小学奥数24带余除法
奥数余数问题带余除法

带余除法被除数=除数×商+余数被除数—余数=除数×商余数=被除数—除数×商商=被除数—余数÷除数要注意以下几点:1.余数总是小于除数的整数;2.只要除数不为0,带余除法总能进行,且商和余数是唯一存在的;3.整除是带余除法的特殊情况;例1、用一个两位数除766,余数为66,求这个两位数;例2、甲数除以7,商3余5;乙数除以7,商5余3,甲乙两数之和除以7,商是多少,余数是多少1、被除数是96,除以一个两位数,商是7,余数是5,求这个两位数;2、一个整数除以127的商是78,余数是9,这个数是多少3、两个整数a、b,a除以b的商是14,余数是5,如果b=9,那么a是多少4、1705除以一个两位数得到的余数是40,求这个两位数;5、如果一个数除439,2188,3142都余15,那么这个数是多少例3、573除以一个数得的商是11,并且除数与余数的差是3,求除数和余数;1、被除数与除数的和是136,商是7,余数是8,求被除数与除数;2、被除数、除数、商与余数的和是903,已知商是35,余数是2,求被除数和除数;3、两个整数相除的商是27;余数是19,已知被除数比除数多565,求被除数;4、一个数除以25的商是余数的3倍,这个数是余数的多少倍5、1492除以一个数,商是46,且除数比余数大12,则除数是多少余数是多少6、从574中减去一个数,再除以这个数,商7余6,这个数是多少7、两个数相除,商是7,余数是5,除数比被除数小131,被除数是多少例4、某数除以5余2,除以3余1,求满足着个条件的最小两位数是多少1、一个数除以3余1,除以8余3,除以11余2,那么满足这个条件的最小的自然数是几2、一个数被8除余5,被5除余2,这个数最小是多少3、有一个两位数被3除或被4除,余数都是1,符合这一条件的最大三位数和最小三位数各是多少4、有一个最小的两位数,除以5余数是3,除以13余数是5,这个最小的两位数除以11余数是多少5、一个两位数除以一个一位数,商仍是两位数,余数是8.被除数、除数、商及余数的和是多少6、一个两位数除329,这个两位数与商相等,余数是5,求这个两位数;7、一个三位数,它除以19,所得的商和余数相等,符合这个条件的三位数有多少个其中最大的是多少最小的是多少8、五年级同学去西湖划船,若每船坐8人,则余下7人;若每船坐12人,则余下11人,若每船坐14人,则余下13人,五年级至少有同学多少人9、实验小学五年级的同学在操场上做游戏,每组5人则多1人,每组6人则多1人,每组7人则多1人,五年级做游戏的同学至少有多少人10、筐子里有一些皮球,三个三个地数余2个,四个四个地数余3个,五个五个地数余4个,筐子里至少有多少个皮球。
小学五年级奥数题目及答案:带余除法

小学五年级奥数题目及答案:带余除法教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.
带余除法
69、90和_5被某个正整数N除时,余数相同,试求N的值。
分析在解答此题之前,我们先来看下面的例子:_除以2余1,_除以2余1,即_和_被2除余数相同(余数都是1)。
但是_-_能被2整除.由此我们可以得到这样的结论:如果两个整数a和b,均被自然数m除,余数相同,那么这两个整数之差(大-小)一定能被m整除。
反之,如果两个整数之差恰被m整除,那么这两个整数被m除的余数一定相同。
解答:
∵三个整数被N除余数相同,
∴N|(90-69),即N|_,N|(_5-90),即N|35,
∴N是_和35的公约数。
∵要求N的值,
∴N是_和35的公约数。
∵_和35的公约数是7,
∴N是7。
小学五年级奥数题目及答案:带余除法.到电脑,方便收藏和打印:。
小学奥数教程:带余除法(一)全国通用(含答案)

【关键词】走美杯,五年级,初赛,第13题
【解析】由题意,“用去尾法,10个商的和为30;用四舍五入法,l0个商的和为34”可知,10个数中除以3余2的数有34-30=4(个),又知道10个自然数的和为100,设除以3余1的数有 个,那么根据用去尾法后十个商的和与10个自然数的和,可得关系式: ,解得, 。
【考点】除法公式的应用【难度】2星【题型】解答
1【解析】除以7的余数只能是0~6,所以商只能是0~6,满足大于7的数只有商和余数都为5、6,所以只能是40、48。
【答案】40、48
【例 8】已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?
【考点】除法公式的应用【难度】2星【题型】解答
【关键词】希望杯,四年级,复赛,第3题
【解析】因为最大的三位数为 , ,所以满足题意的三位数最大为:
【答案】
【巩固】计算口÷△,结果是:商为10,余数为▲。如果▲的值是6,那么△的最小值是_____。
【考点】除法公式的应用【难度】1星【题型】填空
【关键词】希望杯,五年级,复赛,第4题,6分
【解析】根据带余除法的性质,余数必须小于除数,则有△的最小值为7。
现在要求被11除余8,我们可以这样考虑:这样的数加上3后,就能被11整除了.所以我们得到“一个数被11除余8”的判定法则:将偶位数字相加得一个和数,再将奇位数字相加再加上3,得另一个和数,如果这两个和数之差能被11除尽,那么这个数是被11除余8的数;否则就不是.
要把1、9、8、8排成一个被11除余8的四位数,可以把这4个数分成两组,每组2个数字.其中一组作为千位和十位数,它们的和记作A;另外一组作为百位和个位数,它们之和加上3记作B.我们要适当分组,使得能被11整除.现在只有下面4种分组法:
五年级奥数基础教程巧算24小学

五年级奥数基础教程巧算24小学同学们可能都玩过“数学24”的游戏,它把枯燥的基本数字计算变得趣味盎然,能大大提高计算能力和速度,使得思维灵活敏捷,是一种寓教于乐的智力竞赛游戏。
游戏规则:给定四个自然数,通过+,-,×,÷四则运算,可以交换数的位置,可以随意地添括号,但规定每个数恰好使用一次,连起来组成一个混合运算的算式,使最后得数是24。
“数学24”游戏通常是用扑克牌进行的,此时,给定的四个自然数就被限定在1~13范围内了。
“数学24”游戏可以1个人玩,也可以多个人玩,比如四个人玩,把扑克牌中的大、小王拿掉,剩下的52张牌洗好后,每人分13张,然后每人出一张牌,每张牌的点数代表一个自然数,其中J,Q,K分别代表11,12和13,四张牌表示四个自然数。
谁最先按游戏规则算出24,就把这四张牌赢走。
然后继续进行。
最后谁的牌最多谁获胜。
要想算得又快又准,这就要靠平时的基本功了。
最重要的有两条:一是熟悉加法口诀和乘法口诀,二是利用括号。
括号既能改变运算顺序,也可以改变运算符号。
请用下面例题中给出的四个数,按规则算出24。
例1 3,3,5,6。
解一:根据3×8=24,3已有,将另三个数凑成8,得3×(5+6-3)=24。
解二:根据6×4=24,6已有,将另三个数凑成4,得6×(5-3÷3)=24或6×(3×3-5)=24。
解三:还是根据3×8=24,把3和8各分成两数,得(6-3)×(3+5)=24。
解四:先把其中两数相乘,积不足24的用另两数补足,得3×5+3+6=24。
解五:先把其中两数相乘,积超过24的用另两数割去,得5×6-3-3=24。
例2 2,2,4,8。
解一:根据8×3=24,得8×[(2+4)÷2]=24或8×(4-2÷2)=24。
小学奥数精讲:带余除法(同余式和同余方程)知识点及典型例题

小学奥数精讲:带余除法(同余式和同余方程)一、基本性质的复习1、带余数除法算式:a÷b=q……r(a、b、q、r 均为整数) 从中我们应该得到:(1)b>r 除数大于余数(2)a-r=b×q 被除数减去余数则会出现整除关系,则带余数问题就可以转化为整数问题。
2、余数的性质:(1)可加性:和的余数等于余数的和。
即:两数和除以m 的余数等于这两个数分别除以m 的余数和。
例:7÷3=2……1 5÷3=1……2,则(7+5)÷3 的余数就等于(1+2)÷3 的余数0。
(2)可减性:差的余数等于余数的差。
即:两数差除以m 的余数等于这两个数分别除以m 的余数差。
例:17÷3=5……2 5÷3=1……2,则(17-5)÷3 的余数就等于(2-2)÷3 的余数0。
(3)可乘性:积的余数等于余数的积。
即:两数积除以m 的余数等于这两个数分别除以m 的余数积。
例:64÷7=9……1 45÷7=6……3,则(64×45)÷3 的余数就等于(1×3)÷7 的余数3。
二、同余式在生活中,若两个自然数 a 和 b 都除以同一个除数m 时,余数相同该如何表示呢?在代数中我们称之为同余。
即:a 与b 同余于模m。
意思就是自然数a 和b 关于m 来说是余数相同的。
用同余式表达为:a≡b(modm).注:若a 与b 同余于模m,则a 与b 的差一定被m 整除。
(余数的可减性)三、例题。
例1、当2011 被正整数N 除时,余数为16,请问N 的所有可能值有多少个?例2、(1)求多位数1234567891011…20102011除以9的余数?(2)将1开始到103的连续奇数依次写成一个多位数:a=135791113…9799101103,则数a共有多少位?数a除以9 的余数为几?(3)一个多位数1234567……979899,问除以11 的余数是多少?例3、(1)用一个数除200 余5,除300 余1,除400 余10,求这个数?(2)甲、乙、丙、丁四个旅行团分别有游客69 人,85 人、93 人、97 人。
小学奥数之带余除法解题(完整版)

小学奥数之带余除法解题1. 能够根据除法性质调整余数进行解题2. 能够利用余数性质进行相应估算3. 学会多位数的除法计算4.根据简单操作进行找规律计算带余除法的定义及性质1、定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r ,0≤r <b ;我们称上面的除法算式为一个带余除法算式。
这里:(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商 (2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商 一个完美的带余除法讲解模型:如图这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
2、余数的性质⑴ 被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数; ⑴ 余数小于除数. 3、解题关键理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.除法公式的应用【例 1】 某数被13除,商是9,余数是8,则某数等于 。
【考点】除法公式的应用 【难度】1星 【题型】填空 【关键词】希望杯,四年级,复赛,第2题,5分 【解析】 125 【答案】125【例 2】 一个三位数除以36,得余数8,这样的三位数中,最大的是__________。
5-5-1.带余除法(一)教学目标知识点拨例题精讲【考点】除法公式的应用【难度】1星【题型】填空【关键词】希望杯,四年级,复赛,第3题【解析】因为最大的三位数为999,999362727÷=,所以满足题意的三位数最大为:36278980⨯+=【答案】980【巩固】计算口÷△,结果是:商为10,余数为▲。
【奥数系列训练】(含答案)04——带余数除法

【奥数系列训练】(含答案)04——带余数除法请填入正确答案:【题目1】3692×4966×5788除以6的余数是几?【题目2】小东在计算除法时,把除数87写成78,结果得到的商是54,余数是8,正确的余数是多少?【题目3】a÷24 = 121……b,要使余数最大,被除数应该等于多少?【题目4】一个三位数被37除余17,被36除余3,那么这个三位数是多少?【题目5】31453×68765×98657的积,除以4的余数是多少?【题目6】如果时针现在表示的时间是18点整,那么分针旋转1990圈之后是几点钟?【题目7】两数相除商8余16,被除数、除数、商、余数的和是463,被除数是多少?【题目8】四位数8□98能同时被17和19整除,那么这个四位数是多少?【题目9】222……22(2000个2)除以13所得的余数是多少?【题目10】已知:a = 19911991……1991(1991个1991),问:a除以13,余数是几?【参考答案】1.【解答】3692÷6 = 615……2;4966÷6 = 827……4;5788÷6 = 964……4。
3692×4966×5788 =(615×6+2)×(827×6+4)×(964×6+4)脱括号后只有2×4×4 = 32,不是6的整数倍,即32÷6的除数2就是此题的答案。
2.【解答】被除数= 78×54+8 = 4220,而4220 = 87×48+44.所以正确的余数是44。
3.【解答】因为余数一定要比除数小,所以余数最大为23,故有被除数= 24×121+23 = 2927。
4.【解答】这个三位数可以写成37×商+17 = 36×商+(商+17),根据“被36除余3”,(商+17)被36除要余3,商只能是22(如果商更大的话,与题目条件“三位数”不符合)。
小学奥数题库《数论》余数问题带余除法1星题(含解析)全国通用版

数论-余数问题-带余除法-1星题课程目标知识提要带余除法•定义一般的,如果a是整数,b是整数(b≠0),若有a÷b=q⋯⋯r,也就是说a=b×q+r,0≦r<b,我们称上面的除法算式为一个带余除法算式。
(1)当r=0时,我们称a可以被b整除,q称为a除以b的商或完全商;(2)当r≠0时,我们称a不可以被b整除,q称为a除以b的商或不完全商。
精选例题带余除法1. 有一个除法算式,被除数和除数的和是136,商是7,则除数是.【答案】17【分析】(1)被除数÷除数=7,因此我们能得到被除数是除数得7倍.(2)如果设除数是1份,那么被除数就是7份,它们的和是136.所以每份量为:136÷8=17.即除数是17.2. 在一个除法算式中,被除数是12,除数小于12,则可能出现的不同的余数之和是.【答案】15【分析】除数小于12且有不同余数,除数可能是11、10、9、8、7.余数分别是1、2、3、4、5.余数之和是1+2+3+4+5=15.3. 已知2008被一些自然数去除,得到的余数都是10.那么这些自然数共有个.【答案】11个【分析】2008−10=1998一定能被这些数整除,且这些数一定大于10,1998=2×3×3×3×37.1998的因数一共有:(1+1)×(3+1)×(1+1)=16个.其中小于10的有:1,2,3,6,9那么大于10的因数有16−5=11个.即这些自然数共有11个.4. 买一支水彩笔需要1元7角,用15元钱最多可以买这样的水彩笔支.【答案】8【分析】1元7角相当17角,15元相当于150角.可列出如下算式:150÷17=8⋯14.故最多可以买这样的水彩笔8支.5. 两数相除,商4余8,被除数、除数两数之和等于73,则被除数是.【答案】60【分析】被除数=4×除数+8,被除数减去8后是除数的4倍,所以根据和倍问题可知,除数为(73−8)÷(4+1)=13,所以,被除数为13×4+8=60.6. 有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是.【答案】1968【分析】设除数为a,被除数为17a+13,即可得到(17a+13)+a+17+13=2113,那么除数=115,被除数=115×17+13=1968.7. 在一个除法算式中,如果商是16,余数是8,那么被除数最小是.【答案】152【分析】根据余数小于除数,得到除数最小为9,那么被除数的最小值为16×9+8=152.8. 在一个除法算式中,如果商是16,余数是8,那么被除数与除数的和最小是.【答案】161【分析】由上题152+9=161.9. (1)34÷4=8⋯⋯2,则[34÷4]=,{34÷4}=;(2)已知a÷125=b⋯⋯10,[a÷125]=6,求{a÷125} = ;(3)已知a÷20=3⋯⋯b,{a÷20}=0.45,求[a÷20] = ,a = .【答案】(1)8,0.5;(2)0.08;(3)3,69【分析】(1)34÷4的整数部分就是商,因此为8,{34÷4}相当于余数除以4,因此为0.5.(2)如果a÷b=q⋯⋯r,[a÷b]=q,{a÷b}=r÷b方法1:b=6,a=6×125+10=760,{760÷125}=0.08;方法2:b=6,{a÷125}=10÷125=0.08.(3)如果a÷b=q⋯⋯r,[a÷b]=q,{a÷b}=r÷b,所以[a÷20]=3,b=0.45×20=9,a=3×20+9=69.10. 用一个自然数去除另一个自然数,商为5.被除数、除数的和是36,求这两个自然数各是多少?【答案】被除数为30,除数为6.【分析】被除数÷除数=5,所以根据和倍问题可知,除数为36÷(5+1)=6,所以被除数为5×6=30.11. 若a÷b=7⋯⋯9,则a的最小值是多少?【答案】79【分析】根据余数小于除数,得到除数最小为10,那么a的最小值为7×10+9=79.12. (1)25÷6=4⋯⋯1;34÷6=5⋯⋯4,那么(25+34)÷6=( )⋯⋯( ).(2)45÷7=6⋯⋯3;26÷7=3⋯⋯5,那么(45+26)÷7=( )⋯⋯( ).(3)a÷8⋯⋯5;b÷8⋯⋯6,那么(a+b)÷8⋯⋯( ).(4)a÷8⋯⋯5;b÷8⋯⋯6;c÷8⋯⋯7,那么(a+b+c)÷8⋯⋯( ).【答案】(1)(25+34)÷6=(9)⋯⋯(5);(2)(45+26)÷7=(10)⋯⋯(1).(3)(a+b)÷8⋯⋯(3).(4)(a+b+c)÷8⋯⋯(2).【分析】(1)(25+34)÷6=9⋯⋯5;(2)(45+26)÷7=10⋯⋯1.(3)所以余数的和为5+6=11,11÷8=1⋯⋯3,余数为3.(4)余数的和为5+6+7=18,18÷8=2⋯⋯2,余数为2.13. 请在下列括号中填上适当的数.(1)a÷8⋯⋯6;b÷8⋯⋯7,那么(a+b)÷8⋯⋯( ).(2)a÷10⋯⋯5;b÷10⋯⋯6;c÷10⋯⋯7,那么(2a+b+c)÷10⋯⋯( ).【答案】(1)5;(2)3【分析】(1)余数的和为6+7=13,13÷8=1⋯⋯5,余数为5.(2)2a+b+c=a+a+b+c,所以余数的和为5+5+6+7=23,23÷10=2⋯⋯3,余数为3.14. 1013除以一个两位数,余数是12.求出符合条件的所有的两位数.【答案】13,77,91【分析】1013−12=1001,1001=7×11×13,那么符合条件的所有的两位数有11,13,77,91,因为“余数小于除数”,所以舍去11,答案只有13,77,91.15. 1013除以一个两位数,余数是12.求出所有符合条件的两位数.【答案】13,77,91【分析】1013−12=1001,1001=7×11×13,那么符合条件的所有的两位数有11,13,77,91,因为“余数小于除数”,所以舍去11,答案只有13,77,91.16. 甲、乙两数的和是16,甲数除以乙数商是2余1,求甲数和乙数各是多少?【答案】乙=5,甲=11【分析】设乙数为a,即甲为2a+1,可得到(2a+1)+a=16,那么乙=5,甲=11.17. 2025除以一个两位数,余数是75,这个两位数是多少?【答案】78【分析】这个两位数是2025−75=1950的约数,其中比75大的只有78.18. 一个数除以另一个数,商是3,余数是3.如果除数和被除数都扩大10倍,那么被除数、除数、商、余数的和是263,求这2个自然数各是多少?【答案】5、18【分析】设除数为a,被除数为3a+3,即可得到10(3a+3)+10a+3+30=263,那么除数=5,被除数=5×3+3=18.19. 甲、乙两数的差是113,甲数除以乙数商7余5,则甲数和乙数各是多少?【答案】乙=18,甲=131【分析】设乙数为a,即甲为7a+5,可得到(7a+5)−a=113,那么乙=18,甲= 131.20. 两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.【答案】324【分析】设被除数和除数分别为x,y,可以得到\[ \begin{cases} x = 4y + 8\hfill \\ x + y + 4 + 8= 415 \hfill \\ \end{cases} \]解方程组得\[ \left\{ \begin{gathered} x = 324 \hfill\\ y = 79 \hfill\\ \end{gathered} \right. \]即被除数为324.21. 78除以一个数得到的商是8,并且除数与余数的差是3,求除数和余数.【答案】除数为9,余数为6.【分析】78÷除数=8⋯⋯(余数−3),81÷除数=9⋯⋯0被除数加上除数与余数的差3的和刚好是除数的9倍,则除数为(78+3)÷9=9,余数为6.22. 用某自然数a去除1992,得到商是46,余数是r,求a和r.【答案】a=43,r=14【分析】由1992是a的46倍还多r,得到1992÷46=43......14,得1992=46×43+ 14,所以a=43,r=14.23. 甲、乙两个数,甲数除以乙数商2余17,乙数的10倍除以甲数商3余45.求甲、乙二数.【答案】乙=24,甲=65【分析】设乙数为a,即甲为2a+17,可得到10a÷(2a+17)=3⋯⋯45,整理为10a= 3(2a+17)+45,那么乙=24,甲=65.24. 一个三位数除以43,商是a余数是b,求a+b的最大值.【答案】64【分析】试除法:999÷43=23⋯⋯10;999−10−1=988;988÷43=22⋯⋯42.余数最大为42,所以a+b的最大值为42+22=64.25. (1)82÷6=13⋯⋯4;50÷6=8⋯⋯2,那么(82−50)÷6=( )⋯⋯( ).(2)74÷6=12⋯⋯2;22÷6=3⋯⋯4,那么(74−22)÷6=( )⋯⋯( ).(3)a÷6余5;b÷6余1,那么(a−b)÷6余几呢?(4)a÷6余3;b÷6余5,那么(a−b)÷6余几呢?【答案】(1)(82−50)÷6=(5)⋯⋯(2).(2)(74−22)÷6=(8)⋯⋯(4).(3)余4.(4)余4.【分析】(1)(82−50)÷6=5⋯⋯2.(2)(74−22)÷6=8⋯⋯4.(3)余数的差是4,所以余数是4.(4)余数不够减时借1当6用来减,3+6=9,9−5=4,所以余数是4.26. 用一个自然数去除另一个自然数,商为8,余数是3.被除数、除数的和是48,求这两个自然数各是多少?【答案】被除数为43,除数为5.【分析】因为被除数减去3后使除数的8倍,所以根据和倍问题可知,除数为(48−3)÷(8+1)=5,所以被除数为5×8+3=43.27. 50除以一个一位数,余数是2.求出符合条件的一位数.【答案】3,4,6,8【分析】50÷除数=商⋯⋯2,50−2=48,48=除数×商,48=1×48=2×24=3×16=4×12=6×8,因为“余数小于除数且除数是一位数“那么符合条件的所有的数有3,4,6,8.28. 一个两位数除310,余数是37,求这样的两位数.【答案】39;91【分析】本题为余数问题基础题型,需要学生明白一个重要知识点,就是把余数问题---即“不整除问题”转化为整除问题.方法为用被除数减去余数,即得到一个除数的倍数;或者是用被除数加上一个“除数与余数的差”,也可以得到一个除数的倍数.本题中310−37=273,说明273是所求余数的倍数,而273=3×7×13,所求的两位数约数还要满足比37大,符合条件的两位数有39,91.29. 一个两位数除以13的商是6,除以11所得的余数是6,求这个两位数.【答案】83【分析】因为一个两位数除以13的商是6,所以这个两位数一定大于78,并且小于13×(6+1)=91;又因为这个两位数除以11余6,而78除以11余1,这个两位数为78+5=83.30. 43除以一个数得到的商是8,并且除数与余数的差是2,求除数和余数.【答案】除数为5,余数为3.【分析】43=8×除数+余数,被除数加上除数与余数的差2的和刚好是除数的9倍,则除数为(43+2)÷(8+1)=5,余数为3.31. 用一个自然数去除另一个自然数,商为7.被除数、除数的和是48,求这两个自然数各是多少?【答案】除数为6,被除数为42.【分析】被除数÷除数=7,所以根据和倍问题可知,除数为48÷(7+1)=6,所以被除数为6×7=42.32. 计算:(1)已知a÷25=b⋯⋯5,[a÷20]=4,求a=;(2)已知a÷10=7⋯⋯b,{a÷10}=0.5,求[a÷10]=,a=.【答案】(1)105;(2)7,75【分析】(1)b =4,a=4×25+5=105(2)a÷b=q⋯⋯r,[a÷b]=q,{a÷b}=r÷b,所以[a÷10]=7,b=0.5×10=5,a=7×10+5=75.33. 46除以一个一位数,余数是1.求出符合条件的一位数.【答案】3,5,9【分析】46÷除数=商⋯⋯1,46−1=45,45÷除数=商⋯⋯0,45=除数×商,45=3×15=5×9,因为“余数小于除数且除数是一位数”那么符合条件的所有的一位数有3,5,9.34. 博士要给小朋友们分糖,一共128块,如果每人分5块,最多可以分给几个小朋友?【答案】25【分析】128÷5=25⋯⋯3,最多分给25个小朋友,还剩3块.35. 128除以一个数得到的商是9,并且除数与余数的差是2,求除数和余数.【答案】除数为13,余数为11.【分析】128÷除数=9⋯⋯(余数−2),130÷除数=10⋯⋯0被除数加上除数与余数的差2的和刚好是除数的10倍,则除数为(128+2)÷10=13,余数为11.36. 有一个整数,39,51,147被它除所得的余数都是3,求这个数.【答案】4;6;12【分析】方法一:39−3=36,147−3=144,(36,144)=12,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12.方法二:由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.51−39=12,147−39=108,(12,108)=12,所以这个数是4,6,12.37. 一个除法算式中,被除数、除数、商与余数都是自然数,并且商与余数相等.若被除数是47,则除数是多少?【答案】46【分析】设除数为b,商和余数都是c,这个算式就可以表示为:47÷b=c⋯⋯c,即b×c+c=47;c×(b+1)=47,所以c一定是47的因数,47的因数只有1和47;c为47肯定不符合条件,所以c=1,即除数是46,余数是1.38. 已知2012被一些正整数去除,得到的余数为10,则这样的正整数共有多少个?【答案】13个【分析】2012−10=2002一定能被这些数整除,2002=2×7×11×13.因为2002中一共有(1+1)×(1+1)×(1+1)×(1+1)=16个,排除小于10的因数1、2、7,满足条件的正整数共有16−3=13个.39. 188+288+388+…+2088除以9、11的余数各是多少?【答案】8;11.【分析】根据等差数列求和列式:188+288+388+…+2088=22760,所以22760÷9⋯⋯8;22760÷11⋯1.40. 著名的斐波那契数列是这样的:1,1,2,3,5,8,13,21,⋯,这串数列当中第2008个数除以3所得的余数为多少?【答案】0【分析】斐波那契数列的构成规则是从第三个数起每一个数都等于它前面两个数的和,由此可以根据余数定理将斐波那契数列转换为被3除所得余数的数列:1,1,2,0,2,2,1,0,1,1,2,0,⋯,第九项和第十项连续两个是1,与第一项和第二项的值相同且位置连续,所以斐波那契数列被3除的余数每8个一个周期循环出现,由于2008除以8的余数为0,所以第2008项被3除所得的余数为第8项被3除所得的余数为0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.6带余除法2.6.1相关概念在整数范围内,整数a除以整数b(b≠0),若有a÷b=q……r,(即a=bq+r),0≤r<b。
当r=0时,我们称a能被b整除;当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的商。
2.6.2余数的性质⑴被除数=除数×商+余数,除数=(被除数-余数)÷商,商=(被除数-余数)÷除数。
⑵余数小于除数。
2.6.3同余定理(1)如果a,b除以c的余数相同,就称a、b对于除数c来说是同余的,且有a与b 的差能被c整除。
(a、b、c均为正整数)例如,17与11除以3的余数都是2,所以17-11能被3整除。
(2)a与b的和除以c的余数,等于a,b分别除以c的余数之和(或这个和除以c的余数)。
例如,23,16除以5的余数分别是3和1,所以(23+16)除以5的余数等于3+1=4。
注意:当余数之和大于除数时,所求余数等于余数之和再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23+19)除以5的余数等于(3+4)除以5的余数。
(3)a与b的乘积除以c的余数,等于a,b分别除以c的余数之积(或这个积除以c 的余数)。
例如,23,16除以5的余数分别是3和1,所以(23×16)除以5的余数等于3×1=3。
注意:当余数之积大于除数时,所求余数等于余数之积再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23×19)除以5的余数等于(3×4)除以5的余数。
性质(2)(3)都可以推广到多个自然数的情形。
2.6.4典型例题例1 5122除以一个两位数得到的余数是66,求这个两位数。
分析与解:由性质(2)知,除数×商=被除数-余数。
5122-66=5056,5056应是除数的整数倍。
将5056分解质因数,得到5056=26×79。
由性质(1)知,除数应大于66,再由除数是两位数,得到除数在67~99之间,符合题意的5056的约数只有79,所以这个两位数是79。
例2被除数、除数、商与余数之和是2143,已知商是33,余数是52,求被除数和除数。
解:因为被除数=除数×商+余数=除数×33+52,被除数=2143-除数-商-余数=2143-除数-33-52=2058-除数,所以除数×33+52=2058-除数,所以除数=(2058-52)÷34=59,被除数=2058-59=1999。
例3甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数。
解:因为甲=乙×11+32,所以甲+乙=乙×11+32+乙=乙×12+32=1088,所以乙=(1088-32)÷12=88,甲=1088-乙=1000。
例4有一个整数,用它去除70,110,160得到的三个余数之和是50。
求这个数。
分析与解:先由题目条件,求出这个数的大致范围。
因为50÷3=16……2,所以三个余数中至少有一个大于16,推知除数大于16。
由三个余数之和是50知,除数不应大于70,所以除数在17~70之间。
由题意知(7+110+160)-50=290应能被这个数整除。
将290分解质因数,得到290=2×5×29,290在17~70之间的约数有29和58。
因为110÷58=1……52>50,所以58不合题意。
所求整数是29。
例5求478×296×351除以17的余数。
分析与解:先求出乘积再求余数,计算量较大。
根据性质(5),可先分别计算出各因数除以17的余数,再求余数之积除以17的余数。
478,296,351除以17的余数分别为2,7和11,(2×7×11)÷17=9……1。
所求余数是1。
例6甲、乙两个代表团乘车去参观,每辆车可乘36人。
两代表团坐满若干辆车后,甲代表团余下的11人与乙代表团余下的成员正好又坐满一辆车。
参观完,甲代表团的每个成员与乙代表团的每个成员两两合拍一张照片留念。
如果每个胶卷可拍36张照片,那么拍完最后一张照片后,相机里的胶卷还可拍几张照片?分析与解:甲代表团坐满若干辆车后余11人,说明甲代表团的人数(简称甲数)除以36余11;两代表团余下的人正好坐满一辆车,说明乙代表团余36-11=25(人),即乙代表团的人数(简称乙数)除以36余25;甲代表团的每个成员与乙代表团的每个成员两两合拍一张照片,共要拍“甲数×乙数”张照片,因为每个胶卷拍36张,所以最后一个胶卷拍的张数,等于“甲数×乙数”除以36的余数。
因为甲数除以36余11,乙数除以36余25,所以“甲数×乙数”除以36的余数等于11×25除以36的余数。
(11×25)÷36=7……23,即最后一个胶卷拍了23张,还可拍36-23=13(张)。
例7 9437569与8057127的乘积被9除,余数是__。
讲析:一个数被9除的余数与这个数各位数字之和被9除的余数是一样的。
9437569各位数字之和除以9余7;8057127各位数字之和除以9余3。
7×3=21,21÷9=2……3。
所以,9437569与8057127的乘积被9除,余数是3。
例8 在1、2、3、4、……、1993、1994这1994个数中,选出一些数,使得这些数中的每两个数的和都能被26整除,那么这样的数最多能选出_______个。
讲析:可将1、2、3、……、1994这1994个数,分别除以26。
然后,按所得的余数分类。
要使两个数的和是26的倍数,则必须使这两个数分别除以26以后,所得的余数之和等于26。
但本题要求的是任意两个数的和都是26的倍数,故26的倍数符合要求。
这样的数有1994÷26=76(个)……余18(个)。
但被26除余13的数,每两个数的和也能被26整除,而余数为13的数共有77个。
所以,最多能选出77个。
例9 一个整数,除300、262、205,得到相同的余数(余数不为0)。
这个整数是_____。
讲析:如果一个整数分别除以另两个整数之后,余数相同,那么这个整数一定能整除这两个数的差。
因此,问题可转化为求(300—262)和(262—205)的最大公约数。
不难求出它们的最大公约数为19,即这个整数是19。
例10 小张在计算有余数的除法时,把被除数113错写成131,结果商比原来多3,但余数恰巧相同。
那么该题的余数是多少?讲析:被除数增加了131-113=18,余数相同,但结果的商是3,所以,除数应该是18÷3=6。
又因为113÷6的余数是5,所以该题的余数也是5。
例11 五只猴子找到一堆桃子,怎么也平分不了,于是大家同意去睡觉,明天再说。
夜里,一只猴子偷偷起来,吃掉一只桃子,剩下的桃子正好平分五等份,它拿走自己的一份,然后去睡觉;第二只猴子起来,也吃掉一只桃子,剩下的桃子也正好分成五等份,它也拿走了自己的一份,然后去睡觉。
第三、四、五只猴子也都这样做。
问:最初至少有______个桃子。
讲析:因为第一只猴子把桃5等分后,还余1个桃;以后每只猴子来时,都是把前一只猴子剩下的4等份再分成5等份,且每次余1个桃子。
于是,我们可设想,如果另加进4个桃子,则连续五次可以分成5等份了。
加进4个桃之后,这五只猴每次分桃时,不再吃掉一个,只需5等份后,拿走一份。
因为4与5互质,每次的4份能分成5等份,这说明每次等分出的每一份桃子数,也能分成5等份。
这样,这堆桃子就能连续五次被5整除了。
所以,这堆桃子至少有5×5×5×5×5-4=3121(个)。
例12 在1、2、3、……、30这30个自然数中,最多能取出______个数,使取出的这些数中,任意两个不同的数的和都不是7的倍数。
讲析:我们可将1到30这30个自然数分别除以7,然后按余数分类。
余数是0:7、14、21、28余数是1:1、8、15、22、29余数是2:2、9、16、23、30余数是3:3、10、17、24余数是4:4、11、18、25余数是5:5、12、19、26余数是6:6、13、20、27要使两数之和不是7的倍数,必须使这两个数分别除以7所得的余数之和不等于7。
所以,可以取余数是1、2、3的数,不取余数是4、5、6的数。
而余数为0的数只取一个。
故最多可以取15个数。
例13一个数除以3余2,除以5余3,除以7余2。
求满足条件的最小自然数。
分析与解:这道例题就是《孙子算经》中的问题。
这个问题有三个条件,一下子不好解答。
那么,我们能不能通过先求出满足其中一个条件的数,然后再逐步增加条件,达到最终解决问题的目的呢?我们试试看。
满足“除以3余2”的数,有2,5,8,11,14,17,…在上面的数中再找满足“除以5余3”的数,可以找到8,8是同时满足“除以3余2”、“除以5余3”两个条件的数,容易知道,8再加上3与5的公倍数,仍然满足这两个条件,所以满足这两个条件的数有8,23,38,53,68,…在上面的数中再找满足“除以7余2”的数,可以找到23,23是同时满足“除以3余2”、“除以5余3”、“除以7余2”三个条件的数。
23再加上或减去3,5,7的公倍数,仍然满足这三个条件,[3,5,7]=105,因为23<105,所以满足这三个条件的最小自然数是23。
在例1中,若找到的数大于[3,5,7],则应当用找到的数减去[3,5,7]的倍数,使得差小于[3,5,7],这个差即为所求的最小自然数。
例14 求满足除以5余1,除以7余3,除以8余5的最小的自然数。
分析与解:与例1类似,先求出满足“除以5余1”的数,有6,11,16,21,26,31,36,…在上面的数中,再找满足“除以7余3”的数,可以找到31。
同时满足“除以5余1”、“除以7余3”的数,彼此之间相差5×7=35的倍数,有31,66,101,136,171,206,…在上面的数中,再找满足“除以8余5”的数,可以找到101。
因为101<[5,7,8]=280,所以所求的最小自然数是101。
在例1、例2中,各有三个约束条件,我们先解除两个约束条件,求只满足一个约束条件的数,然后再逐步加上第二个、第三个约束条件,最终求出了满足全部三个约束条件的数。
这种先放宽条件,再逐步增加条件的解题方法,叫做逐步约束法。
例15 在10000以内,除以3余2,除以7余3,除以11余4的数有几个?解:满足“除以3余2”的数有5,8,11,14,17,20,23,…再满足“除以7余3”的数有17,38,59,80,101,…再满足“除以11余4”的数有59。