五年级奥数题:带余数除法

合集下载

五年级奥数:余数问题

五年级奥数:余数问题

五年级奥数:余数问题在整数的除法中,只有能整除与不能整除两种情况。

当不能整除时,就产生余数,所以余数问题在小学数学中非常重要。

余数有如下一些重要性质(a,b,c均为自然数):(1)余数小于除数。

(2)被除数=除数×商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数。

(3)如果a,b除以c的余数相同,那么a与b的差能被c整除。

例如,17与11除以3的余数都是2,所以17-11能被3整除。

(4)a与b的和除以c的余数,等于a,b分别除以c的余数之和(或这个和除以c的余数)。

例如,23,16除以5的余数分别是3和1,所以(23+16)除以5的余数等于3+1=4。

注意:当余数之和大于除数时,所求余数等于余数之和再除以c的余数。

例如,23,19除以5的余数分别是3和4,所以(23+19)除以5的余数等于(3+4)除以5的余数。

(5)a与b的乘积除以c的余数,等于a,b分别除以c的余数之积(或这个积除以c的余数)。

例如,23,16除以5的余数分别是3和1,所以(23×16)除以5的余数等于3×1=3。

注意:当余数之积大于除数时,所求余数等于余数之积再除以c的余数。

例如,23,19除以5的余数分别是3和4,所以(23×19)除以5的余数等于(3×4)除以5的余数。

性质(4)(5)都可以推广到多个自然数的情形。

5122除以一个两位数得到的余数是66,求这个两位数。

分析与解:由性质(2)知,除数×商=被除数-余数。

5122-66=5056,5056应是除数的整数倍。

将5056分解质因数,得到5056=26×79。

由性质(1)知,除数应大于66,再由除数是两位数,得到除数在67~99之间,符合题意的5056的约数只有79,所以这个两位数是79。

被除数、除数、商与余数之和是2143,已知商是33,余数是52,求被除数和除数。

小学五年级数学思维能力(奥数)《有余数的除法》训练题

小学五年级数学思维能力(奥数)《有余数的除法》训练题

小学五年级数学思维能力(奥数)《有余数的除法》训练题1.用某自然数a去除1992,得到商是46,余数是r,求a和r.2.一个两位数除310,余数是37,求这样的两位数。

3.有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?4.两个整数相处商是12,余数是6,已知被除数,除数商与余数的差是204,除数是多少?5.三个不同的自然数的和为2001,它们分别除以19,23,31所得的商相同,所得的余数也相同,这三个数是_______,_______,_______。

6.一个自然数,除以11时所得到的商和余数是相等的,除以9时所得到的商是余数的3倍,这个自然数是_________.7.有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够.问:第二组有多少人?8.一个两位数除以13的商是6,除以11所得的余数是6,求这个两位数.9. 有一个整数,除39,51,147所得的余数都是3,求这个数.10.两位自然数ab与ba除以7都余1,并且ab,求abba.11. 学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同.请问学校共有多少个班?12.在除13511,13903及14589时能剩下相同余数的最大整数是_________.13.20032与22003的和除以7的余数是________.14.在1995,1998,2000,2001,2003中,若其中几个数的和被9除余7,则将这几个数归为一组.这样的数组共有______组.15.有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.16.用自然数n去除63,91,129得到的三个余数之和为25,那么n=________17.号码分别为101,126,173,193的4个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和被3除所得的余数.那么打球盘数最多的运动员打了多少盘?18.六名小学生分别带着14元、17元、18元、21元、26元、37元钱,一起到新华书店购买《成语大词典》.一看定价才发现有5个人带的钱不够,但是其中甲、乙、丙3人的钱凑在一起恰好可买2本,丁、戊2人的钱凑在一起恰好可买1本.这种《成语大词典》的定价是________元.。

五年级奥数带余除法(一)教师版

五年级奥数带余除法(一)教师版

1.五年级奥数带余除法(一)教师版2.能够利用余数性质进行相应估算3.学会多位数的除法计算4.根据简单操作进行找规律计算带余除法的定义及性质1、定义:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。

这里:(1)当0r=时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

2、余数的性质⑴被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数;⑵余数小于除数.3、解题关键理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.除法公式的应用例题精讲知识点拨教学目标5-5-1.带余除法(一)【例1】某数被13除,商是9,余数是8,则某数等于。

【考点】除法公式的应用【难度】1星【题型】填空【关键词】希望杯,四年级,复赛,第2题,5分【解析】125【答案】125【例2】一个三位数除以36,得余数8,这样的三位数中,最大的是__________。

【考点】除法公式的应用【难度】1星【题型】填空【关键词】希望杯,四年级,复赛,第3题【解析】因为最大的三位数为999,999362727÷=,所以满足题意的三位数最大为:⨯+=36278980【答案】980【巩固】计算口÷△,结果是:商为10,余数为▲。

奥数余数问题带余除法

奥数余数问题带余除法

精心整理
页脚内容
带余除法
被除数=除数×商+余数
被除数—余数=除数×商
余数=被除数—除数×商
商=(被除数—余数)÷除数
要注意以下几点:
1. 余数总是小于除数的整数。

2. 只要
3. 整除例1、 例2、 数是多
1、 被
2、一个
3、两个
4、1705
5、如果例3、 1、被除2、被除3、两个4、一个5、1492
6、从
7、两个例4、 1、一个
2、一个
3、有一个两位数被3除或被4除,余数都是1,符合这一条件的最大三位数和最小三位数各是多少?
4、有一个最小的两位数,除以5余数是3,除以13余数是5,这个最小的两位数除以11余数是多少?
5、一个两位数除以一个一位数,商仍是两位数,余数是8.被除数、除数、商及余数的和是多少?
6、一个两位数除329,这个两位数与商相等,余数是5,求这个两位数。

7、一个三位数,它除以19,所得的商和余数相等,符合这个条件的三位数有多少个?其中最大的是多少?最小的是多少?
精心整理
页脚内容
8、五年级同学去西湖划船,若每船坐8人,则余下7人;若每船坐12人,则余下11人,若每船坐14人,则余下13人,五年级至少有同学多少人?
9、实验小学五年级的同学在操场上做游戏,每组5人则多1人,每组6人则多1人,每组7人则多1人,五年级做游戏的同学至少有多少人?
10、筐子里有一些皮球,三个三个地数余2个,四个四个地数余3个,五个五个地数余4个,筐子里至少有多少个皮球?。

五年级奥数数论带余除法(A级)

五年级奥数数论带余除法(A级)

带余除法的定义及性质1.定义:一般地,如果a 是整数,b 是整数(0b ≠),若有a b q r ÷= ,也就是a b q r =⨯+,0r b ≤<;我们称上面的除法算式为一个带余除法算式.这里:(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数. 这个图能够让学生清晰的明白带余除法算式中4个量的关系.并且可以看出余数一定要比除数小. 2.余数的性质(1)被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数; (2)余数小于除数.3.解题关键理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.【例 1】 某数被13除,商是9,余数是8,则某数等于__________.【巩固】一个三位数除以36,得余数8,这样的三位数中,最大的是__________.例题精讲 知识框架 带余除法【例2】除法算式208□□中,被除数最小等于__________.÷=【巩固】计算÷□△,结果是:商为10,余数为▲.如果▲的值是6,那么△的最小值是__________.【例3】71427和19的积被7除,余数是几?【巩固】在下面的空格中填上适当的数.【例4】1013除以一个两位数,余数是12.求出符合条件的所有的两位数.【巩固】一个两位数除310,余数是37,求这样的两位数.【例5】一个两位奇数除1477,余数是49,那么,这个两位奇数是多少?【巩固】大于35的所有数中,有多少个数除以7的余数和商相等?【例6】已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?【巩固】写出全部除109后余数为4的两位数.【例7】甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数.【巩固】用某自然数a去除1992,得到商是46,余数是r,求a和r.【例 8】当1991和1769除以某个自然数n,余数分别为2和1.那么,n最小是多少?【巩固】有三个自然数a,b,c,已知b除以a,得商3余3;c除以a,得商9余11.则c除以b,得到的余数是_________.【例9】有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?【巩固】两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.【例 10】 200022222 个除以13所得余数是_____.【巩固】19956666667 个的余数是多少?【随练1】 有一个三位数,其中个位上的数是百位上的数的3倍.且这个三位数除以5余4,除以11余3.这个三位数是__________。

小学数学五年级《带余数的除法》奥数教材教案

小学数学五年级《带余数的除法》奥数教材教案

小学五年级奥数教材:带余数的除法前面我们讲到除法中被除数和除数的整除问题.除此之外,例如:16÷3=5…1,即16=5×3+1.此时,被除数除以除数出现了余数,我们称之为带余数的除法。

一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=b×q+r。

当r=0时,我们称a能被b整除。

当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商).用带余除式又可以表示为a÷b=q…r,0≤r<b。

例1 一个两位数去除251,得到的余数是41.求这个两位数。

分析这是一道带余除法题,且要求的数是大于41的两位数.解题可从带余除式入手分析。

解:∵被除数÷除数=商…余数,即被除数=除数×商+余数,∴251=除数×商+41,251-41=除数×商,∴210=除数×商。

∵210=2×3×5×7,∴210的两位数的约数有10、14、15、21、30、35、42、70,其中42和70大于余数41.所以除数是42或70.即要求的两位数是42或70。

例2 用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?解:∵被除数=除数×商+余数,即被除数=除数×40+16。

由题意可知:被除数+除数=933-40-16=877,∴(除数×40+16)+除数=877,∴除数×41=877-16,除数=861÷41,除数=21,∴被除数=21×40+16=856。

答:被除数是856,除数是21。

例3 某年的十月里有5个星期六,4个星期日,问这年的10月1日是星期几?解:十月份共有31天,每周共有7天,∵31=7×4+3,∴根据题意可知:有5天的星期数必然是星期四、星期五和星期六。

五年级下册数学试题奥数—有余数的除法

五年级下册数学试题奥数—有余数的除法

有余数的除法一、知识点定义 设b a ,为正整数,由除法得r q b a ,其中q 是商,r 是余数, b r 0.我们称为带余除法. 被除数=除数 商+余数,或者被除数-余数==除数 商性质 (1)余数小于除数;(2)如果b a ,除以m 的余数相同,则b a 是m 的倍数,我们称b a ,对模m 同余,记作:)(mod m b a ;(3)a 与b 的和除以m 的余数等于与a 、b 分别除以m 的余数之和(或者这个和除以m 的余数)(4)a 与b 的积除以m 的余数等于与a 、b 分别除以m 的余数之积(或者这个积除以m 的余数)(5)若)(mod ),(mod m d c m b a ,则)(mod m d b c a ,)(mod m d b c a ,)(mod m d b c a .二、例题例1 用一个奇数去除255和197,所得余数都是23,求这个奇数.例2 有一个不等于1的整数,它除967,1000,2001得到相同的余数,这个数是多少?例3 求乘积199354128 被13除的余数.例4 从1—100这100个数中最多选出多少个数,使选出来的中每两个的和都不能被3整除?例5 一个正整数被8除余1,所得商被8除也余1,再把第二次所得商除8后余7,最后商是a .又这个数被17除余4,所得商被17除余15,最后得到的商是a 的2倍,求这个正整数.例6 一个正整数除以3余2,除以5余4,除以7余5,求满足条件的最小正整数.例7 20022001除以4的余数是_________.三、练习1.5197104 的积除以11的余数是__________.2.两数相除所得商为23,余数为6,被除数、除数、商、余数之和为779,那么被除数是_________,除数是__________.3.若34和56除以m的余数相同,且m为奇质数,则m除72的余数为__________.4.实验小学五年级有三百多人,将总人数减去5能被6整除,减去6能被7整除,减去7能被8整除,则五年级共有_________人.3107 的余数是_________.5.76.有一个大于1的正整数除314,257,447所得余数相同,则2002除以这个数余数是_______.。

五年级奥数余数问题

五年级奥数余数问题

五年级奥数余数问题一、题目。

1. 一个数除以3余2,除以5余3,除以7余2,求这个数最小是多少?解析:我们先列出除以3余2的数:2、5、8、11、14、17、20、23、26…再列出除以5余3的数:3、8、13、18、23、28…然后列出除以7余2的数:2、9、16、23、30…可以发现23同时满足这三个条件,所以这个数最小是23。

2. 有一个数,除以4余1,除以5余2,除以6余3,这个数最小是多少?解析:这个数加上3就能被4、5、6整除。

4、5、6的最小公倍数是4 = 2×2,5 = 5,6=2×3,最小公倍数LCM = 2×2×3×5 = 60。

所以这个数最小是60 3=57。

3. 一个数除以5余4,除以8余3,求这个数最小是多少?解析:设这个数为x。

根据除以5余4,可设x = 5a+4(a为整数)。

又因为除以8余3,所以5a + 4=8b+3(b为整数),即5a=8b 1。

通过试值法,当b = 2时,a = 3。

此时x=5×3 + 4=19,19除以8余3,所以这个数最小是19。

4. 一个数除以9余7,除以11余9,这个数最小是多少?解析:这个数加上2就能被9和11整除。

9和11互质,它们的最小公倍数是9×11 = 99。

所以这个数最小是99 2 = 97。

5. 某数除以7余1,除以8余2,除以9余3,求这个数最小是多少?解析:这个数加上6就能被7、8、9整除。

7、8、9的最小公倍数为7×8×9=504。

所以这个数最小是504 6 = 498。

6. 一个数除以3余1,除以5余2,除以7余3,这个数最小是多少?解析:中国剩余定理:先求5×7 = 35,35除以3余2,2×2 = 7,7除以3余1。

再求3×7=21,21除以5余1,1×2 = 2,2除以5余2。

然后求3×5 = 15,15除以7余1,1×3=3,3除以7余3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带余数除法作业一、填空题1.除107后,余数为2的两位数有_____.2. 27 ( )=( )……3.上式( )里填入适当的数,使等式成立,共有_____种不同的填法.3. 四位数8□98能同时被17和19整除,那么这个四位数所有质因数的和是_____.4. 一串数1、2、4、7、11、16、22、29……这串数的组成规律,第2个数比第1个数多1;第3个数比第2个数多2;第4个数比第3个数多3;依此类推;那么这串数左起第1992个数除以5的余数是_____.5. 222……22除以13所得的余数是_____.2000个6. 小明往一个大池里扔石子,第一次扔1个石子,第二次扔2个石子,第三次扔3个石子,第四次扔4个石子……,他准备扔到大池的石子总数被106除,余数是0止,那么小明应扔_____次.7. 七位数3□□72□□的末两位数字是_____时,不管十万位上和万位上的数字是0,1,2,3,4,5,6,7,8,9中哪一个,这个七位数都不是101的倍数.8. 有一个自然数,用它分别去除63,90,130都有余数,三个余数的和是25.这三个余数中最小的一个是_____.9. 在1,2,3,……29,30这30个自然数中,最多能取出_____个数,使取出的这些数中,任意两个不同的数的和都不是7的倍数.10. 用1-9九个数字组成三个三位数,使其中最大的三位数被3除余2,并且还尽可能地小;次大的三位数被3除余1;最小的三位数能被3整除.那么,最大的三位数是_____.二、解答题11.桌面上原有硬纸片5张。

从中取出若干张来,并将每张都任意剪成7张较小的纸片,然后放回桌面,像这样,取出,剪小,放回;再取出,剪小,放回;……是否可能在某次放回后,桌上的纸片数刚好是1991?12. 一个自然数被8除余1,所得的商被8除也余1,再把第二次所得的商被8除后余7,最后得到一个商是a(见短除式<1>);又知这个自然数被17除余4,所得的商被17除余15,最后得到一个商是a的2倍(见短除式<2>).求这个自然数.8 所求自然数……余18 第一次商……余18 第二次商……余7a短除式<1>17 所求自然数……余417 第一次商……余152 a短除式<2>13.某班有41名同学,每人手中有10元到50元钱各不相同.他们到书店买书,已知简装书3元一本,精装书4元一本,要求每人都要把自己手中的钱全部用完,并且尽可能多买几本书,那么最后全班一共买了多少本精装书?14. 某校开运动会,打算发给1991位学生每人一瓶汽水,由于商店规定每7个空瓶可换一瓶汽水,所以不必买1991瓶汽水,但是最少要买多少瓶汽水?———————————————答案——————————————————————答案:1. 15,21,35从107里减去余数2,得107-2=105,所以105是除数与商数相乘之积,将105分解质因数得105=3⨯5⨯7,可知这样的两位数有15,21,35.2. 5根据带余数除法中各部分之间的关系可知,商⨯除数=27-3=24.这样可通过分解质因数解答.因为24=2⨯2⨯2⨯3=23⨯3,所以(商,除数)= (1,24),(2,12),(3,8),(4,6), (6,4), (8,3), (12,2),(24,1)又由余数比除数小可知,除数有24,12,8,6,4五种填法.所以原式中括号内的数共有5种填法.3. 51由17与19互质可知,8□98能被(17⨯19=)323整除.因为8098÷323=25…23,根据商数与余数符合题意的四位数应是323的26倍,所以这个四位数是8398.将8398分解质因数.8398=323⨯26=2⨯13⨯17⨯19所以,这个四位数的所有质因数之和是2+13+17+19=51.4. 2设这串数为a1,a2,a3,…,a1992,…,依题意知a1=1a2=1+1a3=1+1+2a4=1+1+2+3a5=1+1+2+3+4……a1992=1+1+2+3+…+1991=1+996⨯1991因为996÷5=199…1,1991÷5=398…1,所以996⨯1991的积除以5余数为1,1+996⨯1991除以5的余数是2.因此,这串数左起第1992个数除以5的余数是2.5. 9因为222222=2⨯111111=2⨯111⨯1001=2⨯111⨯7⨯11⨯13所以222222能被13整除.又因为2000=6⨯333+2222…2=222…200+222000个 199822÷13=1 (9)所以要求的余数是9.6. 52设小明应扔n 次,根据高斯求和可求出所扔石子总数为1+2+3+…+n =n 21⨯(n +1) 依题意知, n 21⨯(n +1)能被106整除,因此可设 n 21⨯(n +1)=106a 即n ⨯(n +1)=212a 又212a =2⨯2⨯53a ,根据n 与n +1为两个相邻的自然数,可知2⨯2⨯a =52(或54).当2⨯2⨯a =52时,a =13.当2⨯2⨯a =54时,a =1321,a 不是整数,不符合题意舍去. 因此, n ⨯(n +1)=52⨯53=52⨯(52+1),n =52,所以小明扔52次.7. 76假设十万位和万位上填入两位数为x ,末两位上填入的数为y ,(十位上允许是0),那么这个七位数可以分成三个部分3007200+10000x +y ,3007200除以101的余数是26, 10000x 除以101的余数为x ,那么当x +y +26的和是101的倍数时,这个七位数也是101的倍数.如:当y =1时, x =74;当y =2时,x =73,……,而当y =76时,x =100,而990≤≤x ,x 不可能是100,所以y 也不可能是76.由此可知末两位数字是76时,这个七位数不管十万位上和万位上的数字是几,都不是101的倍数.8. 1设这个自然数为m ,且m 去除63,90,130所得的余数分别为a ,b ,c ,则63-a ,90-b ,130-c 都是m 的倍数.于是(63-a )+(90-b )+(130-c )=283-(a +b +c )=283-25=258也是m 的倍数.又因为258=2⨯3⨯43.则m 可能是2或3或6或43(显然1≠m ,86,129,258),但是a +b +c =25,故a ,b ,c 中至少有一个要大于8(否则,a ,b ,c 都不大于8,就推出a +b +c 不大于24,这与a +b +c =25矛盾).根据除数m 必须大于余数,可以确定m =43.从而a =20,b =4,c =1.显然,1是三个余数中最小的.9. 15我们把1到30共30个自然数根据除以7所得余数不同情况分为七组.例如,除以7余1的有1,8,15,22,29这五个数,除以7余2的有2,9,16,23,30五个数,除以7余3的有3,10,17,24四个数,…要使取出的数中任意两个不同的数的和都不是7的倍数,那么能被7整除的数只能取1个,取了除以7余1的数,就不能再取除以7余6的数;取了除以7余2的数,就不能再取除以7余5的数;取了除以7余3的数,就不能再取除以7余4的数.为了使取出的个数最多,我们把除以7分别余1、余2、余3的数全部取出来连同1个能被7整除的数,共有5+5+4+1=15(个)所以,最多能取出15个数.10. 347根据使组成的符合条件的三位数,其最大三位数尽可能小的条件,可知它们百位上的数字应分别选用3,2,1;个位上的数字应分别选用7,8,9.又根据最小的三位数是3的倍数,考虑在1○9中应填5,得159.则在3○7,2○8中被3除余2,余1,选用4,6分别填入圆圈中得347,268均符合条件.这样,最大三位数是347,次大三位数是268,最小三位数是159.11. 每次放回后,桌面上的纸片数都增加6的倍数,总数一定是6的倍数加5.而1991=6⨯331+5,所以是可能的.12. 解法一由(1)式得:8与a相乘的积加上余数7,为第二次商,即8a+7为第二次商,同样地,第二次商与8相乘的积加上余数1,为第一次商,即8(8a+7)+1为第一次商,第一次商与8相乘的积加上余数1,为所求的自然数,即8[8(8a+7)+1]+1为所求的自然数.同理,由(2)式得所求的自然数为17(2a⨯17+15)+4由此得方程8[8(8a+7)+1]+1=17(2a⨯17+15)+48(64a+57)+1=17(34a+15)+4512a+457=578a+25966a=198∴a=3因此,所求自然数为512a+457=512⨯3+457=1993解法二依题意可知所求的自然数有两种表示方法:(1)@⑦①①(8)a<8a<17,可知所求的自然数是(1)a⨯83+7⨯82+1⨯81+1=512a+457(2)2a⨯172+15⨯171+4=578a+259由此得 512a+457=578a+259∴a=3因此,所求的自然数为512a +457=512⨯3+457=1993[注]解法一根据“被除数=除数⨯商+余数”的关系式,由最后的商逐步推回到原来的自然数,需要一定的逆向思考能力,解法二要求小选手熟悉数的十进制与其他数进制之间的互化.13. 每人都要把手中的钱用完,而且尽可能多买几本书,意即3元一本的简装书要尽量多买,4元一本的精装书要尽量少买甚至不买.我们分三种情况进行讨论:(1)当钱数被3整除时,精装书就可以不买;(2)当钱数被3除余1时,3k +1=3(k -1)+4,精装书只要买1本,其中k 为大于2的自然数.(3)当钱数被3除余2时,3k +1=3(k -2)+8,精装书只要买2本,其中k 为大于2的自然数.在10至50这41个自然数中,被3除余1和2的数均各有14个.所以全班一共买精装书14+14⨯2=42(本)14. 因为73=343<1991<2401=74,不考虑余数,能用空瓶换三次汽水,由于每7个空瓶可换一瓶汽水,原有空瓶不一定能被7整除,那么第二次以后换时要考虑上一次的余数,最多能用空瓶换四次汽水.1991÷(1+32717171++)=1707.2825 如果买1707瓶汽水,1707÷7=243…6可换243瓶汽水,(243+6)÷7=35…4可换35瓶汽水,(35+4)÷7=5…4可换5瓶汽水,(5+4)÷7=1…2可换一瓶汽水,1+2<7不能再换.1707+243+35+5+1=1991.如果买1706瓶,用空瓶换的数量不变,但1706+243+35+5+1=1990.所以最少要买1707瓶汽水.。

相关文档
最新文档