2020年深国交G1入学考试数学复习资料: 圆的综合计算与证明(含答案)

合集下载

2020年最新深圳国际交流学院G1入学考试数学训练2

2020年最新深圳国际交流学院G1入学考试数学训练2

2020年最新深圳国际交流学院G1入学考试数学训练一.选择题(共8小题)1.若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1 C..4 D.32.关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1 B.k≥﹣1且k≠0 C.k≤﹣1 D.k≤1且k≠0 3.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.4.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570D.32x+2×20x﹣2x2=5705.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.46.甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y (件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示,则下列结论错误的是()A.甲车间每小时加工服装80件B.这批服装的总件数为1140件C.乙车间每小时加工服装为60件D.乙车间维修设备用了4小时7.如图,在平面直角坐标系中,A(1,2),B(1,﹣1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是()A.a≤﹣1或a≥2 B.≤a≤2C.﹣1≤a<0或1<a≤D.﹣1≤a<0或0<a≤28.如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)二.填空题(共5小题)9.因式分解:x3﹣9x=.10.已知=+,则实数A=.11.如图,菱形ABCD的顶点A,B的横坐标分别为1,4,BD∥x轴、双曲线y=(x>0)经过A,B两点,则菱形ABCD的面积为.12.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.13.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.三.解答题(共4小题)14.计算:+﹣﹣()﹣1.15.如图,AB为⊙O的直径,弦CD∥AB,E是AB延长线上一点,∠CDB=∠ADE.(1)DE是⊙O的切线吗?请说明理由;(2)求证:AC2=CD•BE.16.某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?17.如图,二次函数y=ax2+2x+c的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,3).(1)求该二次函数的表达式;(2)过点A的直线AD∥BC且交抛物线于另一点D,求直线AD的函数表达式;(3)在(2)的条件下,在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题)1.若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1 C..4 D.3【分析】根据根与系数的关系即可求出答案.【解答】解:由题意可知:a、b是方程x2﹣4x+1=0的两个不同的实数根,∴由根与系数的关系可知:ab=1,a+b=4,∴a2+1=4a,b2+1=4b,∴原式=+===1,故选:B.2.关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1 B.k≥﹣1且k≠0 C.k≤﹣1 D.k≤1且k≠0 【分析】由于k的取值范围不能确定,故应分k=0和k≠0两种情况进行解答.【解答】解:(1)当k=0时,﹣6x+9=0,解得x=;(2)当k≠0时,此方程是一元二次方程,∵关于x的方程kx2+2x﹣1=0有实数根,∴△=22﹣4k×(﹣1)≥0,解得k≥﹣1,由(1)、(2)得,k的取值范围是k≥﹣1.故选:A.3.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()。

2020年深国交G1入学考试数学复习资料:综合专题 精讲精练(解析版)

2020年深国交G1入学考试数学复习资料:综合专题 精讲精练(解析版)

综合专题精讲精练(含答案解析)1. 在平面直角坐标系中,如图1,将n 个边长为1的正方形并排组成矩形OABC ,相邻两边OA 和OC 分别落在x 轴和y 轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B 、C. (1)当n =1时,如果a=-1,试求b 的值;(2)当n =2时,如图2,在矩形OABC 上方作一边长为1的正方形EFMN ,使EF 在线段CB 上,如果M ,N 两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形OABC 绕点O 顺时针旋转,使得点B 落到x 轴的正半轴上,如果该抛物线同时经过原点O ,①试求出当n=3时a 的值; ②直接写出a 关于n 的关系式.(2)设所求抛物线的解析式为y=ax2+bx+1, 由对称性可知抛物线经过点B(2,1)和点M(12,2),∴⎩⎪⎨⎪⎧1=4a+2b+1,2=14a+12b+1.解得⎩⎨⎧a=-43,b=83.∴所求抛物线解析式为y=-43x2+83x+1;(3)①当n=3时,OC=1,BC=3, 设所求抛物线的解析式为y=ax2+bx ,过C 作CD⊥OB 于点D ,则Rt△OCD∽Rt△CBD, ∴OD CD =OC BC =13,设OD=t ,则CD=3t , ∵OD 2+CD2=OC2, ∴(3t )2+ t 2=12,∴ t=110=1010, ∴C(1010,31010),又B(10,0), ∴把B 、C 坐标代入抛物线解析式,得⎩⎪⎨⎪⎧0=10a+10b ,31010=110a+1010b.解得:a=-103;②a=-n2+1n.2. 将抛物线c1:y=-3x2+3沿x 轴翻折,得抛物线c2,如图所示.(1)请直接写出抛物线c2的表达式.(2)现将抛物线c1向左平移m 个单位长度,平移后得的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线c2向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E. ①当B ,D 是线段AE 的三等分点时,求m 的值;②在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.【答案】【答案】解:(1)y=3x2-3.(2)①令-3x2+3=0,得x1=-1,x2=1,则抛物线c1与x 轴的两个交点坐标为(-1,0),(1,0).∴A(-1-m ,0),B (1+m,0).当AD=31AE 时,如图①,(-1+m )-(-1-m )=31, ∴m=21 当AB=31AE 时,如图②,(1-m )-(-1-m )=31, ∴m=2.∴当m=21或2时,B ,D 是线段AE 的三等分点.②存在.理由:连接AN、NE、EM、MA.依题意可得:M(-m,-3).即M,N关于原点O对称,∴OM=ON.∵A(-1-m,0),E(1+m,0),∴A,E关于原点O对称,∴OA=OE,∴四边形ANEM 为平行四边形.要使平行四边形ANEM为矩形,必需满足OM=OA,即m2+(3)2=2, ∴m=1.∴当m=1时,以点A,N,E,M为顶点的四边形是矩形.3. (2011甘肃兰州,28,12分)如图所示,在平面直角坐标系xoy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线2y ax bx c=++经过点A、B和D(4,23-)。

2020年深国交G1考试数学复习资料:限时训练25 圆的有关计算

2020年深国交G1考试数学复习资料:限时训练25 圆的有关计算

限时训练25 圆的有关计算(时间:30分钟 总分:37分)一、选择题(每小题3分,共15分)1.120°的圆心角所对的弧长是6π,则此弧所在圆的半径是( C )A .3B .4C .9D .182.如图,⊙O 是△ABC 的外接圆,BC =2,∠BAC =30°,则劣弧BC ︵的长等于( A )A .2π3B .π3C .23π3D .3π3(第2题图)(第3题图)3.(2019·南充中考)如图,在半径为6的⊙O 中,点A ,B ,C 都在⊙O 上,四边形OABC 是平行四边形,则图中阴影部分的面积为 ( A )A .6πB .33πC .23πD .2π4.(2019·山西中考)如图,在Rt △ABC 中,∠ABC =90°,AB =23,BC =2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( A ) A .534-π2 B .534+π2C .23-πD .43-π2(第4题图)(第5题图)5.(2019·泰安中考)如图,将⊙O 沿弦AB 折叠,AB ︵恰好经过圆心O ,若⊙O 的半径为3,则AB ︵的长为( C )A .12π B .π C .2π D .3π 二、填空题(每小题3分,共12分)6.(2019·衡阳中考)已知圆的半径是6,则圆内接正三角形的边长是__63__.7.(2019·泰州中考)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形,若正三角形边长为6 cm ,则该莱洛三角形的周长为__6π__cm .,(第7题图)) ,(第9题图))8.(2019·无锡中考)已知圆锥的母线长为5 cm ,侧面积为15 π cm 2,则这个圆锥的底面圆半径为__3__cm .9.(2019·徐州中考)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径 r =2 cm ,扇形的圆心角θ=120°,则该圆锥的母线长l 为__6__cm .三、解答题(共10分)10.如图,⊙O 是△ABC 的外接圆,AB 为直径,∠BAC 的平分线交⊙O 于点D ,过点D 作DE ⊥AC 分别交AC ,AB 的延长线于点E ,F.(1)求证:EF 是⊙O 的切线;(2)若AC =4,CE =2,求BD ︵的长度.(结果保留π)(1)证明:连接OD ,交BC 于点P.∵AD 平分∠BAC ,∴∠EAD =∠BAD.又∵OA =OD ,∴∠OAD =∠ODA.∴∠EAD =∠ODA.∴OD ∥AE.又∵EF ⊥AC ,∴OD ⊥EF.又∵点D 在⊙O 上,∴EF 是⊙O 的切线;(2)解:∵AB 是⊙O 的直径,∴ ∠ACB =90°.又∵∠E =∠PDE =90°,∴四边形CEDP 是矩形. ∴PD =CE =2.又∵OD ∥AE ,点O 是AB 的中点, ∴OP 是△BAC 的中位线.∴OP =12AC =12×4=2. ∴OD =OB =2+2=4.在Rt △OPB 中,OP =2,OB =4, ∴∠OBP =30°.∴∠POB =60°.∴BD ︵的长为60×4×π180=43π.。

2020年深国交G1入学考试数学冲刺 题型专练 几何综合与实践专题(含答案)

2020年深国交G1入学考试数学冲刺 题型专练 几何综合与实践专题(含答案)

2020年深国交G1入学考试数学冲刺 题型专练 几何综合与实践专题(1. 综合与实践问题探究:(1)如图①,点A 是线段BC 外一动点,若AB =a ,BC =b ,求线段AC 长的最大值(用含a ,b 的式子表示);(2)如图①,点A 是线段BC 外一动点,且AB =1,BC =4,分别以AB 、AC 为边作等边①ABD 、等边①ACE ,连接CD 、BE .①求证:CD =BE ;①求线段BE 长的最大值;问题解决:(3)如图①,在平面直角坐标系中,已知点A (2,0)、B (5,0),点P 、M 是线段AB 外的两个动点,且P A =2,PM =PB ,①BPM =90°,求线段AM 长的最大值及此时点P 的坐标.第1题图(1)解:①点A 是线段BC 外一动点,且AB =a ,BC =b , 则AC ≤AB +BC ,且当点A 位于CB 的延长线上时,线段AC 的长取得最大值,此时AC 的长的最大值为:AB +BC =a +b ;(2)①证明:①①ABD ,①ACE 都是等边三角形,①AD =AB ,AC =AE ,①BAD =①EAC =60°,①①DAC =①BAE ,在①CAD 和①EAB 中,⎩⎪⎨⎪⎧AD =AB ①CAD =①EAB AC =AE,①①CAD ①①EAB (SAS),①CD =BE ;①解:①CD =BE ,①线段BE 长的值最大值即为线段CD 长的最大值,此时BE 的最大值为:BD +BC=AB +BC =5;(3)解:如解图①,连接BM ,①PB =PM ,①MPB =90°,第1题解图①①可以将①APM 绕点P 顺时针旋转90°得到①PBN ,连接AN ,则①APN 是等腰直角三角形,①PN =P A =2,BN =AM ,①线段AM 的长的最大值即为线段BN 长的最大值, 由(1)的结论可知,当点N 在线段BA 的延长线上时,线段BN 的值最大,且此时的最大值为AB +AN 的值.①A (2,0),B (5,0),①OA =2,OB =5,AB =3,①AN =2AP =22,①最大值为22+3;如解图①中,作PE ①x 轴于点E ,第1题解图①①①APN 是等腰直角三角形,①PE =AE =12AN =2, ①OE =OA -AE =2-2,①P (2-2,2), 即线段AM 的最大值为22+3,此时P 的坐标为(2-2,2).2.综合与探究问题背景在综合实践课上,老师让同学们根据如下问题情境,写出两个教学结论:如图①,点C在线段BD上,点E在线段AC上.①ACB=①ACD=90°,AC=BC;DC=CE,M,N分别是线段BE,AD上的点.“兴趣小组”写出的两个教学结论是:①①BCE①①ACD;①当CM,CN分别是①BCE和①ACD 的中线时,①MCN是等腰直角三角形.解决问题(1)请证明“兴趣小组”所写的两个结论的正确性.类比探究受到“兴趣小组”的启发,“实践小组”的同学们写出如下结论:如图②,当①BCM=①ACN时,①MCN是等腰直角三角形.(2)“实践小组”所写的结论是否正确?请说明理由.感悟发现“奋进小组”认为:当点M,N分别是BE,AD的三等分点时,①MCN仍然是等腰直角三角形请你思考:(3)“奋进小组”所提结论是否正确?答:.(填“正确”、“不正确”或“不一定正确”.)(4)反思上面的探究过程,请你添加适当的条作,再写出使得①MCN是等腰直角三角形的数学结论.(所写结论必须正确,写出1个即可,不要求证明)图①图②备用图。

2020年深国交G1入学考试 数学模拟试卷9(初三)

2020年深国交G1入学考试  数学模拟试卷9(初三)

3.若方程组
的解 x 与 y 的和为 0,则 m 的值为( )
A.﹣2 B.0 C.2 D.4
4.如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆,垂直于 x 轴的直线 l:x=t(0≤t≤a)从原点 O 向右平行移动,l 在移动过程中扫过平面图形的面积为 y(图中阴 影部分),若 y 关于 t 函数的图象大致如图,那么平面图形的形状不可能是 ()
A. a(x1﹣x2)=d C. a(x1﹣x2)2=d
B. a(x2﹣x1)=d D. a(x1+x2)2=d
10.在平面直角坐标系中,函数 y=x2﹣2x(x≥0)的图象为 C1,C1 关于原点对称的图象为 C2,则直线 y=a(a 为常数)与 C1、C2 的交点共有( ) A.1 个 B.1 个或 2 个 C.1 个或 2 个或 3 个 D.1 个或 2 个或 3 个或 4 个
中阴影部分的面积为

16.方程 x=
的解是
三.解答题(共 3 小题,共 36 分) 17.(10 分)若 x1,x2 是关于 x 的方程 x2+bx+c=0 的两个实数根,且|x1|+|x2|=2|k(| k 是整数), 则称方程 x2+bx+c=0 为“偶系二次方程”.如方程 x2﹣6x﹣27=0,x2﹣2x﹣8=0,x2+3x﹣ =0, x2+6x﹣27=0,x2+4x+4=0,都是“偶系二次方程”. (1)判断方程 x2+x﹣12=0 是否是“偶系二次方程”,并说明理由; (2)对于任意一个整数 b,是否存在实数 c,使得关于 x 的方程 x2+bx+c=0 是“偶系二次方 程”,并说明理由.
二.填空题(共 6 小题,每题 4 分)

2020年深国交G1入学考试 数学模拟试卷2答案(初二新版)

2020年深国交G1入学考试  数学模拟试卷2答案(初二新版)
12 解得 x1 6 2 6 , x2 6 2 6 . ∴ CD=| x1 x2 | 4 6 ≈10 . ∴ BD=13-6+10=17(米). 答:他应再向前跑 17 米.
19.(1)如图所示,设第一次落地时,抛物线的表达式为 y a(x 6)2 4 .由已知 当 x=0 时,y=1.即1 36a 4,∴ a 1 .
12 ∴ 表达式为 y 1 (x 6)2 4 .
12
(2)令 y=0, 1 (x 6)2 4 0 . 12
∴ (x 6)2 48. 解得 x1 4 3 6 ≈13 , x2 4 3 6 0 (舍去). ∴ 足球第一次落地距守门员约 13 米. (3)如图所示,第二次足球弹出后的距离为 CD, 根据题意得 CD=EF(即相当于将抛物线 AEMFC 向下平移了 2 个单位), ∴ 2 1 ( x 6)2 4 ,
x1
1 时,原方程无意义.∴
x
3 2
是原方程的解.
(2) x4 x2 6 0 .
解:设 x2 y ,那么原方程可化为 y2 y 6 0
解得 y1 3 ; y2 2 当 y 3 时, x2 3 ; x 3
当 y 2 时, x2 2 不符合题意,舍去.
所以原方程的解为 x1 3 , x2 3 .
2020年深国交入学考试
G1 数学试题模拟2(初二新版)
一、 选择题(共 10 小题,每小题 4 分,共 40 分)
1-5 BABBA 6-10 DACCA
二、填空题(共 6 小题,每小题 4 分,共 24 分)
11.18
12.-2
13.300°
14.y1<y21)设生产 A 型桌椅 x 套,则生产 B 型桌椅 (500 x) 套,由题意得 0.5x 0.7 (500 x) ≤302 2x 3 (500 x) ≥1250

2020年中考复习 圆的证明 及计算

2020年中考复习 圆的证明 及计算

1. 如图,在等腰三角形△ABC 中,AB=BC ,以BC 为直径的⊙O 与AC 相交于点D ,过点D 作DE ⊥AB 交CB 延长线于点E ,垂足为点F 。

(1)判断DE 与⊙O 的位置关系,并说明理由; (2)若⊙O 的半径R=5,tanC=21,求EF 的长。

解析:(1)有交点连半径,证垂直。

连接OD ,由BC 是直径可得∠CDB 是直角,又AB=AC 可得D 是AC 中点,就能得出OD ∥AB,又知DE ⊥AB,可得出OD ⊥DE ,即DE 与⊙O 相切.(3)连接DB ,作DH ⊥BC 。

由BC=10,tanC=21,可求得CD 、DB 的长,再利用面积可求DH 长,知道OD 、DH 应用勾股定理可得OH ,利用相似可求得OE 及BE 、DE 。

再利用相似可求EF 长。

2. 如图,AB 、CD 是⊙O 的直径,点E 在AB 延长线上,FE ⊥AB ,BE=EF=2,FE 的延长线交CD 延长线于点G ,DG=GE=3,连接FD 。

(1)求⊙O 的半径(2)求证:DF 是⊙O 的切线解析:(1)设⊙O 的半径为r ,则OE=r+2,OG=r+3,EG=3.利用勾股定理可求r 。

(2)由∠HOD=∠GOE,∠OHD=∠OGE,可得△ODH ∽△OEH,可得∠ODH=∠OEG=900,即DF 是⊙O 的切线。

3. 如图,△ABC 内接于⊙O ,AD 与BC 是⊙O 的直径,延长线段AC 至点G ,使AG=AD ,连接DG 交⊙O 于点E ,EF ∥AB 交AG 于点F 。

(1)求证:EF 与⊙O 相切。

(2)若EF=32,AC=4.求扇形OAC 的面积。

解析:(1)由BC 是直径可知∠BAC=900,又EF ∥AB,得∠AFE=900。

连接OE ,得∠OED=∠ODE=∠AGD,所以OE ∥AG ,得∠OEF=∠AFE=900,即EF 与⊙O 相切。

(2)过点O 作OH ⊥AC ,垂足为H ,则OH=EF=32。

2020年最新深圳国际交流学院G1入学考试数学训练试题

2020年最新深圳国际交流学院G1入学考试数学训练试题

2020年最新深圳国际交流学院G1入学考试数学训练知识点1 :函数的定义与自变量的取值范围1.(3分)下列图象能表示y是x的函数的是()A.B.C.D.2.(3分)在函数y=+中,自变量x的取值范围是()A.x≥1B.x≥1且x≠3C.x≠3D.1≤x≤3知识点2 :一次函数的定义,图像与性质3.(3分)若y=(m﹣1)x2﹣|m| +3是关于x的一次函数,则m的值为()A.1 B.﹣1 C.±1 D.±24.(3分)以下关于直线y=2x﹣4的说法正确的是()A.直线y=2x﹣4与x轴的交点坐标为(0,﹣4)B.坐标为(3,3)的点不在直线y=2x﹣4上C.直线y=2x﹣4不经过第四象限D.函数y=2x﹣4中,y的值随x的增大而减小5.(3分)A(x1,y1)和B(x2,y2)是一次函数y=(k2+1)x+2图象上的两点,且x1<x2,则y与y2的大小关系是()1A.y1=y2B.y1<y2C.y1>y2D.不确定6.(3分)已知正比例函数y=kx(k≠0)的图象经过二、四象限,则一次函数y=kx﹣k的图象大致是()A.B.C.D.7. (3分)将函数y=2x-3的图象向上平移2个单位得到的函数解析式为。

知识点3 :一次函数图像与不等式,方程(组)的关系8.(3分)函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b<0的解集为()A.x>0 B.x<0 C.x<2 D.x>29.(3分)如图,一次函数y=x+1与y=2x﹣1图象的交点是(2,3),观察图像,直接写出方程组 y=x+1 的解为()y=2x﹣1A. B.C. D.知识点4 :观察图像,获取信息10.(3分)电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y(元)与通话时间t(分钟)之间的函数图象是图中的()A.B.C.D.11.(3分)甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是()A.他们都骑了20kmB.两人在各自出发后半小时内的速度相同C.甲和乙两人同时到达目的地D.相遇后,甲的速度大于乙的速度12. (3分)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是()A. B. C. D.知识点5: 分段函数的定义与图像13.(3分)如图是一个运算程序的示意图,若输出y的值为2,则输入的x值可能为()A.3 B.±1C.1或3 D.±1或314.(3分)小刘下午5点30分放学匀速步行回家,途中路过鲜花店为过生日的妈妈选购了一束鲜花,6点20分到家,已知小刘家距学校3千米,下列图象中能大致表示小刘离学校的距离S(千米)与离校的时间t(分钟)之间的关系的是()A. B.C. D.15.(9分)某城市出租车的收费标准为:3千米以内(含3千米)收费8元,超过3千米时,超过的部分每千米收费1.4元.(1)写出车费y(元)和行车里程x(千米)之间的关系式;(2)甲乘坐13千米需付多少元钱?若乙付的车费是36元,则他乘坐了多少里程?知识点6: 反比例函数的定义,图像与性质16. (3分)在下列函数中,y是x的反比例函数的是()A.y=3x B.y=C.y=D.y=17.(3分)已知函数是反比例函数,且当x<0时,y随着x的增大而增大,则m的取值是.18.(3分)若点A(﹣3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y2<y1C.y1<y2<y3D.y3<y1<y219.(3分)对于反比例函数y=,下列说法不正确的是()A.图象分布在第一、三象限B.当x>0时,y随x的增大而减小C.图象经过点(2,3)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y220.(3分)已知函数y=图象如图,以下结论,其中正确的有()个:①k<0;②y随x的增大而增大;③若A(﹣1,a),点B(2,b)在图象上,则a<b(﹣x,﹣y)也在图象上.④若P(x,y)在图象上,则点P1A.4个 B.3个 C.2个 D.1个21.(3分)已知A(m+3,2),B(3,)是同一个反比例函数图象上的两个点,则m=知识点7: 反比例函数中K的几何意义22.(3分)反比例函数图象的一支如图所示,△POM的面积为2,则该函数的解析式是()A.y= B.y=C.y=﹣ D.y=﹣23.(3分)如图,在反比例函数y=(x>0)的图象上,有点P1、P2、P3、P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴作垂线,图中所构成的阴影部分的面积从左到右依次为S1、S2、S3,则S1+S2+S3=()A.2 B.2.5C.3 D.无法确定知识点 8:反比例函数的应用24. (3分)某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气球体积V的反比例函数,其图象如图所示,当气球内的气压大于160kPa时,气球将爆炸,为了安全,气球的体积应该()A.不小于m3 B.小于m3C.不大于m3 D.小于m3知识点 9: 反比例函数与一次函数结合25.(3分)函数y=﹣2x与函数y=﹣在同一坐标系中的大致图象是()A.B.C.D.26.(3分)如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C .﹣2<x <0或0<x <2D .﹣2<x <0或x >227.(12分)如图,直线y =kx +b 与反比例函数的图象分别交于点A (﹣1,2),点B (﹣4,n ),直线与x 轴,y 轴分别交于点C ,点D . (1)求此一次函数和反比例函数的解析式; (2)求△AOB 的面积.28.(10分)如图所示,已知一次函数y=kx+b(k≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y=mx (m≠0)的图象在第一象限交于C 点, CD 垂直于x 轴,垂足为 D.若OA=OB=OD=1,(1)求点A 、B 、D 的坐标;(2)求一次函数和反比例函数的解析式.yOxDC B A29.(14分)为了预防传染病,某学校对教室采用药薰消毒法进行消毒. 已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧完后,y与x成反比例(如图所示),现测得药物8分钟燃毕, 此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息,解答下列问题:(1)分别求出药物燃烧时及药物燃烧后y 关于x 的函数关系式, 并写出自变量x 的取值范围,(2)研究表明,当空气中每立方米的含药量低于 1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室?(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?参考答案1.D2.B3.B4.B5.B6.C7.y=2x-1,8.D 9.B 10.D 11.C 12.C 13.C 14.C8 x≤315.(1)y = (2)甲需付22元,乙乘坐了23千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)因为tan∠AFP= ,所以设AD=2x,
则FD=3x,
连接AE,易证△ADE∽△FDA,
所以 = = ,
所以ED= AD= x,
所以EF= x,EO= x,DO= x,
在△ABC中,DO为中位线,
所以DO= BC=4,
所以 x=4,x= ,所以ED= x= .
3.解:(1)证明:连接OC.
∵CE是☉O的切线,∴OC⊥CE.
①当∠D的度数为时,四边形ECFG为菱形;
②当∠D的度数为时,四边形ECOG为正方形.
图3
4.如图4,在△ABC中,AB=AC,过AC延长线上的点O作OD⊥AO,交BC的延长线于点D,以O为圆心,OD长为半径的圆过点B.
(1)求证:直线AB与☉O相切;
(2)若AB=5,☉O的半径为12,则tan∠BDO=.
所以∠ACB=90°,所以∠ABC+∠BAC=90°,
因为∠PCA=∠ABC,所以∠PAC=∠ABC,
所以∠PAC+∠BAC=90°,所以PA⊥AB,所以PA是☉O的切线.
(2)因为∠PAO=∠ADO=90°,∠AOD=∠POA,所以△PAO∽△ADO,所以 = ,
所以AO2=OD·OP,
所以EF2=AB2=(2AO)2=4AO2=4OD·OP.
∴∠FCO+∠ECF=90°.
∵DO⊥AB,∴∠B+∠BFO=90°.
∵∠CFE=∠BFO,
∴∠B+∠CFE=90°.
∵OC=OB,∴∠FCO=∠B.
∴∠ECF=∠CFE.
∴CE=EF.
(2)∵AB是☉O的直径,∴∠ACB=90°.
∴∠DCF=90°.
∴∠DCE+∠ECF=90°,∠D+∠EFC=90°.
由(1)得∠ECF=∠CFE,
∴∠D=∠DCE.
∴ED=EC.
∴ED=EC=EF.
即点E为线段DF的中点.
①四边形ECFG为菱形时,CF=CE.
∵CE=EF,∴CE=CF=EF.
∴△CEF为等边三角形.
∴∠CFE=60°.
∴∠D=30°.
故填30°.
②四边形ECOG为正方形时,△ECO为等腰直角三角形.
∵AB=AC,∴BE=EC,∠BAE=∠CAE.
∵∠BAC=2∠CBF,∴∠BAE=∠CBF.
∵∠BAE+∠ABE=90°,
∴∠CBF+∠ABE=90°,
∴AB⊥BF,∴BF是☉O的切线.
(2)由(1)得∠BAE=∠CBF,
∴sin∠CBF=sin∠BAE= ,
∵∠AEB=90°,AB=3,
∴BE=ABsin∠BAE= ,
∴∠OBD+∠ABC=90°,
即∠ABO=90°,
∴AB⊥OB,
∵点B在☉O上,
∴直线AB与☉O相切.
(2)∵∠ABO=90°,
∴OA= = =13,
∵AC=AB=5,
∴OC=OA-AC=8,
∴tan∠BDO= = = .
故答案为: .
5.解:(1)证明:连接AE,
∵AB为直径,∴∠AEB=90°,∴AE⊥BC.
∴∠CEF=45°.
∵∠CEF=∠D+∠DCE,
∴∠D=∠DCE=22.5°.
故填22.5°.
4.解:(1)证明:连接OB,如图所示.
∵AB=AC,
∴∠ABC=∠ACB.
∵∠ACB=∠OCD,
∴∠ABC=∠OCD.
∵OD⊥AO,
∴∠COD=90°,
∴∠D+∠OCD=90°.
∵OB=OD,
∴∠OBD=∠D,
∴BC=2BE=2 .
过点C作CH⊥BF于H点,
在Rt△CBH中,CH=BCsin∠CBF=2,BH=2 ,
∵CH⊥BF,AB⊥BF,∴AB∥CH,
∴△FCH∽△FAB,∴ = ,
∴ = ,
∴BF=6 .
6.(1)连接OD,根据同圆半径相等及角平分线条件得到∠DAC=∠ODA,得OD∥AC,切线得证;(2)连接EF,DF,根据直径所对圆周角为直角,证明∠AFE=90°,可得EF∥BC,因此∠B=∠AEF,再利用同弧所对圆周角相等可得∠B=∠ADF,从而证明△ABD∽△ADF,可得AD与AB,AF的关系;(3)根据∠AEF=∠B,利用三角函数,分别在Rt△DOB和Rt△AFE中求出半径和AF,代入(2)的结论中,求出AD,再利用两角对应相等,证明△OGD∽△FGA,再利用对应边成比例,求出DG∶AG的值,即可求得DG的长.
1.如图1所示,☉O的半径为4,点A是☉O上一点,直线l经过点A.P是☉O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交☉O于点E,直径PD的延长线交直线l于点F,点A是 的中点.
(1)求证:直线l是☉O的切线;
(2பைடு நூலகம்若PA=6,求PB的长.
图1
2.如图2,☉O是△ABC的外接圆,AB是直径,D是AC中点,直线OD与☉O相交于E,F两点,P是☉O外一点,且P在直线OD上,连接PA,PC,AF,满足∠PCA=∠ABC.
图7
8.如图8,四边形ABCD是正方形,以边AB为直径作☉O,点E在BC边上,连接AE交☉O于点F,连接BF并延长交CD于点G.
(1)求证:△ABE≌△BCG.
(2)若∠AEB=55°,OA=3,求 的长.(结果保留π)
图8
【参考答案】
1.解:(1)证明:连接OA.
∵OA=OP,
∴∠OAP=∠OPA.
(1)求证:PA是☉O的切线;
(2)证明:EF2=4OD·OP;
(3)若BC=8,tan∠AFP= ,求DE的长.
图2
3.如图3,AB是☉O的直径,DO⊥AB于点O,连接DA交☉O于点C,过点C作☉O的切线交DO于点E,连接BC交DO于点F.
(1)求证:CE=EF.
(2)连接AF并延长,交☉O于点G.填空:
(1)求证:BC是☉O的切线;
(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;
(3)若BE=8,sinB= ,求DG的长.
图6
7.如图7,AB是☉O的直径,点C,D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.
(1)求证:CE为☉O的切线.
(2)判断四边形AOCD是否为菱形?并说明理由.
图4
5.如图5,在△ABC中,AB=AC,以AB为直径的☉O分别交AC,BC于点D,E,点F在AC的延长线上,且∠BAC=2∠CBF.
(1)求证:BF是☉O的切线;
(2)若☉O的直径为3,sin∠CBF= ,求BC和BF的长.
图5
6.如图6,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的☉O分别交AB,AC于点E,F,连接OF交AD于点G.
∵点A是 的中点,
∴ = ,
∴∠DPA=∠APB,
∴∠OAP=∠APB.∴OA∥PB.
∵PB⊥l,∴OA⊥l,
∴直线l是☉O的切线.
(2)连接AD,∵PD是直径,
∴∠PAD=90°,∴∠PAD=∠PBA.
又∵∠DPA=∠APB,
∴△PAD∽△PBA,
∴ = ,即 = ,∴PB= .
2.解:(1)因为点D是AC中点,所以OD⊥AC,所以PA=PC,所以∠PCA=∠PAC,因为AB是☉O的直径,
相关文档
最新文档