奥数余数问题带余除法之令狐采学创编
五年级奥数:余数问题

五年级奥数:余数问题在整数的除法中,只有能整除与不能整除两种情况。
当不能整除时,就产生余数,所以余数问题在小学数学中非常重要。
余数有如下一些重要性质(a,b,c均为自然数):(1)余数小于除数。
(2)被除数=除数×商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数。
(3)如果a,b除以c的余数相同,那么a与b的差能被c整除。
例如,17与11除以3的余数都是2,所以17-11能被3整除。
(4)a与b的和除以c的余数,等于a,b分别除以c的余数之和(或这个和除以c的余数)。
例如,23,16除以5的余数分别是3和1,所以(23+16)除以5的余数等于3+1=4。
注意:当余数之和大于除数时,所求余数等于余数之和再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23+19)除以5的余数等于(3+4)除以5的余数。
(5)a与b的乘积除以c的余数,等于a,b分别除以c的余数之积(或这个积除以c的余数)。
例如,23,16除以5的余数分别是3和1,所以(23×16)除以5的余数等于3×1=3。
注意:当余数之积大于除数时,所求余数等于余数之积再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23×19)除以5的余数等于(3×4)除以5的余数。
性质(4)(5)都可以推广到多个自然数的情形。
5122除以一个两位数得到的余数是66,求这个两位数。
分析与解:由性质(2)知,除数×商=被除数-余数。
5122-66=5056,5056应是除数的整数倍。
将5056分解质因数,得到5056=26×79。
由性质(1)知,除数应大于66,再由除数是两位数,得到除数在67~99之间,符合题意的5056的约数只有79,所以这个两位数是79。
被除数、除数、商与余数之和是2143,已知商是33,余数是52,求被除数和除数。
二年级举一反三奥数题之令狐文艳创作

间隔趣谈令狐文艳1、把一根长30厘米的铁丝剪成6段,每剪一次要用2分钟,一共需要几分钟?2、一根木料长10米,要把它锯成一些2米长的小段,每锯一次要用4分钟,一共要用多少分钟?3、时钟3点敲3下,用4秒钟,敲9下用几秒?4、时钟10秒敲6下,敲10下需要几秒?5、一根木料,锯成3段要用10分钟,如果要锯成5段需要多少分钟?6、张师傅18分钟把一根木头锯成了7段,如果他锯了36分钟,那么这根木头被锯成了几段?7、12米长的钢管锯成3米长的几段,一共要用18分钟,每锯一次用几分钟?8、李师傅把一根水管锯成三段,每锯一次用3分钟,他一口气锯了五根水管,一共用了多少分钟?9、时钟5点敲5下需要8秒,那么12点敲12下需要几秒钟?10、一根水管,12分钟把它锯成了4段,另外有同样的一根水管以同样的速度锯成12段,需要多少分钟?11、一根木料锯成3段用了4分钟,另外有同样的一根木料以同样的速度锯,12分钟可锯成多少段?12、李老师家住在六楼,他从底楼到三楼要用2分钟,那么从底楼到六楼要用多少分钟?13、一条河堤40米,每隔4米栽一棵树,从头到尾一共要栽多少棵?14、小明把9粒棋子横着摆放在桌上,每两粒间的距离是5厘米,从第一粒到第九粒之间的距离是多少厘米?15、小新把7粒纽扣放在桌上,每两粒之间的距离是5厘米,从第一粒到第七粒的距离是多少厘米?16、在两根柱子间每隔1米系一个汽球,共系了20个汽球,两根柱子间距离是多少?17、两幢房之间相距50米,每隔1米站一个小朋友,一共可以站几个小朋友?18、一根绳子长1米,每隔10厘米打一个结,一共要打几个结?19、绿化小组在学校的过道两边摆放月季花,每隔1米摆1盆,一共摆了42盆,这条过道长多少米?20、一条路长100米,工人叔叔要在路两旁每隔10米竖一根电线杆,从头到尾一共要竖多少根电线杆?21、一条路每隔2米有1根电线杆,连两端共有81根,这条路长多少米?22、一座桥长25米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有多少盏灯?23、在两幢房之间每隔2米放置宣传广告,一共放了10个,两幢楼之间相距多少米?24、两棵树之间相距20米,每隔2米插一面彩旗,一共可以插几面彩旗?1、小宇在A点,他怎样走到公路L,才能使他所走的路程最近?A·───────────── L2、城南新村与光明新村同在虹桥路的北侧,现要在虹桥路上,修建一个大型超市以方便附近居民购物,请问超市应设在公路的什么地方,才能使两个新村的居民到这里的路程之和最短?城南新村··光明新村──────────────────────虹桥路3、1根绳子扎成蝴蝶结后,再沿结口处剪开,可以得到几段?4、将下图加最少的线改成一笔画的图形。
小学奥数精讲:带余除法(同余式和同余方程)知识点及典型例题

小学奥数精讲:带余除法(同余式和同余方程)一、基本性质的复习1、带余数除法算式:a÷b=q……r(a、b、q、r 均为整数) 从中我们应该得到:(1)b>r 除数大于余数(2)a-r=b×q 被除数减去余数则会出现整除关系,则带余数问题就可以转化为整数问题。
2、余数的性质:(1)可加性:和的余数等于余数的和。
即:两数和除以m 的余数等于这两个数分别除以m 的余数和。
例:7÷3=2……1 5÷3=1……2,则(7+5)÷3 的余数就等于(1+2)÷3 的余数0。
(2)可减性:差的余数等于余数的差。
即:两数差除以m 的余数等于这两个数分别除以m 的余数差。
例:17÷3=5……2 5÷3=1……2,则(17-5)÷3 的余数就等于(2-2)÷3 的余数0。
(3)可乘性:积的余数等于余数的积。
即:两数积除以m 的余数等于这两个数分别除以m 的余数积。
例:64÷7=9……1 45÷7=6……3,则(64×45)÷3 的余数就等于(1×3)÷7 的余数3。
二、同余式在生活中,若两个自然数 a 和 b 都除以同一个除数m 时,余数相同该如何表示呢?在代数中我们称之为同余。
即:a 与b 同余于模m。
意思就是自然数a 和b 关于m 来说是余数相同的。
用同余式表达为:a≡b(modm).注:若a 与b 同余于模m,则a 与b 的差一定被m 整除。
(余数的可减性)三、例题。
例1、当2011 被正整数N 除时,余数为16,请问N 的所有可能值有多少个?例2、(1)求多位数1234567891011…20102011除以9的余数?(2)将1开始到103的连续奇数依次写成一个多位数:a=135791113…9799101103,则数a共有多少位?数a除以9 的余数为几?(3)一个多位数1234567……979899,问除以11 的余数是多少?例3、(1)用一个数除200 余5,除300 余1,除400 余10,求这个数?(2)甲、乙、丙、丁四个旅行团分别有游客69 人,85 人、93 人、97 人。
小学五年级奥数题带余数的除法【六篇】

【导语】海阔凭你跃,天⾼任你飞。
愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。
学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。
以下是为⼤家整理的《⼩学五年级奥数题带余数的除法【六篇】》供您查阅。
【第⼀篇】⼀个两位数去除251,得到的余数是41.求这个两位数。
分析这是⼀道带余除法题,且要求的数是⼤于41的两位数.解题可从带余除式⼊⼿分析。
解:∵被除数÷除数=商…余数, 即被除数=除数×商+余数, ∴251=除数×商+41, 251-41=除数×商, ∴210=除数×商。
∵210=2×3×5×7, ∴210的两位数的约数有10、14、15、21、30、35、42、70,其中42和70⼤于余数41.所以除数是42或70.即要求的两位数是42或70。
【第⼆篇】⽤⼀个⾃然数去除另⼀个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?解:∵被除数=除数×商+余数, 即被除数=除数×40+16。
由题意可知:被除数+除数=933-40-16=877, ∴(除数×40+16)+除数=877, ∴除数×41=877-16, 除数=861÷41, 除数=21, ∴被除数=21×40+16=856。
答:被除数是856,除数是21。
【第三篇】某年的⼗⽉⾥有5个星期六,4个星期⽇,问这年的10⽉1⽇是星期⼏? 解:⼗⽉份共有31天,每周共有7天, ∵31=7×4+3, ∴根据题意可知:有5天的星期数必然是星期四、星期五和星期六。
∴这年的10⽉1⽇是星期四。
【第四篇】3⽉18⽇是星期⽇,从3⽉17⽇作为第⼀天开始往回数(即3⽉16⽇(第⼆天),15⽇(第三天),…)的第1993天是星期⼏? 解:每周有7天,1993÷7=284(周)…5(天), 从星期⽇往回数5天是星期⼆,所以第1993天必是星期⼆.【第五篇】⼀个数除以3余2,除以5余3,除以7余2,求适合此条件的最⼩数。
小学奥数之带余除法解题(完整版)

小学奥数之带余除法解题1. 能够根据除法性质调整余数进行解题2. 能够利用余数性质进行相应估算3. 学会多位数的除法计算4.根据简单操作进行找规律计算带余除法的定义及性质1、定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r ,0≤r <b ;我们称上面的除法算式为一个带余除法算式。
这里:(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商 (2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商 一个完美的带余除法讲解模型:如图这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
2、余数的性质⑴ 被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数; ⑴ 余数小于除数. 3、解题关键理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.除法公式的应用【例 1】 某数被13除,商是9,余数是8,则某数等于 。
【考点】除法公式的应用 【难度】1星 【题型】填空 【关键词】希望杯,四年级,复赛,第2题,5分 【解析】 125 【答案】125【例 2】 一个三位数除以36,得余数8,这样的三位数中,最大的是__________。
5-5-1.带余除法(一)教学目标知识点拨例题精讲【考点】除法公式的应用【难度】1星【题型】填空【关键词】希望杯,四年级,复赛,第3题【解析】因为最大的三位数为999,999362727÷=,所以满足题意的三位数最大为:36278980⨯+=【答案】980【巩固】计算口÷△,结果是:商为10,余数为▲。
小学奥数 余数问题 完整版教案带解析和答案

数论问题之余数问题教学目标余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
三大余数定理:1、余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数,即2.2、余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a同余于b,模m。
由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除用式子表示为:如果有a≡b ( mod m ),那么一定有a-b=mk,k是整数,即m|(a-b)三、弃九法原理而我们在求一个自然数除以9所得的余数时,常常不用去列除法竖式进行计算,只要计算这个自然数的各个位数字之和除以9的余数就可以了,在算的时候往往就是一个9一个9的找并且划去,所以这种方法被称作“弃九法”。
小学数学奥数知识点《有余数的除法》例题讲解

小学奥数《有余数的除法》例题讲解在有余数除法中,要记住:(1)余数<除数;(2)被除数=商×除数+余数例1(1)()÷7=8……(),根据余数写出被除数最大是几?最小是几?(2)()÷()=()……6,除数最小是几?【思路点拨】(1)根据余数一定要比除数小的原理,余数可以取1,2,3,4,5,6。
最大的余数确定最大的被除数,最小的余数确定最小的被除数。
(2)根据余数一定要比除数小的原理,除数要大于6,而大于6的数有很多,其中最小的是。
【模仿练习】1.算式()÷()=8……()中,被除数最小是几?2.下题中被除数最大可填几,最小可填几?()÷8=3……()3.你能写出下面题中最大的被除数和最小的被除数吗?()÷4=7……()例2算式28÷()=()……4中,除数和商各是多少?【思路点拨】根据“被除数=商×除数+余数”,商×除数=被除数-余数,即,商×除数=28-4=24。
而24=×=×=×=×,再根据除数>余数就可以确定对应的除数和商。
【模仿练习】下列算式中,除数和商各是几?(1)22÷()=() (4)(2)65÷()=() (2)(3)37÷()=() (7)(4)48÷()=() (6)例3算式()÷7=()……()中,商和余数相等,被除数可以是哪些数?【思路点拨】要求出被除数,必须确定商和余数,而商等于余数,所以可以先根据除数是7来确定余数的值,根据余数小于除数,所以得到余数可以取,,,,,,从而得到对应的商,然后再求出被除数。
例4算式()÷()=()……6,除数和商相等,被除数最小是几?【思路点拨】通过余数等于6可以确定除数应该大于6,大于6的数有无数个,但是要想使被除数最小,则除数应该尽量小,这样一来除数就只能取,再根据商和除数相等确定商,最后根据“被除数=商×除数+余数”求出最小的被除数。
奥数余数问题带余除法资料

奥数余数问题带余除法带余除法被除数=除数×商+余数被除数—余数=除数×商余数=被除数—除数×商商=(被除数—余数)÷除数要注意以下几点:1.余数总是小于除数的整数。
2.只要除数不为0,带余除法总能进行,且商和余数是唯一存在的。
3.整除是带余除法的特殊情况。
例1、用一个两位数除766,余数为66,求这个两位数。
例2、甲数除以7,商3余5;乙数除以7,商5余3,甲乙两数之和除以7,商是多少,余数是多少?1、被除数是96,除以一个两位数,商是7,余数是5,求这个两位数。
2、一个整数除以127的商是78,余数是9,这个数是多少?3、两个整数a、b,a除以b的商是14,余数是5,如果b=9,那么a是多少?4、1705除以一个两位数得到的余数是40,求这个两位数。
5、如果一个数除439,2188,3142都余15,那么这个数是多少?例3、573除以一个数得的商是11,并且除数与余数的差是3,求除数和余数。
1、被除数与除数的和是136,商是7,余数是8,求被除数与除数。
2、被除数、除数、商与余数的和是903,已知商是35,余数是2,求被除数和除数。
3、两个整数相除的商是27。
余数是19,已知被除数比除数多565,求被除数。
4、一个数除以25的商是余数的3倍,这个数是余数的多少倍?5、1492除以一个数,商是46,且除数比余数大12,则除数是多少?余数是多少?6、从574中减去一个数,再除以这个数,商7余6,这个数是多少?7、两个数相除,商是7,余数是5,除数比被除数小131,被除数是多少?例4、某数除以5余2,除以3余1,求满足着个条件的最小两位数是多少?1、一个数除以3余1,除以8余3,除以11余2,那么满足这个条件的最小的自然数是几?2、一个数被8除余5,被5除余2,这个数最小是多少?3、有一个两位数被3除或被4除,余数都是1,符合这一条件的最大三位数和最小三位数各是多少?4、有一个最小的两位数,除以5余数是3,除以13余数是5,这个最小的两位数除以11余数是多少?5、一个两位数除以一个一位数,商仍是两位数,余数是8.被除数、除数、商及余数的和是多少?6、一个两位数除329,这个两位数与商相等,余数是5,求这个两位数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带余除法
令狐采学
被除数=除数×商+余数
被除数—余数=除数×商
余数=被除数—除数×商
商=(被除数—余数)÷除数
要注意以下几点:
1.余数总是小于除数的整数。
2.只要除数不为0,带余除法总能进行,且商和余数是唯一存
在的。
3.整除是带余除法的特殊情况。
例1、用一个两位数除766,余数为66,求这个两位数。
例2、甲数除以7,商3余5;乙数除以7,商5余3,甲乙两数之和除以7,商是多少,余数是多少?
1、被除数是96,除以一个两位数,商是7,余数是5,求这个两位数。
2、一个整数除以127的商是78,余数是9,这个数是多少?
3、两个整数a、b,a除以b的商是14,余数是5,如果b=9,那么a是多少?
4、1705除以一个两位数得到的余数是40,求这个两位数。
5、如果一个数除439,2188,3142都余15,那么这个数是多少?
例3、573除以一个数得的商是11,并且除数与余数的差是3,求除数和余数。
1、被除数与除数的和是136,商是7,余数是8,求被除数与除数。
2、被除数、除数、商与余数的和是903,已知商是35,余数是2,求被除数和除数。
3、两个整数相除的商是27。
余数是19,已知被除数比除数多565,求被除数。
4、一个数除以25的商是余数的3倍,这个数是余数的多少倍?
5、1492除以一个数,商是46,且除数比余数大12,则除数是多少?余数是多少?
6、从574中减去一个数,再除以这个数,商7余6,这个数是多少?
7、两个数相除,商是7,余数是5,除数比被除数小131,被除数是多少?
例4、某数除以5余2,除以3余1,求满足着个条件的最小两位数是多少?
1、一个数除以3余1,除以8余3,除以11余2,那么满足这个条件的最小的自然数是几?
2、一个数被8除余5,被5除余2,这个数最小是多少?
3、有一个两位数被3除或被4除,余数都是1,符合这一条件的最大三位数和最小三位数各是多少?
4、有一个最小的两位数,除以5余数是3,除以13余数是5,这个最小的两位数除以11余数是多少?
5、一个两位数除以一个一位数,商仍是两位数,余数是8.被除数、除数、商及余数的和是多少?
6、一个两位数除329,这个两位数与商相等,余数是5,求这个两位数。
7、一个三位数,它除以19,所得的商和余数相等,符合这个条件的三位数有多少个?其中最大的是多少?最小的是多少?
8、五年级同学去西湖划船,若每船坐8人,则余下7人;若每船坐12人,则余下11人,若每船坐14人,则余下13人,五年级至少有同学多少人?
9、实验小学五年级的同学在操场上做游戏,每组5人则多1人,每组6人则多1人,每组7人则多1人,五年级做游戏的同学至少有多少人?
10、筐子里有一些皮球,三个三个地数余2个,四个四个地数余3个,五个五个地数余4个,筐子里至少有多少个皮球?。