2014年广东省中考数学模拟试题(二)

合集下载

2014年中考第二次模拟考试数学试题(广州专用)

2014年中考第二次模拟考试数学试题(广州专用)

绝密★启用并考试结束前 试卷类型:A2014年中考第二次模拟考试数学试题(注:根据广州市中考考纲编写的100%原创试题)本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时120分钟 注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自已的考生号、姓名;填写考场试室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。

第I 卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.=--)3(2( ▲ )A.5-B.1-C.1D.5 2.一个图形的主视图与俯视图如右图所示,则此图形可能是( ▲ ) A.三棱锥 B.三棱柱 C.圆锥 D.圆柱3.已知)3,1(A ,将线段OA 绕原点O 旋转︒60后得到'OA ,则'OA 的长度是( ▲ ) A.10 B.3 C.22 D.14.已知b a 、互为相反数,则下列说法中正确的是( ▲ )A.1=abB.1)1(2=++b a C.1=+b a D.02=+b a5.如图所示,ABC RT ∆中,BC AB ⊥,︒=∠30C ,3=BC , 则=BD ( ▲ )A.1B.2C.3D.26.如图所示,C B A O 、、、在数轴上对应的数分别是c b a 、、、0,则下列说法正确的是( ▲ )A.0<abcB.0>++c b aC.0)(>-c a bD.0)(<-b a c7.给出定义:12+-=⊗b a b a ,则关于03≥⊗x x ,下列说法正确的是( ▲ ) A.满足条件的最大整数x 是1- B.满足条件的最小整数x 是0 C.满足条件的x 的取值范围是51-≤x D.满足条件的x 的取值范围是51≥x 8.二次函数122-+=x ax y 的顶点坐标在x 轴下方,则a 的取值范围是( ▲ ) A.0<a B.1->a C.01<<-a 或0>a D.1-<a 或0>a9.如图,在边长为2的正方形中,E 是CD 的中点,且CDCEBF AF =217,则四边形EBFD 的周长是( ▲ ) A.1757++ B.252177++ C.21727+ D.2710.给出计算符号“* ”,使符号“* ”满足:32631=*,61212=*,921053=*,121634=*,1511265=*, ,则=++*-*1415022014201320132014( ▲ )A.2013B.2013-C.2014D.2014-第II 卷(非选择题 共120分)二.填空题(本大题共6小题,每小题3分,满分18分)11.截止至2013年底,广州某银行信用卡发卡量达到9260000张,比当年初增长%8.20,其中9260000用科学计数法表示为 ▲ 。

广东省2014年中考数学试卷(含解析)

广东省2014年中考数学试卷(含解析)

2014年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)1.(3分)(2014?广东)在1,0,2,﹣3这四个数中,最大的数是()A.1B.0C.2D.﹣3考点:有理数大小比较.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣3<0<1<2,故选:C.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)(2014?广东)在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,不是中心对称图形.故此选项错误;B、不是轴对称图形,也不是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项正确;D、是轴对称图形,不是中心对称图形.故此选项错误.故选C.点评:此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)(2014?广东)计算3a﹣2a的结果正确的是()A.1B.a C.﹣a D.﹣5a考点:合并同类项.分析:根据合并同类项的法则,可得答案.解答:解:原式=(3﹣2)a=a,故选:B.点评:本题考查了合并同类项,系数相加字母部分不变是解题关键.4.(3分)(2014?广东)把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)考点:提公因式法与公式法的综合运用.分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.解答:解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.5.(3分)(2014?广东)一个多边形的内角和是900°,这个多边形的边数是()A.4B.5C.6D.7考点:多边形内角与外角.分析:根据多边形的外角和公式(n﹣2)?180°,列式求解即可.解答:解:设这个多边形是n边形,根据题意得,(n﹣2)?180°=900°,解得n=7.故选D.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.6.(3分)(2014?广东)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.B.C.D.考点:概率公式.分析:直接根据概率公式求解即可.解答:解:∵装有7个只有颜色不同的球,其中3个红球,∴从布袋中随机摸出一个球,摸出的球是红球的概率=.故选B.点评:本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.7.(3分)(2014?广东)如图,?ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC考点:平行四边形的性质.分析:根据平行四边形的性质分别判断各选项即可.解答:解:A、AC≠BD,故此选项错误;B、AC不垂直BD,故此选项错误;C、AB=CD,利用平行四边形的对边相等,故此选项正确;D、AB≠BC,故此选项错误;故选:C.点评:此题主要考查了平行四边形的性质,正确把握其性质是解题关键.8.(3分)(2014?广东)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.考点:根的判别式.专题:计算题.分析:先根据判别式的意义得到△=(﹣3)2﹣4m>0,然后解不等式即可.解答:解:根据题意得△=(﹣3)2﹣4m>0,解得m<.故选B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.(3分)(2014?广东)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17考点:等腰三角形的性质;三角形三边关系.分析:由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.解答:解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选A.点评:本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.10.(3分)(2014?广东)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0考点:二次函数的性质.分析:根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,进而判断C;根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y<0,从而判断D.解答:解:A、由抛物线的开口向下,可知a<0,函数有最小值,正确,故本选项不符合题意;B、由图象可知,对称轴为x=,正确,故本选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故本选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故本选项符合题意.故选D.点评:本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.二、填空题(本大题6小题,每小题4分,共24分)11.(4分)(2014?广东)计算2x3÷x=2x2.考点:整式的除法.分析:直接利用整式的除法运算法则求出即可.解答:解:2x3÷x=2x2.故答案为:2x2.点评:此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.12.(4分)(2014?广东)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为 6.18×108.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将618 000 000用科学记数法表示为: 6.18×108.故答案为: 6.18×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(4分)(2014?广东)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=3.考点:三角形中位线定理.分析:由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出DE.解答:解:∵D、E是AB、AC中点,∴DE为△ABC的中位线,∴ED=BC=3.故答案为3.点评:本题用到的知识点为:三角形的中位线等于三角形第三边的一半.14.(4分)(2014?广东)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为3.考点:垂径定理;勾股定理.分析:作OC⊥AB于C,连结OA,根据垂径定理得到AC=BC=AB=3,然后在Rt△AOC中利用勾股定理计算OC即可.解答:解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=5,∴OC===3,即圆心O到AB的距离为3.故答案为:3.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.15.(4分)(2014?广东)不等式组的解集是1<x<4.考点:解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.解答:解:,由①得:x<4;由②得:x>1,则不等式组的解集为1<x<4.故答案为:1<x<4.点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.16.(4分)(2014?广东)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1.考点:旋转的性质.分析:根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=AC′=1,进而求出阴影部分的面积.解答:解:∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.点评:此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)(2014?广东)计算:+|﹣4|+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3+4+1﹣2=6.点评:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)(2014?广东)先化简,再求值:(+)?(x2﹣1),其中x=.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:原式=?(x2﹣1)=2x+2+x﹣1=3x+1,当x=时,原式=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)(2014?广东)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).考点:作图—基本作图;平行线的判定.分析:(1)根据角平分线基本作图的作法作图即可;(2)根据角平分线的性质可得∠BDE=∠BDC,根据三角形内角与外角的性质可得∠A=∠BDE,再根据同位角相等两直线平行可得结论.解答:解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.点评:此题主要考查了基本作图,以及平行线的判定,关键是正确画出图形,掌握同位角相等两直线平行.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)(2014?广东)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)考点:解直角三角形的应用-仰角俯角问题.分析:首先利用三角形的外角的性质求得∠ABC的度数,得到BC的长度,然后在直角△BDC 中,利用三角函数即可求解.解答:解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BC?sin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.21.(7分)(2014?广东)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?考点:分式方程的应用.分析:(1)利用利润率==这一隐藏的等量关系列出方程即可;(2)用销售量乘以每台的销售利润即可.解答:解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.点评:本题考查了分式方程的应用,解题的关键是了解利润率的求法.22.(7分)(2014?广东)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.解答:解:(1)这次被调查的同学共有400÷40%=1000(名);故答案为:1000;(2)剩少量的人数是;1000﹣400﹣250﹣150=200,补图如下;(3)18000×=3600(人).答:该校18000名学生一餐浪费的食物可供3600人食用一餐.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2014?广东)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.考点:反比例函数与一次函数的交点问题.分析:(1)根据一次函数图象在上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据三角形面积相等,可得答案.解答:解:(1)由图象得一次函数图象在上的部分,﹣4<x<﹣1,当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P(x,x+)由△PCA和△PDB面积相等得(x+4)=|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).点评:本题考查了反比例函数与一次函数的交点问题,利用了函数与不等式的关系,待定系数法求解析式.24.(9分)(2014?广东)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB 于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.考点:切线的判定;弧长的计算.分析:(1)根据弧长计算公式l=进行计算即可;(2)证明△POE≌△ADO可得DO=EO;(3)连接AP,PC,证出PC为EF的中垂线,再利用△CEP∽△CAP找出角的关系求解.解答:(1)解:∵AC=12,∴CO=6,∴==2π;(2)证明:∵PE⊥AC,OD⊥AB,∠PEA=90°,∠ADO=90°在△ADO和△PEO中,,∴△POE≌△AOD(AAS),∴OD=EO;(3)证明:如图,连接AP,PC,∵OA=OP,∴∠OAP=∠OPA,由(1)得OD=EO,∴∠ODE=∠OED,又∵∠AOP=∠EOD,∴∠OPA=∠ODE,∴AP∥DF,∵AC是直径,∴∠APC=90°,∴∠PQE=90°∴PC⊥EF,又∵DP∥BF,∴∠ODE=∠EFC,∵∠OED=∠CEF,∴∠CEF=∠EFC,∴CE=CF,∴PC为EF的中垂线,∴∠EPQ=∠QPF,∵△CEP∽△CAP∴∠EPQ=∠EAP,∴∠QPF=∠EAP,∴∠QPF=∠OPA,∵∠OPA+∠OPC=90°,∴∠QPF+∠OPC=90°,∴OP⊥PF,∴PF是⊙O的切线.点评:本题主要考查了切线的判定,解题的关键是适当的作出辅助线,准确的找出角的关系.25.(9分)(2014?广东)如图,在△ABC中,AB=AC,AD⊥AB于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.考点:相似形综合题.分析:(1)如答图1所示,利用菱形的定义证明;(2)如答图2所示,首先求出△PEF的面积的表达式,然后利用二次函数的性质求解;(3)如答图3所示,分三种情形,需要分类讨论,分别求解.解答:(1)证明:当t=2时,DH=AH=2,则H为AD的中点,如答图1所示.又∵EF⊥AD,∴EF为AD的垂直平分线,∴AE=DE,AF=DF.∵AB=AC,AD⊥AB于点D,∴AD⊥BC,∠B=∠C.∴EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=DE=DF,即四边形AEDF为菱形.(2)解:如答图2所示,由(1)知EF∥BC,∴△AEF∽△ABC,∴,即,解得:EF=10﹣t.S△PEF=EF?DH=(10﹣t)?2t=﹣t2+10t=﹣(t﹣2)2+10∴当t=2秒时,S△PEF存在最大值,最大值为10,此时BP=3t=6.(3)解:存在.理由如下:①若点E为直角顶点,如答图3①所示,此时PE∥AD,PE=DH=2t,BP=3t.∵PE∥AD,∴,即,此比例式不成立,故此种情形不存在;②若点F为直角顶点,如答图3②所示,此时PE∥AD,PF=DH=2t,BP=3t,CP=10﹣3t.∵PF∥AD,∴,即,解得t=;③若点P为直角顶点,如答图3③所示.过点E作EM⊥BC于点M,过点F作FN⊥BC于点N,则EM=FN=DH=2t,EM∥FN∥AD.∵EM∥AD,∴,即,解得BM=t,∴PM=BP﹣BM=3t﹣t=t.在Rt△EMP中,由勾股定理得:PE2=EM2+PM2=(2t)2+(t)2=t2.∵FN∥AD,∴,即,解得CN=t,∴PN=BC﹣BP﹣CN=10﹣3t﹣t=10﹣t.在Rt△FNP中,由勾股定理得:PF2=FN2+PN2=(2t)2+(10﹣t)2=t2﹣85t+100.在Rt△PEF中,由勾股定理得:EF2=PE2+PF2,即:(10﹣t)2=(t2)+(t2﹣85t+100)化简得:t2﹣35t=0,解得:t=或t=0(舍去)∴t=.综上所述,当t=秒或t=秒时,△PEF为直角三角形.点评:本题是运动型综合题,涉及动点与动线两种运动类型.第(1)问考查了菱形的定义;第(2)问考查了相似三角形、图形面积及二次函数的极值;第(3)问考查了相似三角形、勾股定理、解方程等知识点,重点考查了分类讨论的数学思想.。

2014广东省初中毕业生学业考试数学模拟试卷

2014广东省初中毕业生学业考试数学模拟试卷

2014广东省初中毕业生学业考试数学模拟试卷时间:100分钟 满分:120分一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的)1.下面四个数中比-2小的数是( ) A .- 3 B .0 C .-1 D .-3 2.下列运算正确的是( )A .a +a =a 2B .(-a 3)2=a 5C .3a ·a 2=a 3D .(2a )2=2a 23.分别由5个大小相同的正方体组成的甲、乙两个几何体如图M1-1所示,它们的三视图中完全一致的是( )A .主视图B .俯视图C .左视图D .三视图图M1-1 图M1-24.若分式x 2-4x 2-2x的值为零,则x 的值为( )A .-2B .2C .0D .-2或25.下列图形中,既是轴对称图形又是中心对称图形的是( )A B C D6.已知点P (a +1,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是( )A .a <-1B .-1<a <32C .-32<a <1D .a >327.小刚同学把一个含有45°角的直角三角板放在如图M1-2所示的两条平行线m ,n 上,测得∠α=110°,则∠β的度数是( )A .75°B .65° C. 55° D. 45° 8.下列说法不正确的是( )A .方程x 2=x 有一根为0B .方程x 2-1=0的两根互为相反数C .方程(x -1)2-1=0的两根互为相反数D .方程x 2-x +2=0无实数根 9.一艘轮船和一艘快艇沿相同路线从甲港出发到乙港,行驶过程随时间变化的图象如图M1-3,下列结论错误的是( )A .轮船的速度为20千米/时B .快艇的速度为803千米/时C .轮船比快艇先出发2小时D .快艇比轮船早到2小时图M1-3 图M1-410.如图M1-4,将矩形ABCD 对折,得折痕PQ ,再沿MN 翻折,使点C 恰好落在折痕PQ 上的点C ′处,点D 落在D ′处,其中M 是BC 的中点.连接AC ′,BC ′,则图中共有等腰三角形的个数是( )A .1个B .2个C .3个D .4个二、填空题(本大题共6个小题,每小题4分,共24分) 11.分解因式3x 3-12x = ____________.12.使式子m -2有意义的最小整数m 是________________________________. 13.如图M1-5,分别以n 边形的顶点为圆心,以1 cm 为半径画圆,则图中阴影部分的面积之和为______ cm 2.图M1-5 图M1-6 图M1-714.如图M1-6,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB ,若EC =1,则EF =__________. 15.袋中装有2个红球和2个白球,它们除了颜色外都相同.随机从中摸出一球,记下颜色后放回袋中,再随机摸出一球,则两次都摸到红球的概率是________.16.一个边长为4 cm 的等边三角形ABC 与⊙O 等高,按图M1-7放置,⊙O 与BC 相切于点C ,⊙O 与AC 相交于点E ,则CE 的长为__________cm.三、解答题(一)(本大题共3小题,每小题5分,共15分)17.计算:2-2sin45°-(1+8)0+2-1+18.18.如图M1-8,在△ABC 中,AB =AC ,∠ABC =72°.(1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法); (2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.图M1-819.已知下列关于x 的分式方程:方程1:1x -1=2x ;方程2:2x =3x +1;方程3:3x +1=4x +2;…;方程n …(1)填空:分式方程1的解为________,分式方程2的解为__________; (2)解分式方程3;(3)根据上述方程的规律及解的特点,直接写出方程n 及它的解.四、解答题(二)(本大题共3小题,每小题8分,共24分)20.如图M1-9,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A,B的坐标分别是A(3,2),B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案)图M1-9(1)点A关于点O中心对称的点的坐标为________________;(2)点A1的坐标为__________;(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为__________.21.如图M1-10,有一个晾衣架放置在水平地面上.在其示意图中,支架OA,OB的长均为160 cm,支架两个着地点之间的距离AB为120 cm.(1)求支架OA与地面AB的夹角∠BAO的度数(结果精确到0.1°);(2)小丽的连衣裙穿在衣架后的总长度达到140 cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(可用计算器计算,参考数据:sin68.0°≈0.927,cos68.0°≈0.375,tan68.0°≈2.475)图M1-1022.体力、腿力测试将健康状况分为四个等级:如一步迈两个台阶,能快速登上五层楼,说明健康状况良好;一级一级登上5层楼,没有明显的气喘现象,说明健康状况不错.如果气喘吁吁,呼吸急促,为较差型;登上三楼就感到又累又喘,意味着身体虚弱.某数学学习小组随机抽查本校初一年级若干名同学进行测试,并将测试结果制成了不完整统计图如图M1-11:(1) (2)图M1-11(1)该数学学习小组抽查了多少名初一同学进行测试?(2)补全图M1-11(1)中的条形统计图,并求出图M1-11(2)中健康状况良好所在扇形的圆心角度数;(3)若该校初一年级有1000名同学,请你估算初一年级大约有多少名同学属于健康状况虚弱?五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图M1-12,直线y =k 1x +b (k 1≠0)与双曲线y =k 2x(k 2≠0)相交于A (1,m ),B (-2,-1)两点.(1)求直线和双曲线的解析式.(2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系式.图M1-1224.如图M1-13,已知抛物线L 1:y 1=34x 2,平移后经过点A (-1,0),B (4,0)得到抛物线L 2,与y 轴交于点C .(1) 求抛物线L 2的解析式;(2) 判断△ABC 的形状,并说明理由;(3) 点P 为抛物线L 2上的动点,过点P 作PD ⊥x 轴,与抛物线L 1交于点D ,是否存在PD =2OC ,若存在,求出点P 的坐标;若不存在,说明理由.图M1-1325.在一张长方形纸片ABCD中,AB=25 cm,AD=20 cm,现将这张纸片按下列图示方法折叠,请解决下列问题.(1)如图M1-14(1),折痕为DE,点A的对应点F在CD上,求折痕DE的长;(2)如图M1-14(2),H,G分别为BC,AD的中点,A的对应点F在HG上,折痕为DE,求重叠部分的面积;(3)如图M1-14(3),在图M1-14(2)中,把长方形ABCD沿着HG对开,变成两张长方形纸片,将两张纸片任意叠合后,判断重叠四边形的形状,并证明;(4)在(3)中,重叠四边形的周长是否存在最大值或最小值?如果存在,试求出来;如果不存在,试简要说明理由.(1)(2)(3)图M1-14广东省初中毕业生学业考试数学模拟试卷1.D2.D3.C4.A5.B6.B7.B8.C 9.B 10.C 11.3x (x +2)(x -2) 12.2 13.π14.2 15.1416.317.解:原式=2-2×22-1+12+3 2=-12+3 2.18.解:(1)作图如图110.(2)∵在△ABC 中,AB =AC ,∠ABC =72°, ∴∠A =180°-2∠ABC =180°-144°=36°. ∵BD 是∠ABC 的平分线,∴∠ABD =12∠ABC =12×72°=36°.∵∠BDC 是△ABD 的外角, ∴∠BDC =∠A +∠ABD =36°+36°=72°.图11019.解:(1)x =2 x =2(2)方程3去分母,得3(x +2)=4(x +1), 解得x =2.检验:当x =2时,公分母不为0, ∴x =2是原方程的解.(3)方程n :nx +n -2=n +1x +n -1,解为x =2.20.(1)(-3,-2) (2)(-2,3) (3)102π21.解:(1)如图111,过点O 作OD ⊥AB 于D ,图111∵OA =OB ,∴AD =12AB =60.在Rt △ADO 中,∠ADO =90°,cos ∠OAD =AD OA =60160=0.375,∴∠DAO ≈68.0°.(2)(方法一)在Rt △ADO 中, OD = 1602-602≈148.3. ∵148.3>140,∴垂挂在晒衣架上是不会拖落到地面.(方法二)在Rt △ADO 中,sin ∠DAO =ODOA,OD =sin68.0° ×160≈0.927×160≈148.3.∵148.3>140,∴垂挂在晒衣架上是不会拖落到地面. 22.解:(1)50(2)补全条形统计图如图112,图112健康状况良好所在扇形的圆心角度数为360°×(1-48%-16%-6%)=108°. (3)1000×6%=60(名).23.解:(1)∵B (-2,-1)在双曲线上,∴-1=k 2-2,解得k 2=2.∴双曲线的解析式为y=2x ,又点A (1,m )在双曲线上,∴m =21=2.∴A (1,2). ∵A ,B 两点在直线上,∴⎩⎪⎨⎪⎧ k 1+b =2,-2k 1+b =-1,解得⎩⎪⎨⎪⎧k 1=1,b =1,∴直线的解析式为y =x +1.(2)∵对于双曲线,在第三象限内y 随x 的增大而减小,且x 1<x 2<0,∴y 2<y 1<0. 又0<x 3,∴y 3>0,∴y 2<y 1<y 3.24.解:(1)设抛物线L 2的解析式为y =34x 2+bx +c ,经过点A (-1,0),B (4,0),根据题意,得⎩⎪⎨⎪⎧ 34-b +c =0,12+4b +c =0,解得⎩⎪⎨⎪⎧b =-94,c =-3.∴抛物线L 2的解析式为y =34x 2-94x -3.(2)△ABC 的形状是等腰三角形. 理由:根据题意,得C (0,-3),∵AB =4-(-1)=5,BC =42+32=5,AC =12+32=10,∴△ABC 的形状是等腰三角形.(3)存在PD =2OC .设P ⎝⎛⎭⎫a ,34a 2-94a -3,D ⎝⎛⎭⎫a ,34a 2, 根据题意,得PD =⎪⎪⎪⎪34a 2-94a -3-34a 2=⎪⎪⎪⎪94a +3,OC =3, 当⎪⎪⎪⎪94a +3=6时,解得a 1=43,a 2=-4.∴P 1⎝⎛⎭⎫43,-143,P 2(-4,18). 25.解:(1)∵四边形ADFE 是正方形,∴DE =20 2.(2)∵由折叠可知DG =12AD =12DF ,∴在Rt △DGF 中,∠GFD =30°,∠GDF =60°, ∵∠GDE =∠EDF ,∴∠EDA =30°.∴在Rt △ADE 中,tan ∠EDA =AEAD,∴AE =AD ·tan30°=20 33.∴S △DEF =12AE ·AD =12×20×20 33=200 33.(3)重叠四边形MNPQ 的形状是菱形. 证明:因纸片都是矩形,则重叠四边形的对边互相平行,则四边形MNPQ 是平行四边形. 如图113,过Q 作QL ⊥NP 于点L ,QK ⊥NM 于点K , 又QL =QK , ∴S MNPQ =PN ·QL =MN ·QK .∴MN =NP ,∴四边形MNPQ 的形状是菱形.图113 图114(4)当矩形纸片互相垂直时,这个菱形的周长最短是40 cm. 最大的菱形如图114所示放置时,重叠部分的菱形面积最大. 设GK =x ,则HK =25-x .在Rt △KHB 中,x 2=(25-x )2+102, 解得x =14.5.则菱形的最大周长为58 cm.。

2014年广东省中考数学模拟试题(二)

2014年广东省中考数学模拟试题(二)

最新中考数学全真模拟试题一、选择题(本大题共10小题,每小题3分,满分30分) 1.下列各数中,小于-2的是( )A .1B .-1C .-2D .-32.P 点在平面直角坐标系的第二象限,P 到x 轴的距离为1,到y 轴的距离为2,则P 点的坐标是( )A .)2 , 1(-B .)1 , 2(-C .)2 , 1(-D .)1 , 2(-3.分式12-+x x 中,x 的取值范围是( ) A .1≠x B .2-≠x C .1>xD .2->x4.如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ABC =25°,则∠CAD 的度数是( ) A .25°B . 60°C .65°D .75°5.不等式组⎩⎨⎧≥->+125523x x 的解在数轴上表示为( )6.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:则这10双运动鞋尺码的众数和中位数分别为( ) A.25.5厘米,26厘米 B.26厘米,25.5厘米 C.25.5厘米,25.5厘米 D.26厘米,26厘米 7.如图,DE 与ABC △的边AB AC ,分别相交于D E ,两点,且DE BC ∥.若A D :BD=3:1, DE=6,则BC 等于( ). A. 8 B.92C. 35D. 28.下列函数的图像在每一个象限内,y 值随x 值的增大而增大的是( ) A .1y x =-+B .12--=x yC .1y x=D .1y x=-A B CD E A . B . C . D .BCD E9.已知两圆的半径分别为1和2,圆心距为5,那么这两个圆的位置关系是( ) A .外离B .相交C .内切D .外切10.如图,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O ,若1AD =,3BC =,则AOCO 的值为( ) A .12 B .13 C .14D .19二、填空题(每小题4分,满分20分) 11.已知反比例函数5my x-=的图象在第二、四象限,则m 取值范围是__________ 12.若方程2210x x --=的两个实数根为1x ,2x ,则=+2221x x . 13.已知圆锥的母线长力30,侧面展开后所得扇形的圆心角为120°,则该圆锥的底面半径为_ .14若:23443556326,54360,5432120,6543360A A A A =⨯==⨯⨯==⨯⨯⨯==⨯⨯⨯=,…,观察前面计算过程,寻找计算规律计算37____________A =.(直接写出计算结果).并比较341010_____A A (填“>”或“<”或“=”).15.如图,小聪用一块有一个锐角为30︒的直角三角板测量树高,已知小聪和树都与地面垂直,且相距AB 为1.7米,则这棵树的高度= 米 16三、解答题㈠(本大题3小题,每小题5分,共15分) 17.计算:103333)2013( 23 -+⨯+---π18.先化简211()1122x x x x -÷-+-,,1,-1中选取一个你认为合适..的数作为x 的值代入求值.BC19.如图,在平行四边形ABCD 中,E 为BC 边上一点,且AB AE =. (1)求证:ABC EAD △≌△. (2)若AE 平分DAB ∠,25EAC =∠,求AED ∠的度数.四、解答题(共3个小题,每小题8分,满分24分) 20.“校园手机”现象越来越受到社会的关注,小记者刘凯随机调查了某校若干学生和家长对中学生带手机现象的看法,制作了如下的统计图:(1)求这次调查的总人数,并补全图13-1;(2)求图13-2中表示家长“赞成”的圆心角的度数;(3)针对随机调查的情况,刘凯决定从初三一班表示赞成的3位家长中随机选择2位进行深入调查,其中包含小亮和小丁的家长,请你利用树状图或列表的方法,求出小亮和小丁的家长被同时选中的概率.图22-1图22-221.两批货物,第一批360吨,用5辆大卡车和12辆小货车正好装完;第二批500吨,用7辆大卡车和16辆小货车正好装完。

2014年广东省中考数学试卷

2014年广东省中考数学试卷

2014年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分).C D.36.(3分)(2014•广东)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随.C D.7.(3分)(2014•广东)如图,▱ABCD中,下列说法一定正确的是()2.C D.10.(3分)(2014•广东)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是(),二、填空题(本大题6小题,每小题4分,共24分)11.(4分)(2014•广东)计算2x3÷x=_________.12.(4分)(2014•广东)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为_________.13.(4分)(2014•广东)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=_________.14.(4分)(2014•广东)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为_________.15.(4分)(2014•广东)不等式组的解集是_________.16.(4分)(2014•广东)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于_________.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)(2014•广东)计算:+|﹣4|+(﹣1)0﹣()﹣1.18.(6分)(2014•广东)先化简,再求值:(+)•(x2﹣1),其中x=.19.(6分)(2014•广东)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)(2014•广东)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)21.(7分)(2014•广东)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?22.(7分)(2014•广东)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有_________名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2014•广东)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.24.(9分)(2014•广东)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.25.(9分)(2014•广东)如图,在△ABC中,AB=AC,AD⊥AB于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm 的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.2014年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分).C D.36.(3分)(2014•广东)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随.C D..7.(3分)(2014•广东)如图,▱ABCD中,下列说法一定正确的是()2.C D..10.(3分)(2014•广东)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是(),,正确,故本选项不符合题意;二、填空题(本大题6小题,每小题4分,共24分)11.(4分)(2014•广东)计算2x3÷x=2x2.12.(4分)(2014•广东)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为 6.18×108.13.(4分)(2014•广东)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=3.ED=14.(4分)(2014•广东)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为3.AC=BC=AC=BC=AB=×OC==315.(4分)(2014•广东)不等式组的解集是1<x<4.,16.(4分)(2014•广东)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1.BC=1ACAD=BC=1=×﹣﹣故答案为:三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)(2014•广东)计算:+|﹣4|+(﹣1)0﹣()﹣1.18.(6分)(2014•广东)先化简,再求值:(+)•(x2﹣1),其中x=..19.(6分)(2014•广东)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).BDE=A=∠∠四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)(2014•广东)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)×≈21.(7分)(2014•广东)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?=这一隐藏的等量关系列出方程即可;22.(7分)(2014•广东)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?×=3600五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2014•广东)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.)x+,图象过点(﹣,x+=),x+=,)24.(9分)(2014•广东)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.l=进行计算即可;∴=225.(9分)(2014•广东)如图,在△ABC中,AB=AC,AD⊥AB于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm 的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.∴﹣EF(t t﹣,∴,此比例式不成立,故此种情形不存在;,∴t=;,∴BM=﹣t=tt=,∴,即CN=﹣﹣t=﹣((化简得:t=或t=.t=t=。

广东省花都区2014学年中考二模数学试卷

广东省花都区2014学年中考二模数学试卷

解:(1)5x 10 6x 6 7
5x 6x 10 6 7
———————— 5 分
x 11
x 11
15
16
1
2 或 3.5
—————— 7 分

时,则有 2 ( 10) a ( 10) 3 —————— 8 分
—————— 9 分
18、(本小题满分 9 分)
解:( 1)作出∠ B 的平分线 BD; (图略)
O
(1)求直线 DE 的解析式和点 M 的坐标;
m (2)若反比例函数 y (
E
求该反比例函数的解析式,并通过计算判断点
N 是否在该函数的图象上;
m
(3)若反比例函数 y
( x>0)的图象与△ MNB 有公共点,请直接写出 m 的取值范围.
x
24.(本小题满分 14 分)
不等式 kx+b > 0 的解集是(

A. x> 3 C.x < -2
B.-2 <x< 3 D.x > -2
第二部分 非选择题(共 120 分)
二.填空题 (本大题共 6 小题,每小题 3 分,满分 18 分)
11. 若分式 1 有意义,则实数 x 的取值范围是 _____ x3
12. 拒绝“餐桌浪费” ,刻不容缓 .据统计全国每年浪费食物总量约 50 000 000 000 千克,这
E
保留作图痕迹,不必写作法和证明) ; (2)连接 DE,求证:△ ADE ≌△ BDE 。
C
第 18 题图
A
19.(本小题满分 10 分)
先化简: x
1
x 1 x2 x
(x 1) ,然后从 1 x 2 中选择一个合适的数代入求值。

2014年广东省中考数学模拟试卷

2014年广东省中考数学模拟试卷

2014年广东省中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共9小题,共27.0分)1.今天,和你一起参加全省课改实验区初中毕业学业考试的同学约有15万人,其中男生约有a万人,则女生约有()A.(15+a)万人B.(15-a)万人C.15a万人D.万人2.若x=1,,则x2+4xy+4y2的值是()A.2B.4C.D.3.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y=()A.2B.3C.6D.x+34.已知实数x,y满足,则x-y等于()A.3B.-3C.1D.-15.有3张边长为a的正方形纸片,4张边长分别为a、b(b>a)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为()A.a+bB.2a+bC.3a+bD.a+2b6.若,,则a+b的值为()A. B. C.1 D.27.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a-b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对称式的是()A.①②B.①③C.②③D.①②③8.若3x=4,9y=7,则3x-2y的值为()A. B. C.-3 D.9.如图,对于任意线段AB,可以构造以AB为对角线的矩形ACBD.连接CD,与AB交于A1点,过A1作BC的垂线段A1C1,垂足为C1;连接C1D,与AB交于A2点,过A2作BC的垂线段A2C2,垂足为C2;连接C2D,与AB交于A3点,过A3作BC的垂线段A3C3,垂足为C3…如此下去,可以依次得到点A4,A5,…,A n.如果设AB的长为1,依次可求得A1B,A2B,A3B…的长,则A n B的长为(用n的代数式表示)( )A. B. C. D.二、填空题(本大题共3小题,共9.0分)10.下面是一个简单的数值运算程序,当输入x的值为3时,则输出的数值为.(用科学记算器计算或笔算)11.已知代数式2a3b n+1与-3a m+2b2是同类项,则2m+3n= .12.观察一列单项式:1x,3x2,5x2,7x,9x2,11x2,…,则第2013个单项式是.三、解答题(本大题共4小题,共24.0分)13.已知A=24+y,B=24-y,计算A2-B2.14.已知a=,b=|-2|,c=,求代数式a2+b-4c的值.15.化简得;当m=-1时,原式的值为.16.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b-1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(-1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是.。

最新2014年广东省中考模拟试题数学试卷

最新2014年广东省中考模拟试题数学试卷

校内学科排序: 评 审 编 号:
2014 年佛山市高中阶段招生考试模拟试题数学科试卷
说 明:本试卷分为第 I 卷(选择题)和第 II 卷(非选择题)两部分,共 6 页,满分 120 分,考试时间 100 分钟。
注意事项:
1、 试卷的选择题和非选择题都在答题卡上作答,不能答在试卷上
2、 要作图(含辅助线)或画表,先用铅笔进行画线、绘图,再用黑色字迹的钢笔或签 字等描黑。
第 I 卷(选择题 共 30 分)
一.选择题(本大题共 10 小题,每小题 3 分,共 30 分。在每小题给出的四个选项中, 只有一项是符合题目要求的。答案 选项填涂在答题卡上。)
1. 5 的倒数是(
A、 5
2. (2a 2 )3 等于( )
A.6 a5
B、5
B.6 a6

C、 1 5
C.8 a5
16.先化简,再求值: x2 2x 1 3 ,其中 x 2 . x2 x x
17.四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上。 (1)若随机抽取一张扑克牌,则牌面数字恰好 为 5 的概率是_____________; (2)规定游戏规则如下:若同时随机抽取两张 扑克牌,抽到两张牌的牌面数字之和是偶数为胜; 反之,则为负。你认为这个游戏是否公平?请说明理由。
h
O A .
h
tO B .
tO C .
h
10.图 1 是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm)。将它们拼成 如图 2 的新几何体,则该新几何体的体积为( )
4
4
A.48 cm3
6
4
4
图1
6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年广东省高中阶段学校招生考试
数学预测卷(二)
(时间:100分钟 满分:120分)
班别: 姓名: 学号: 分数:
说明:1.考试用时100分钟,满分120分.
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、
座位号. 用2B 铅笔把对应该号码的标号涂黑.
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,
用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.
4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.
5.考生务必保持答题卡上的整洁. 考试结束时,将试卷和答题卡一并交回. 一、选择题(本大题共10小题,每小题3分,共30分)
1.3
1
-
的绝对值是( ) A .3
B .-3
C .
3
1
D .3
1-
2.在6×6方格中,将图①中的图形N 平移后位置如图②所示,则下列图形N 的平移方法中,正确的是( )
A .向下移动1格
B .向上移动1格
C .向上移动2格
D .向下移动2格 3.下列计算正确的是( ) A .224=
- B
① ②
C
D
3
=-
4.五个数中:
7
22
-,﹣1,0,,,是无理数的有()
A.0个 B.1个 C.2个 D.3个
5.下列计算正确的是()
A.12
4
3a
a
a=
⋅ B.7
4
3)
(a
a=
C.3
6
3
2)
(b
a
b
a= D.)0
(
4
3≠
=
÷a
a
a
a
6.不透明的袋子里装有2个红球和1个白球,这些球除了颜色外其他都相同.从中任意摸出一个,放回摇匀,再从中摸出一个,则两次摸到球的颜色相同的概率是( )
A.
9
4
B.
9
5
C.
2
1
D.
3
2
7.如图,在ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF 等于( ) A.2 B.3 C.4 D.5
8.如图,已知D,E分别是△ABC的AB,AC边上的点,,
DE BC
//且:
ADE
S

S四边形DBCE=1∶8,那么:
AE AC等于( )
A.1∶9 B.1∶3 C.1∶8 D.1∶2
9.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,E为垂足,且交AB于点D,连接CD,若BD=1,则AC的长是()
(第7题)(第8题)(第9题)
A .23 B.2 C .4
3
D .4
10.如图,点A 的坐标为(-2, 0), 点B 在直线y =x 上运动.当线段AB
最短时,点B 的坐标为( )
A . )2,2(- B. )2
2,22(-
C . )2
2,22(--
D . )2,2( 二、填空题(本大题共6小题,每小题4分, 共24分) 11.若∠α=42°,则∠α的余角的度数是 .
12.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC = 4 cm ,则四边形
CODE 的周长为 .
13.若直线y =2x +4与反比例函数的图象交于点P (a ,2),则反比例函数的解析式为 . 14.已知关于
x 的一元二次方程2210kx x +-=有两个不相等的实数根,则实数k 的取值范围
是 .
15.不等式2x +9≥3(x +2)的正整数解是 .
16.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是__________. (结果保留π)
三、解答题(一)(本大题共3小题,每小题6分,共18分)
17.先化简,再求值:(x +y )(x -y )-(4x 3y -8x y 3
)÷2x y ,其中x =-1,y =
3
3

(第10题)
18.为了提高产品的附加值,某公司计划将研发生产的1 200件新产品进行精加工后再投放市场.现有
甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一,甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二,乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?
19.如图,在△ABC 中,AB =AC ,∠CAB =30°.
(1)用直尺和圆规作AC 边上的高线BD 交AC 于点D (保留作图痕迹,不要求写作法);
(2)在(1)中作出AC 边上的高线BD 后,求∠DBC 的度数.
四、解答题(二)(本大题共3小题,每小题7分,共21分)
20.一测量爱好者在海边测量位于其正东方向的小岛高度AC .如图所示,他先在点B 测得小岛的顶点A
的仰角是︒30,然后沿正东方向前行62 m 到达点D ,在点D 测得小岛的顶点A 的仰角为︒60(B ,C ,D 三点在同一水平面上,且测量仪的高度忽略不计).求小岛的高度AC .(结果精确到1 m ,参考数据:4.12≈,7.13≈)
21. 如图,⊙O的直径AB=6 cm,D为⊙O上一点,∠BAD=30°,过点D的切线交AB的延长线于点
C.
求:(1)∠ADC的度数;(2)AC的长.
22.四川雅安发生地震后,某校学生会向全校1 900名学生发起了“心系雅安”捐款活动.为了解捐款情
况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②.请根据相关信息,解答下列问题:
(1)本次接受随机抽样调查的学生人数为,图①中m的值是;
(2)求本次调查获取的样本数据的平均数、众数和中位数;
(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.
五.解答题(三)(本大题共3小题,每小题9分,共27分) 23. 阅读下面的例题,并回答问题.
【例题】解一元二次不等式:0822
>--x x .
解:对822
--x x 分解因式,得
)4)(2(3)1(9)1(822222-+=--=--=--x x x x x x ,
∴0)4)(2(>-+x x .由“两实数相乘,同号得正,异号得负”,可得
⎩⎨
⎧>->+,,0402x x ① 或⎩
⎨⎧<-<+.0402x x ,
② 解①得x >4;解②得x <-2.
故0822
>--x x 的解集是x >4或x <-2.
(1)直接写出092
>-x 的解是 ; (2)仿照例题的解法解不等式:02142
<-+x x ;
(3)求分式不等式:02
1
4≤-+x x 的解集.
① ②
24.已知一张矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),B(0,6),点P为
BC边上的动点(点P不与点B,C重合),经过点O,P折叠该纸片,得点B′和折痕OP.设BP =t.
(1)如图①,当∠BOP=30°时,求点P的坐标;
(2)如图②,经过点P再次折叠纸片,使点C 落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;
(3)在(2)的条件下,当点C′恰好落在边OA上时,求点P的坐标.(直接写出结果即可)
①②
25.如图,已知抛物线y=2x2-2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)写出以A,B,C为顶点的三角形的面积;
(2)过点E(0,6)且与x轴平行的直线l1与抛物线相交于M,N两点(点M在点N的左侧),以MN为一边,抛物线上的任一点P为另一顶点作平行四边形.当平行四边形的面积为8时,求出点P的坐标;
(3)过点D(m,0)(其中m>1)且与x轴垂直的直线l2上有一点Q(点Q在第一象限),使得以Q,D,B为顶点的三角形和以B,C,O为顶点的三角形相似,求线段QD的长.(用含
m的代数式表示)。

相关文档
最新文档