角形的性质得到∠EDC=∠C,由圆外接四边形的性质得到∠EDC=∠B,由此推得∠B=∠C,由等腰三角形的判定即可证得结论;(2)连接AE,由AB为直径,可证得AE⊥BC,由(1)知AB=AC,由“三线合一”定理得到BE=CE=BC=,由割线定理可证得结论.【解答】(1)证明:∵ED=EC,∴∠EDC=∠C,∵∠EDC=∠B,∴∠B=∠C,∴AB=AC;(2)解:连接AE,∵AB为直径,∴AE⊥BC,由(1)知AB=AC,∴BE=CE=BC=,∵CE?CB=CD?CA,AC=AB=4,∴?2=4CD,∴CD=.24.如图,Rt△ABO的顶点O在坐标原点,点B在x轴上,∠ABO=90°,∠AOB=30°,OB=2,反比例函数y=(x>0)的图象经过OA的中点C,交AB于点D.(1)求反比例函数的关系式;(2)连接CD,求四边形CDBO的面积.【解答】解:(1)∵∠ABO=90°,∠AOB=30°,OB=2,∴AB=OB=2,作CE⊥OB于E,∵∠ABO=90°,∴CE∥AB,∴OC=AC,∴OE=BE=OB=,CE=AB=1,∴C (,1),∵反比例函数y=(x>0)的图象经过OA的中点C,∴1=,∴k=,∴反比例函数的关系式为y=;(2)∵OB=2,∴D的横坐标为2,代入y=得,y=,∴D(2,),∴BD=,∵AB=2,∴AD=,∴S△ACD =AD?BE=××=,∴S四边形CDBO=S△AOB﹣S△ACD =OB?AB ﹣=×2×2﹣=.25.某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元.现要对在购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购买笔芯上所需要的费用(单位:元),n表示购买水彩笔的同时购买的笔芯个数.(1)若n=9,求y与x的函数关系式;(2)若要使这30支水彩笔“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,确定n的最小值;(3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯所需费用的平均数,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个笔芯.【考点】一次函数的应用;频数与频率;条形统计图.【分析】(1)根据题意列出函数关系式;(2)由条形统计图得到需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,即可.(3)分两种情况计算【解答】解:(1)当n=9时,y==;(2)根据题意,“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,则“更换笔芯的个数不大于同时购买笔芯的个数”的频数大于30×0.5=15,根据统计图可得,需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,因此当n=9时,“更换笔芯的个数不大于同时购买笔芯的个数”的频数=4+6+8=18>15.因此n的最小值为9.(3)若每支笔同时购买9个笔芯,则所需费用总和=(4+6+8)×3×9+7×(3×9+5×1)+5×(3×9+5×2)=895,若每支笔同时购买10个笔芯,则所需费用总和=(4+6+8+7)×3×10+5×(3×10+5×1)=925,因此应购买9个笔芯.26.在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒(0<x≤3),解答下列问题:(1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S 有最大值?并求出最小值;(2)是否存在x的值,使得QP⊥DP?试说明理由.【考点】四边形综合题.【分析】(1)可用x表示出AQ、BQ、BP、CP,从而可表示出S△ADQ、S△BPQ、S△PCD的面积,则可表示出S,再利用二次函数的增减性可求得是否有最大值,并能求得其最小值;(2)用x表示出BQ、BP、PC,当QP⊥DP时,可证明△BPQ∽△CDP,利用相似三角形的性质可得到关于x的方程,可求得x的值.【解答】解:(1)∵四边形ABCD为矩形,∴BC=AD=4,CD=AB=3,当运动x秒时,则AQ=x,BP=x,∴BQ=AB﹣AQ=3﹣x,CP=BC﹣BP=4﹣x,∴S△ADQ =AD?AQ=×4x=2x,S△BPQ =BQ?BP=(3﹣x)x=x ﹣x2,S△PCD =PC?CD=?(4﹣x)?3=6﹣x,又S矩形ABCD=AB?BC=3×4=12,∴S=S矩形ABCD﹣S△ADQ﹣S△BPQ﹣S△PCD=12﹣2x﹣(x ﹣x2)﹣(6﹣x)=x2﹣2x+6=(x﹣2)2+4,即S=(x﹣2)2+4,∴S为开口向上的二次函数,且对称轴为x=2,∴当0<x<2时,S随x的增大而减小,当2<x≤3时,S随x的增大而增大,又当x=0时,S=5,当S=3时,S=,但x的范围内取不到x=0,∴S不存在最大值,当x=2时,S有最小值,最小值为4;(2)存在,理由如下:由(1)可知BQ=3﹣x,BP=x,CP=4﹣x,当QP⊥DP时,则∠BPQ+∠DPC=∠DPC+∠PDC,∴∠BPQ=∠PDC,且∠B=∠C,∴△BPQ∽△PCD,∴=,即=,解得x=(舍去)或x=,∴当x=时QP⊥DP.【点评】本题为四边形的综合应用,涉及知识点有矩形的性质、二次函数的最值、相似三角形的判定和性质及方程思想等.在(1)中求得S关于x的关系式后,求S的最值时需要注意x的范围,在(2)中证明三角形相似是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
2010年全国各地中考数学选择题、填空题答案及参考答案

2010年全国各地中考数学选择题、填空题答案及参考解答第一部分 选择题1.C解:设抛物线的对称轴与x 轴交于点E如图1,当∠CAD =60°时,则DE =1,BE =3 ∴B (1+3,0),C (1,-1)将B (1+3,0),C (1,-1)代入y =a (x -1)2+k ,解得k =-1,a =31∴y =31(x -1)2-1如图2,当∠ACB =60°时,由菱形性质知A (0,0),C (1,3) 将A (0,0),C (1,3)代入y =a (x -1)2+k ,解得k =-3,a =3 ∴y =3(x -1)2-3同理可得:y =-31(x -1)2+1,y =-3(x -1)2+3所以符合条件的抛物线的解析式共4个3.D解:设DE =x ,则EC =x 2,BD =x 6,BC =x +x 8 由△AGF ∽△ABC 得:xx x 22+=xx x 8+,∴x4=16,x =2,∴正方形DEFG 的面积为4∴S △ABC =1+1+3+4=94.C解:如图,过A 作BC 的垂线交CB 的延长线于H ,则HD =AH ,HC =3AH ∴HC -HD =(3-1)AH =3,∴AH =23(3+1),HB =23(3+1)-3=23(3-1) ∴AB =22HB AH+=235.B6.D∠ACD 、∠BAD 、∠ODA 、∠ODE 、∠OED7.D解:如图,则有⎩⎨⎧a2+1=r2(2-a )2+(21)2=r2解得:a =1613,r =161758.A解:如图,连结BD S 1=21π×32-S △ABD -S 弓形=2π,S 2=21AB ·BC -S △ABD -S 弓形 S 1-S 2=21π×32-21AB ·BC =2π,AB ·BC =8π,BC =34π9.B解:由已知得:AB +AC +BC =2CD +AC +BC =2+AC +BC =52+,∴AC +BC =5 ∴(AC +BC )2=AC 2+BC 2+2AC ·BC =5又AC 2+BC 2=AB 2=(2CD )2=4,∴2AC ·BC =1∴S △ABC =21AC ·BC =4110.C解:如图,延长AD 至E ,使DE =AD ,连结BE 、CE ,则四边形ABEC是平行四边形 ∴BE =AC =13,∴AB 2+AE 2=52+122=169=132=BE 2∴△ABD 是直角三角形∴BD =22AD AB+=2265+=61,∴BC =612B AD CH A B CD EDBCAMNE11.A解:如图,延长MN 交BC 的延长线于点E∵∠AMB =∠NMB ,∠AMB =∠MBC ,∠NMB =∠MBC ,∴BE =ME 易知△NDM ≌△NCE ,∴CE =MD ,MN =NE ,∴ME =2MN 设正方形边长为2,MD =x ,则AM =2- x ,DN =1,BE =x +2在直角三角形DMN 中,由勾股定理得:MN =12+x ,∴ME =122+x∴x +2=122+x ,解得:x =0(不合题意,舍去),或x =34∴AM =2-34=32,AM :AB =3112.A解:设正方形DEFG 的边长为x ,△ABC 的BC 边上的高为h由△AGF ∽△ABC 得:a x =h x h -,∴x =h a ah +,∴S 2=2)(h a ah +又S 1=ah 21,∴212S S =222221)(h a h a ah+=ah h a 2)( +·41≥ah h a 22)(·41=1 ∴S 1≥2S 213.B解:由△BEM ∽△AED 得:边上的高边上的高AD BM =AD BM =21,∴BM 边上的高=31AB =31∴S 阴影=2(21-31)=3114.C 解:如图,连结OE 、OF 、OC 、OD 、OG∵AE 、BF 为半圆的切线,∴OE ⊥AE ,OF ⊥BF ,又AE =BF ,OE =OF ∴△AOE ≌△BOF ,∴∠AOE =∠BOF∵CD 切半圆于G ,∴CF =CG .仿上可得∠COF =∠COG ,同理∠DOE =DOG ∵∠AOE +∠DOE +∠DOG +∠COG +∠COF +∠BOF =180°,∴∠AOE +∠DOE +∠COF =90°∴∠BCO =90°-∠COF =∠AOE +∠DOE =∠AOD同理∠BOC =∠ADO ,∴△BCO ∽△AOD ,∴BC/AO =BO/AD设AO =BO =a ,则y =xa 215.B解:用排除法:从函数图象可以看出:①的支出费用减少,反映了建议(1);③的支出费用没改变,提高了车票价格,反映了建议(2);②、④不符合题意。
2006—2010宁夏历年中考数学试题分值分布表

空间与 图形
圆
55
45.8%
相似
2010宁夏中考数学试题分值分布表
知识领域 实数 知识点 科学记数法 相反数 幂的运算 因式分解 整式与分 涉及到零指数、负整数指数、二次根式 式 化简、求绝对值等的化简 数与 代数 分式加减运算的化简求值 方程 一元二次方程应用增长率问题 解不等式组 不等式 商品打折购买(不等式应用) 解不等式组求未知系数的取值范围 函数 二次函数 图形基础 一次函数、反比例函数、二次函数的综 合应用 抛物线平移 用平面截立体图形 垂直与平行 四边形 平行四边形 与对称与折叠、正方形有关的综合应用 已知扇形的半径与母线,求圆锥的母线 与高的夹角的余弦值 圆的综合(涉及到三视图、外切、等边 三角形的高等) 与圆的切线相关的证明 阴影部分面积 相似与位似 相似的证明 解直角 三角形 概率与 统计 统计 概率 与方位角有关的解直角三角形的综合应 用 求数据的中位数、众数、极差 频率分布直方图、用样本估计总体 用树状图或列表法求概率 题号 分值 3 9 1 2 17 19 8 18 12 13 24 7 4 10 6 26 14 15 23 (1 11 23 (2 16 22 25 5 21 20 3 3 3 3 6 6 3 6 3 3 8 3 3 3 3 10 3 3 4 3 4 3 6 10 3 6 6 题型 选择题 填空题 选择题 选择题 计算题 解答题 选择题 解答题 填空题 填空题 解答题 选择题 选择题 填空题 选择题 解答题 填空题 填空题 证明题 填空题 解答题 填空题 证明题 解答题 选择题 解答题 解答题 15 12.5% 50 41.7% 合计 百分比
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总分
一
二
三
四
复核人
一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,
共24分)
1.下列运算正确的是
( B )
A. B. C. D.
2.把多项式分解因式结果正确的是
(D)
A. B. C. D.
3. 把61万用科学记数法可表示为
(B )
A. B. C. D.
4.用一个平面去截一个几何体,不能截得三角形截面的几何体是
某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学 检测中,从全市24000名九年级考生中随机抽取部分学生的数学成绩进行 调查,并将调查结果绘制成如下图表:
分数段 频数 频率
x<60
20 0.1 0
60≤x<7 28 0.1
0
4
70≤x<80 54 0.2 7
80≤x<90
0.20
90≤x<10 24 0.12 0
为N1、N2,设矩形NN1ON2的面积为S2; (1)若设点M的坐标为(x,y),请写出S1关于x的函数表达式,并求x取何
值时,S1的最大值; (2)观察图形,通过确定x的取值,试比较S1、S2的大小.
25.(10分) 小明想知道湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一
水平面且东西走向的湖边小道上某一观测点M处,测得亭A在点M的北偏东 30°, 亭B在点M的北偏东60°,当小明由点M沿小道向东走60米时,到达点 处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q 处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小明 计算湖中两个小亭A、B之间的距离.
11.矩形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆
组成,则能射进阳光部分的面积是
.
12.商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销
售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分
打八折. 如果用27元钱,最多可以购买该商品的件数是 .
13.若关于x的不等式组的解集是,则m的取值范围是
.
14.将半径为10cm,弧长为12的扇形围成圆锥(接缝忽略不计),那么圆锥
的母线与圆锥高的夹角的余弦值是 .
15.如图是三根外径均为1米的圆形钢管堆积图和主视图,
则其最高点与地面的距离是
米.
16.关于对位似图形的表述,下列命题正确的
是
.(只填序号)
1 相似图形一定是位似图形,位似图形一定是相似图形;
已知:正方形ABCD中,E、F分别是边CD、DA上的点, 且CE=DF,AE与BF交于点M.
(1)求证:△ABF≌△DAE; (2)找出图中与△ABM相似的所有三角形(不添加任何辅助线).
23.(8分) 如图,已知:⊙O的直径AB与弦AC的夹角∠A=30°,过点C作⊙O的切
线交AB的延长线于点P. (1) 求证:AC=CP;
2 位似图形一定有位似中心;
3 如果两个图形是相似图形,且每组对应点的连线所在的直线都经
过同一个点,那么,这两个图形是位似图形;
4 位似图形上任意两点与位似中心的距离之比等于位似比.
三、解答题(共24分)
17.(6分)
计算:.
18.(6分)
解不等式组 .
19.(6分) 先化简,再求代数式的值: , 其中.
20.(6分) 在一个不透明的盒子里,装有3个写有字母A、2个写有字母B和1个写有字
母C的小球, 它们的形状、大小、质地等完全相同,先从盒子里随机取出 一个小球,记下字母后放回盒子,摇匀后再随机取出一个小球,记下字 母.请你用画树状图或列表的方法,求摸出的两个小球上分别写有字母 B、C的概率.
四、解答题(共48分) 21.(6分)
(2) 若PC=6,求图中阴影部分的面积(结果精确到0.1). (参考数据: )
24.(8分) 如图,已知:一次函数:的图像与反比例函数: 的图像分别交于A、
两点,点M是一次函数图像在第一象限部分上的任意一点,过M分别向x 轴、y轴作垂线,垂足分别为M1、M2,设矩形MM1OM2的面积为S1;点N 反比例函数图像上任意一点,过N分别向x轴、y轴作垂线,垂足分别
(绝密)2010年 6月29日11:00前
宁夏回族自治区2010年初中毕业暨高中阶段招生
数学试卷
注意事项:
1. 考试时间120分钟,全卷总分120分. 2. 答题前将密封线内的项目填写清楚. 3. 答卷一律使用黑、蓝钢笔或圆珠笔. 4. 凡使用答题卡的考生,答卷前务必将答题卡上的有关项目填写清楚.
选择题的每小题选出答案后, 用铅笔把答题卡上对应题目的答案标号 涂黑,如需改动,用橡皮擦干净后,再选涂其他答案. 不使用答题卡 的考生,将选择题的答案答在试卷上.
(A)
A.圆柱
B.圆锥 C.三棱柱
D.正方形
住户(户) 2
月用水量
2
(方/户)
4
5
4
6
1 5.为了解居民节约用水的 情况,增强居民的节水
10 意识,下表是某个单元 的住户当月用水量的调
查结果:
则关于这12户居民月用水量,下列说法错误的是
(
)
A.中位数 6方 B.众数6方 C.极差8方 D.平均数5方
6.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,
若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件
的点D有 ( C )
A.1个
B.2个 C.3个 D.4个
7.把抛物线向左平移1个单位,然后向上平移3个单位,则平移后抛物线的
表达式
(B)
A. B. C. D..
8.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,
100≤x<1 18 10
110≤x≤1 16 0.08 20
请根据以上图表提供的信息,解答下列问题:
(1)表中和所表示的数分别为:= ,= ;
(2)请在图中,补全频数分布直方图; (3)如果把成绩在90分以上(含90分)定为优秀,那么该市24000名九年 级考生数学成绩为优秀的学生约有多少名?
22.(6分)
26. (10分) 在△ABC中,∠BAC=45°,AD⊥BC于D,将△ABD沿AB所在的直线折
叠,使点D落在点E处;将△ACD沿AC所在的直线折叠,使点D落在点F 处,分别延长EB、FC使其交于点M.
(1)判断四边形AEMF的形状,并给予证明.
(2)若BD=1,CD=2,试求四边形AEMF的面积.
乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了
20%.若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组
正确的是
( C)
A. B.
C. D.
二、填空题(每小题3分,共24分)
9.若分式与1互为相反数,则x的值是 . 10.如图,BC⊥AE,垂足为C,过C作CD∥AB.若∠ECD=48°则∠B= .