锌氧化物的固体碳还原过程

合集下载

金属冶炼中的高温还原反应

金属冶炼中的高温还原反应

金属冶炼中的高温
03
还原反应实例
铁矿的高温还原反应
铁矿高温还原反应是将铁矿石中的铁氧化物还原成金 属铁的过程。
输标02入题
常见的铁矿高温还原反应有高炉炼铁和直接还原炼铁 。
01
03
高温还原反应过程中需要控制温度、压力和气氛等条 件,以确保反应的顺利进行和获得高质量的金属铁。
04
高炉炼铁是将铁矿石、焦炭和石灰石在高炉中加热还 原成铁水的过程,而直接还原炼铁则是将铁矿石在高 温下与还原气体反应,直接得到海绵铁。
详细描述
碳热还原是一种常用的高温还原方法,其中碳作为还原剂与金属氧化物反应。气态氢还原是使用氢气作为还原剂 的方法,适用于多种金属的冶炼。熔盐电解是一种通过电解熔融盐来提取金属的方法,通常需要较高的温度和电 解质的熔融状态。
高温还原反应在金属冶炼中的重要性
总结词
高温还原反应在金属冶炼中具有重要作用, 是实现金属提取和提纯的关键步骤。
压力影响反应平衡
在高温还原反应中,压力的增大会使反应平衡向生成金属的 方向移动,从而提高金属的产率。
反应物浓度的影响
反应物浓度越高,反应速率越快
随着反应物浓度的增加,分子间的碰撞频率增加,从而加快了反应速率。
反应物浓度影响反应平衡
在高温还原反应中,反应物浓度的增加会使反应平衡向生成金属的方向移动,从而提高 金属的产率。
金属冶炼中的高温还原 反应
汇报人:可编辑 2024-01-06
contents
目录
• 高温还原反应概述 • 金属冶炼中的高温还原反应原理 • 金属冶炼中的高温还原反应实例 • 高温还原反应的影响因素 • 高温还原反应的工业应用 • 高温还原反应的未来发展
高温还原反应概述

氧化锌碳热还原过程热力学

氧化锌碳热还原过程热力学

氧化锌碳热还原过程热力学氧化锌是一种重要的无机化合物,广泛应用于工业、医药、农业等领域。

在工业生产中,氧化锌的生产过程中,碳热还原法是一种常用的制备方法。

本文将从热力学角度探讨氧化锌碳热还原过程的相关问题。

一、氧化锌碳热还原反应方程式氧化锌碳热还原反应的化学方程式如下:ZnO + C → Zn + CO其中,ZnO为氧化锌,C为碳,Zn为锌,CO为一氧化碳。

在该反应中,碳与氧化锌发生化学反应,生成锌和一氧化碳。

由于碳的还原能力强,因此可以将氧化锌还原为锌。

二、氧化锌碳热还原反应的热力学分析1.热力学基础知识热力学是研究物质热力学性质及其相互转化的学科。

在热力学中,热力学第一定律(能量守恒定律)和热力学第二定律(熵增定律)是最基本的定律。

2.热力学分析在氧化锌碳热还原反应中,反应物为氧化锌和碳,生成物为锌和一氧化碳。

反应过程中,热量的变化可以用热力学方程式表示:ΔH=Hp-Hr其中,ΔH为反应热,Hp为生成物的焓,Hr为反应物的焓。

焓是热力学中的一个重要物理量,表示物质的内能和压强的乘积。

在氧化锌碳热还原反应中,反应物和生成物的焓变化如下:ZnO:-348.1 kJ/molC:0 kJ/molZn:0 kJ/molCO:-110.5 kJ/mol因此,氧化锌碳热还原反应的反应热为:ΔH=0+(-110.5)-(0+(-348.1))=237.6 kJ/mol该反应的反应热为正值,表明该反应是放热反应,即反应过程中放出热量,热量的贡献来自于生成物的焓值和反应物的焓值之差。

三、影响氧化锌碳热还原反应的因素1.温度温度是影响氧化锌碳热还原反应速率的重要因素。

反应速率随着温度的升高而增加,因为在高温下,反应物的活性增加,反应也更容易发生。

但是,温度过高会导致反应速率下降,因为高温下生成物的分解可能会影响反应速率。

2.反应物浓度反应物浓度是影响氧化锌碳热还原反应速率的另一个重要因素。

反应物浓度越高,反应速率越快。

湿法炼锌和火法炼锌

湿法炼锌和火法炼锌
2012/05/19 冶金三班 8
Ⅱ.锌焙砂浸出的主要反应
⑴ZnO
ZnO是焙砂的主要成分,浸出时与硫酸作用,按以下反应进入 溶液: ZnO+H2SO4=ZnSO4+H2O 该反应为浸出过程的主反应。
⑵ZnS
硫化锌在实际浸出过程不发生反应而留在渣中。
2012/05/19
冶金三班
9
⑶ZnO.Fe2O3(铁酸锌) 在一般酸浸条件下(温度333~343K,终点酸度1~5g/LH2SO4), 铁酸锌不溶解,留在渣中造成锌的损失。当采用高温高酸浸出 (温度为363~368K,终点酸度为40~60g/LH2SO4),铁酸锌按 下列反应溶解: 铁酸锌的浸出率达到90%以上,但大量铁也转入溶液,目前工业 上采用黄钾铁钒法、针铁矿法和赤铁矿法除铁。 ⑷ZnO.SiO2(硅酸锌) 硅酸锌可按下列反应溶解进入溶液:
2012/05/19
冶金三班
24
主要设备
焙 烧 车 间 设 备 及 布 置
2012/05/19
冶金三班
25
沸腾焙烧炉
2012/05/19 冶金三班
扩大型沸腾炉
26
平罐炼锌炉
2012/05/19
冶金三班
27
竖 罐 炼 锌 炉
2012/05/19
冶金三班
28
铅锌鼓风炉
2012/05/19
Hale Waihona Puke 冶金三班ZnO.Fe2O3+4H2SO4=ZnSO4+Fe2(SO4)3+4H2O
2ZnO.SiO2+2H2SO4=2ZnSO4+SiO2+2H2O
生成的SiO2不能沉淀呈胶体状态存在于溶液中,固液分离发 生困难。为了加速矿浆的澄清与过滤,提高设备生产率,在 浸出矿浆固液分离时,需加入絮凝剂。

冶金学-Zn-08-7-火法炼锌

冶金学-Zn-08-7-火法炼锌
锌冶金
3火法炼锌
3.1 火法炼锌概述 3.2 火法炼锌基本原理 3.3 火法炼锌的生产实践 3.4 锌的火法精炼
3.1 火法炼锌概述 火法炼锌是将含 火法炼锌是将含ZnO的死焙烧矿用碳质还原剂还原得 的死焙烧矿用碳质还原剂还原得 到金属锌的过程。由于ZnO较难还原,所以火法炼锌必须 较难还原, 到金属锌的过程。由于 较难还原 在强还原和高于锌沸点的温度下进行。 在强还原和高于锌沸点的温度下进行。还原出来的锌蒸气 经冷凝后得到液体锌。 经冷凝后得到液体锌。 还原蒸馏法主要包括竖罐炼锌、平罐炼锌和电炉炼锌。 还原蒸馏法主要包括竖罐炼锌、平罐炼锌和电炉炼锌。 竖罐和平罐炼锌是间接加热,电炉炼锌为直接加热。 竖罐和平罐炼锌是间接加热,电炉炼锌为直接加热。共同 特点是:产生的炉气中锌蒸气浓度大,而且CO2含量少, 含量少, 特点是:产生的炉气中锌蒸气浓度大,而且 容易冷凝得到液体锌。 容易冷凝得到液体锌。 20世纪 年代开发,60年代投入工业生产的密闭鼓风 世纪50年代开发 世纪 年代开发, 年代投入工业生产的密闭鼓风 炉炼锌(简称 炉炼锌 简称ISP)法是一种适合于冶炼铅锌混合矿的炼锌 法是一种适合于冶炼铅锌混合矿的炼锌 简称 方法。它的特点是采用铅雨冷凝法从含CO2含量高而锌含 方法。它的特点是采用铅雨冷凝法从含 量低的炉气中冷凝锌,产出铅和锌两种产品。 量低的炉气中冷凝锌,产出铅和锌两种产品。
3.2 火法炼锌基本原理 R D* P A B Q
3.2 火法炼锌基本原理 3.2.1氧化锌的碳热还原反应基础 氧化锌的碳热还原反应基础 ( 1 ) PZn =50662Pa 的 p 线 与 aZn=1 的 Q 线 相 交 于 B 点 此时Zn的气液两相共存 (826℃),此时 的气液两相共存 ; ℃ ( 2)温度大于 ) 温度大于826℃ 生成锌蒸汽 , 低于 ℃ 生成锌蒸汽,低于826℃生成液态锌 。 ℃ 生成液态锌。 但低温还原要求P 分压很低,难于 但低温还原要求 CO2/ PCO ≈10-3± ,且PCO 分压很低 难于 实现;因此还原产出液态锌在工程上是不可行的。 实现;因此还原产出液态锌在工程上是不可行的。 线相交于A点 ( 3 ) PZn=50662Pa 的 p线 PCO=50662Pa 的 R 线相交于 点 线 这是总压 总压1atm时ZnO与Zn(g)共存点; 共存点; (920℃),这是总压 ℃ 时 与 稳定; (4)总压 )总压1atm时,温度大于 时 温度大于920℃, Zn(g)稳定 ; 温度小 ℃ 稳定; 于920℃, ZnO稳定; ℃ 稳定

粉末冶金课后习题.

粉末冶金课后习题.

第一章1.碳还原法制取铁粉的过程机理是什么?影响铁粉还原过程和铁粉质量的因素有哪些?答:铁氧化物的还原过程是分段进行的,即从高价氧化铁到低价氧化铁,最后转变成金属:Fe2O3→Fe3O4→Fe。

固体碳还原金属氧化物的过程通常称为直接还原。

当温度高于570°时,分三阶段还原:Fe2O3→Fe3O4→浮斯体(FeO·Fe3O4固溶体)→Fe3Fe2O3+CO=2Fe3O4+CO2 Fe3O4+CO=3FeO+CO2 FeO+CO=Fe+CO2 当温度低于570°时,由于氧化亚铁不能稳定存在,因此,Fe3O4直接还原成金属铁 Fe3O4+4CO=3Fe+4CO2影响因素:(1)原料①原料中杂质的影响②原料粒度的影响(2)固体碳还原剂①固体碳还原剂类型的影响②固体还原剂用量的影响(3)还原工艺条件①还原温度和还原事件的影响②料层厚度的影响③还原罐密封程度的影响(4)添加剂①加入一定的固体碳的影响②返回料的影响③引入气体还原剂的影响④碱金属盐的影响⑤海绵铁的处理制取铁粉的主要还原方法有哪些?比较其优缺点。

2、发展复合型铁粉的意义何在?答:高密度、高强度、高精度粉末冶金铁基零件需要复合型铁粉。

所谓复合型粉末是指用气体或液体雾化法制成的完全预合金粉末、部分扩散预合金粉末以及粘附型复合粉末。

还原法制取钨粉的过程机理是什么?影响钨粉粒度的因素有哪些?氢还原。

总的反应式:WO3+3H2====W+3H2O。

钨具有4种比较稳定的氧化物W03+0.1H2====W02.9+0.1H20 W02.9+0.18H2 ==== W02.72+0.18H20W02.72+0.72H2 ====W02+0.72H2O WO2+2H2 ====W+2H2O影响因素:⑴原料:三氧化钨粒度、含水量、杂质⑵氢气:氢气的湿度、流量、通气方向⑶还原工艺条件:还原温度、推舟速度、舟中料层厚度⑷添加剂3、作为还原钨粉的原料,蓝钨比三氧化钨有什么优越性,其主要工艺特点是什么?答:采用蓝钨作为原料制备钨粉的主要优点是可以获得粒度细小的一次颗粒,尽管二次颗粒较采用 WO3 作为原料制备的钨粉二次颗粒要大。

3.4 火法炼锌 2

3.4 火法炼锌 2

平盘,叫回流盘。蒸发盘设在下部,以保证大量金属锌的
蒸发。相邻两塔盘互成180℃交错砌成。为了不使铅蒸气达 到塔的上部,在蒸发盘与回流盘之间,有一空段,高约1
米,不装塔盘,被蒸发的铅在此被冷凝下来
在铅塔中未被冷凝的锌、镉蒸气从铅塔最上层逸出,经 铅塔冷凝器冷凝为液体(含镉<1%)后进入镉塔分离锌和 镉,燃烧室温度控制在1100℃左右,发生与在铅塔中相同的 冷蒸发和冷凝过程。最后,从镉塔最上层逸出的富镉蒸气, 进入进入镉冷凝器冷凝为Cd-Zn合金(5~15%Cd),这种合金
金属锌的过程。
还原蒸馏法主要包括竖罐炼锌、平罐炼锌和电炉炼锌。 竖罐和平罐炼锌是间接加热,电炉炼锌为直接加热。共同 特点是:产生的炉气中锌蒸气浓度大,而且含CO2含量少, 容易冷凝得到液体锌。
20世纪50年代开发,60年代投入工业生产的密闭鼓风炉
炼锌(简称ISP)法是一种适合于冶炼铅锌混合矿的炼锌方法。 它的特点是采用铅雨冷凝法从含CO2含量高而锌含量低的炉
举例:锌蒸气的冷凝效率计算
锌蒸汽冷凝过程中,影响凝结速度的因素有: (1)过冷蒸汽中凝结核心出现的速度。 (2)蒸气压降低速度。 (3)冷凝器排出热量的速度。
4、铅雨冷凝技术
适于处理鼓风炉炼锌时产出的低锌高CO2的高温炉气(含
锌5~7%,含CO2 11~14%,含 CO 18~20%,入冷凝器炉气温
密闭鼓风炉炼锌法又称为帝国熔炼法或ISP法,
是目前世界上最主要的火法炼锌方法,它合并了铅和 锌两种火法冶炼流程,是处理复杂铅锌物料的较理想 方法。 鼓风炉炼锌与蒸馏法炼锌的不同之处在于鼓风炉
炼锌直接加热炉料,作为还原剂的焦炭同时又是维持
作业温度所需的燃料。大量的燃烧气体和还原产出的 锌蒸气混在一起。

降低锌湿法冶炼过程浸出渣含锌的处理工艺

降低锌湿法冶炼过程浸出渣含锌的处理工艺

降低锌湿法冶炼过程浸出渣含锌的处理工艺摘要:在锌冶炼处理过程中,常用浸出工艺包括了常规浸出、高温高酸浸出、直接浸出,第一种处理工艺相较剩余两种,拥有投资成本少,处理工艺周期短的工艺优势,但是在使用过程中存在浸出渣中过高的含锌量,锌的回收率不高这一问题。

根据以往锌冶炼的浸出工艺经验,达到19%~22%的浸出渣含锌量,较热酸浸出渣5%~8%的含锌量明显要高。

所以对于锌冶炼企业来讲,想要提升锌冶炼过程中的锌回收率,减少浸出渣的渣量,控制锌冶炼成本投入,就要降低锌的浸出渣含锌。

本文对降低锌湿法冶炼过程中浸出渣含锌量的处理工艺进行试验探讨并加以总结。

关键词:锌湿法;冶炼;处理工艺引言生产锌时会产生各种类型的渣,而且绝大多数都属于危险的固体废弃物。

虽然大部分都可以返回到主流程当中,将含有的有价金属提取出来,但是仍然会存在一些冶炼渣,没有办法有效利用,存在环境污染风险,这成为了行业发展当中急需解决的技术和共性问题。

1锌冶炼工艺现状1.1浸出过程流量大在浸出处理工艺中达到600m3/h的流量,为了能够确保冲矿流量充足,预防沸腾炉焙砂发生“沉底”,中性浸出循环流量基本达到了400m3/h,另外加入200m3/h废酸,基本达到了450m3/h的酸性进出流量,分别包括100m3/h、100m3/h、250m3/h的分级底流、废酸与中性底流。

在浸出过程中过大流量不仅压缩了浸出时间,过低的温度和初始酸度,还随之降低了铜、锌内有价金属的浸出率,过大流量加大了浓缩澄清压力,极易导致浓缩槽的上清液过于浑浊,增高含固量,导致对后续的净化生产造成严重影响。

酸上清浑浊还会导致系统内部的浸出渣恶性循环,对生产渣平衡性有所突破,严重情况下甚至会无法维持浸出过程。

1.2浸出过程温度低该厂就降低锌湿法冶炼过程浸出渣含锌的合理与科学性做了大量的试验论证工作,运用了热焙砂冲矿、蒸汽加热这两种升温方法。

因为较大的浸出流量所致未能达到充足的升温时间,过低的浸出温度,在中性浸出时上清温度在65℃以内,酸性进出槽的温度在80℃以内。

重金属冶金学-新-铅冶金--铅烧结矿的鼓风炉还原熔炼

重金属冶金学-新-铅冶金--铅烧结矿的鼓风炉还原熔炼
第三节
铅烧结矿的鼓风炉还原熔炼
一、概述 1、鼓风炉还原熔炼目的
使铅的氧化物还原,并与贵金属和铋等聚集进入粗铅,而 使各种造渣成分(包括SiO2、CaO、FeO、Fe3O4等)及锌等进 入炉渣,以达到相互分离。
1
1、鼓风炉还原熔炼目的
目的:使铅的氧化物还原,并与贵金属和铋等聚集进入粗 铅,而使各种造渣成分(包括SiO2、CaO、FeO、Fe3O4等)及 锌等进入炉渣,以达到相互分离。
由图可见,在1000℃时金属氧化 物还原的先后顺序是: Cu2O、PbO、NiO、CdO、SnO2、 Fe3O4、FeO、ZnO、Cr2O3、MnO。
图3-2 金属氧化物还原曲线比较
11
2)金属氧化物的固体碳还原(直接还原)
固体碳还原反应可用下式表示:
MeO+C=Me+CO
(3-4)
固体氧化物的直接还原,实质上是下列
• 铅烧结块中的铅主要以PbO(包括结合态的硅酸铅) 和少量的PbS、金属Pb及PbSO4等形态存在,此外还 含有伴存的Cu、Zn、Bi等有价金属和贵金属Ag、Au 以及一些脉石氧化物。
5
2) 焦炭
• 焦炭在铅鼓风炉还原熔炼过程中的作用: ①发热剂。焦炭燃烧放出的热量为吸热化学反应和
炉料熔化造渣提供充足的热量,保证熔体过热所必需的 温度;
氧化物的理论开始还原温度。
图3-3 金属氧化物的固体碳还原 平衡曲线图
12
4、铅的还原反应△Go-T 图
氧化铅和硅酸铅的直接还原和间接还原反应的吉布斯标准自由能变化与 温度的关系可用图2-15 的△Go-T 图表示(P96)。
图2-15 铅化合物还原反应的△G--T图
13
对同一类型的还原 反应,直接还原的吉 布斯标准自由能变化 的负值总比间接还原 时要大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
→ H2的还原能力大于CO的还原能力。 温度低于1083K,则相反。
三、燃烧反应气相平衡成分计算 多组份同时平衡气相成分计算的一般途径 平衡组分的分压之和等于总压,即ΣPi=P总。 根据同时平衡原理,各组分都处于平衡状态。
→ 根据反应的平衡方程式和平衡常数建立相 应的方程式。
根据物料平衡,反应前后物质的摩尔数及摩 尔数之比不变。
→ C、CO、H2是金属氧化物的良好还原剂
一、碳-氧系燃烧反应的热力学
1、碳-氧系燃烧反应 碳–氧系的主要反应 • 碳的气化反应 → 在高温下向正方向进行——布多尔反应; → 低温下反应向逆方向进行——歧化反应(或碳素沉积反 应)。
• 煤气燃烧反应:△Gθ随着温度升高而增大,
→ 高温下CO氧化不完全。 • 碳的完全燃烧反应: △Gθ<< 0 • 碳的不完全燃烧反应:△Gθ<< 0
3.1 燃烧反应 火法冶金常用的燃料 : 1. 固体燃料 煤和焦碳,其可燃成分为C 2. 气体燃料 煤气和天然气,其可燃成分主要为CO和H2 3. 液体燃料 重油等,其可燃成分主要为CO和H2
火法冶金常用的还原剂 1. 固体还原剂 煤、焦碳等,其有效成分为C; 2. 气体还原剂 CO和H2等 3. 液体还原剂 Mg、Na等 → C、CO、H2为冶金反应提供所需要的热能
2、C-O系优势区图 → 在影响反应平衡的变量(温度、总压、气相组 成)中,有两个是独立变量。 碳汽化反应为吸热反应,随着温度升高,其平 衡常数增大,有利于反应向生成CO的方向迁移。 → 在总压P总一定的条件下,气相CO%增加。 在C-O系优势区图中,平衡曲线将坐标平面划 分为二个区域: Ⅰ—— CO部分分解区(即碳的稳定区)
3.2 金属氧化物的碳还原与氢还原 5.2 1 简单金属氧化物的CO还原 一、金属氧化物CO还原反应热力学
金属氧化物的CO还原反应:
MeO + CO = Me + CO2 对于大多数金属(Fe、Cu、Pb、Ni、Co),在 还原温度下MeO和Me均为凝聚态,系统的自由度 为: f = c – p + 2 = 3 – 3 +2 = 2 忽略总压力对反应的影响,系统的平衡状态可用 %CO-T曲线描述。
3、氢还原剂 在标准状态下,H2可将Cu2O、PbO、NiO、 CoO等还原成金属。 在较大的下,H2可将WO3、MoO3、FeO等还 原成金属。 在适当的下,氢可还原钨、钼、铌、钽等的氯 化物。 4、金属还原剂 铝、钙、镁等活性金属可作为绝大部分氧化物 的还原剂。 钠、钙、镁是氯化物体系最强的还原剂。
二、还原过程分类
气体还原剂还原 用CO或H2作还原剂还原金属氧化物。 固体碳还原 用固体碳作还原剂还原金属氧化物。 金属热还原 用位于 △Gθ-T 图下方的曲线所表示的金属作 还原剂,还原位于△Gθ-T 图上方曲线所表示的 金属氧化物(氯化物、氟化物)以制取金属。 真空还原 在真空条件下进行的还原过程 。
三、还原剂的选择 1、对还原剂X的基本要求 • X对A的亲和势大于Me对A的亲和势。对于氧化物—— → 在氧势图上线应位于线之下; → XO的分解压应小于MeO的分解压。
• 还原产物XA易与产出的金属分离;
• 还原剂不污染产品—— → 不与金属产物形成合金或化合物
• 价廉易得
→ 碳是MeO的良好还原剂。
2、碳还原剂的主要特点求
• 碳对氧的亲和势大,且随着温度升高而增加,能还原绝大多数 金属氧化物。 → Cu2O、PbO、NiO、CoO、SnO等在标准状态下,在不太高 的温度下可被碳还原。 → FeO、ZnO、Cr2O3、MnO、SiO2等氧化物在标准状态下,在 线与线交点温度以上可被碳还原。 → V2O5、Ta2O5、Nb2O5等难还原氧化物在标准状态下不能被碳 还原;但在高温真空条件下可被碳还原。 → CaO等少数金属氧化物不能被碳还原。 • 反应生成物为气体,容易与产品Me分离。 • 价廉易得。 • 碳易与许多金属形成碳化物。
二、氢-氧系燃烧反应的热力学 在通常的冶炼温度范围内,氢的燃烧反应进行得十 分完全,平衡时氧的分压可忽略不计。 氢燃烧反应的△rGθ-T线与CO燃烧反应的△rGθ-T 线相交于一点,交点温度: -503921+117. 36T = -564840+173. 64T T = 1083K
温度高于1083K,H2对氧的亲和势大于CO对氧的 亲和势
结论
碳的高价氧化物(CO2)和低价氧化物(CO)的 稳定性随温度而变。 温度升高,CO稳定性增大,而CO2稳定性减小。
在高温下,CO2能与碳反应生成CO,而在低温下, CO会发生歧化,生成CO2和沉积碳。
在高温下并有过剩碳存在时,燃烧的唯一产物是 CO。
如存在过剩氧,燃烧产物将取决于温度;温度愈 高,愈有利于 CO的生成。第三章 还原ຫໍສະໝຸດ 程概述 一、研究还原过程的意义


金属元素在自然界很少以单质形态存在
有色金属矿物大多数是硫化物或氧化物 炼铁所用矿物及很多冶金中间产品主要是氧化物形态 钛、锆、铪等金属的冶金中间产品为氯化物 还原反应在从这些矿物提取金属的过程中起着重要作用
还原过程实例: 高炉炼铁、锡冶金、铅冶金、火法炼锌、钨冶金、钛冶金
Ⅱ—— 碳的气化区(即CO稳定区)。
•t < 400℃时,%CO≈0
反应基本上不能进行;随着温度升高,%CO变化不明显。 • t = 400~1000℃时 随着温度升高,%CO明显增大。 • t > 1000℃时,%CO≈100 反应进行得很完全。 → 在高温下,有碳存在时,气相中几乎全部 为CO。
二、铁氧化物的CO还原
铁氧化物的还原是逐级进行的
当温度高于843 K时,分三阶段完成: Fe2O3 —> Fe3O4 —> FeO —> Fe 温度低于843 K时,FeO不能存在,还原分两阶段完成: Fe2O3 —>Fe3O4 —>Fe 用CO还原铁氧化物的反应: 3Fe2O3 + CO = 2Fe3O4 + CO2 (1) Fe3O4 + CO = 3FeO + CO2 FeO + CO = Fe + CO2 1/4Fe3O4 + CO = 3/4Fe + CO2 (2) (3) (4)
相关文档
最新文档