一元一次方程 利用等式的性质解方程

合集下载

等式的性质1精品公开课教案(大赛一等奖作品)

等式的性质1精品公开课教案(大赛一等奖作品)

第三章一元一次方程3.1 从算式到方程等式的性质1.利用等式的基天性质平等式进行变形.2.会用等式的性质解简单的一元一次方程;一、情境导入同学们,你们玩过跷跷板吗?它有什么特色 ?翘翘板的两边增添的量之间究竟知足什么关系时,翘翘板才能保持均衡?二、合作研究研究点一:应用等式的性质平等式进行变形.例 1:用适合的数或整式填空,使所得结果还是等式.(1)假如 2x+7=10 ,那么 2x=10-_______ ;(2)假如 -3x=8 ,那么 x=________ ;(3)假如 x- 2= y-2,那么 x=_____ ;3 3(4)假如a= 2,那么 a=_______.4分析:( 1)依据等式的基天性质(1),在等式两边同时减去7 可得 2x=10-7 ;( 2)依据等式的基天性质(2),在等式两边同时除以-38;可得 x=3( 3)依据等式的基天性质(1),在等式两边同时加上2可得 x=y ;3( 4)依据等式的基天性质(2),在等式两边同时乘以4可得 a=8.故答案为: 7, -8 3 , y, 8.方法总结:运用等式的性质,能够将等式进行变形,变形时等式两边一定同时进行完整同样的四则运算,不然就会损坏本来的相等关系。

例 2:已知 mx=my ,以下结论错误的选项是()A . x=yB .a+mx=a+myC . mx-y=my-yD . amx=amy分析: A 、等式的两边都除以m ,依据等式性质 2,m ≠0,而 A 选项没有说明,故A 错误;B 、切合等式的性质 1,正确.C 、切合等式的性质1,正确. D 、切合等式的性质1,正确.应选 A .方法总结: 此题主要考察等式的基天性质.在等式的两边同时加上或减去同一个数或字母,等式仍成立, 这里的数或字母没有条件限制, 可是在等式的两边同时乘以或除以同一个数或字母时,这里的数或字母一定不为0.研究点二:利用等式的性质解方程 例 3:用等式的性质解以下方程:( 1) 4x+7=3 ;( 2) 1 x- 1x=4.23分析:( 1)在等式的两边都加或都减7,再在等式的两边都除以4,可得答案;( 2)在等式的两边都乘以 6,在归并同类项,可得答案.解:( 1)方程两边都减 7,得 4x=-4 .方程两边都除以4,得 x=-1 .( 2)方程两边都乘以 6,得 3x-2x=24 , x=24 .方法总结 :解方程时,一般先将方程变形为 ax=b 的形式,而后再变形为 x=c 的形式。

4.2解一元一次方程(2)(等式德 基本性质)

4.2解一元一次方程(2)(等式德 基本性质)
求作一个方程,使它的解为-1;
简单应用题如课本P120练一练
学习了什么知识?
一元一次方程有关的概念,等式的基本性质,运用等式的基本性质解简单的一元一次方程.
引导
联想到等式的几种变形.探索得出
教师讲授方程的解和解方程的概念.
等式的性质比较抽象,教学时不必在理论上作过多的展开,重在问题情景②探索。处理完问题情景(1)(2),学生阅读课本P118—119,进一步熟悉学习内容,可多举例讨论.
鼓励学生
逐步引导启发学生归纳
先由同学讨论,再由教师归纳
认真听讲,注意格式
领会方程的解和解方程的意义.知道求方程的解就是将方程变形为x=a的形式
认识实质
板书设计
情境创设
1、
2、
例1:……
……
……
例2:……
……
……
习题……
……
……
作业布置
P1201
课后随笔
1、小学阶段利用加减法、乘除法互为逆运算的方法解方程,学生印象深刻,教学时鼓励学生运用等式的性质来求,但不强求.
2、解方程后,虽不要书面检验,但要求学生培养检验反思的好习惯.
3、注意等式的性质中的“都”和“同”:“都”表示两边均要变形,“同”表示两边要作一样的变形.
4、简单介绍等式的另两条性质:对称性与传递性
引入问题情景(2)
等式的性质1:等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式;
等式的性质2:等式两边都乘以(或除以)同一个数(除数不为零),所得结果仍是等式.
例1
解下列方程:(1)x+5=2;(2)-2x=4.
引导学生自己尝试运用等式的基本性质解方程,说清楚每一步的依据
解方程,如课本P120练一练1

一元一次方程利用等式的性质解方程

一元一次方程利用等式的性质解方程

一元一次方程利用等式的性质解方程一元一次方程是代数中的基础内容,是我们学习数学的第一步。

解一元一次方程的过程中,我们可以利用等式的性质来简化计算,帮助我们更快地找到方程的解。

下面我将详细介绍一元一次方程的解法以及利用等式性质解方程的方法。

解一元一次方程的基本步骤如下:步骤一:将方程化为标准形式首先,我们需要将方程转化为标准形式,即将未知数x的系数设为1、做法是将方程两边同时除以a,得到:x+b/a=0。

步骤二:消去常数项由于方程等号右边是0,我们可以通过消去常数项来简化方程。

具体做法是将方程两边同时减去b/a,得到:x=-b/a。

步骤三:求解未知数现在,我们已经得到了未知数x的解。

根据一元一次方程的解的定义,x的解即为方程的解。

所以,方程ax + b = 0的解是x = -b/a。

这是解一元一次方程的基本步骤,但在实际问题中,我们可能会遇到一些复杂的情况。

这时,我们就需要利用等式性质来简化解方程的过程。

下面我将介绍一些常用的等式性质。

性质一:等式两边同时加上(或减去)一个相同的数,等式仍然成立。

利用这个性质,我们可以在解一元一次方程的过程中,将常数项移到方程的另一边,使得方程形式更简单。

例如,对于方程2x+3=7,我们可以通过减去3来简化方程,得到2x=4性质二:等式两边同时乘以(或除以)一个相同的非零数,等式仍然成立。

利用这个性质,我们可以在解一元一次方程的过程中,通过乘以或除以一个非零数,使方程的系数变为1例如,对于方程3x=6,我们可以通过除以3来简化方程,得到x=2性质三:平方等式两边,等式仍然成立。

利用这个性质,我们可以在解一元一次方程的过程中,将含有未知数的平方项消去。

例如,对于方程x^2-5x+6=0,我们可以通过平方来简化方程,得到(x-2)(x-3)=0。

这样,我们可以得到方程的两个解x=2和x=3利用这些等式性质,我们可以在解一元一次方程的过程中,将方程变得更简单,从而更容易找到方程的解。

一元一次方程的知识点及性质

一元一次方程的知识点及性质

一元一次方程的知识点及性质2016关于一元一次方程的知识点及性质导语:世界之大,而能获得最公平分配的是常识。

下面是小编为大家整理的,初中一元一次方程.希望对大家有所帮,欢迎阅读,仅供参考,更多相关的知识,请关注CNFLA学习网!Ⅰ. 认识一元一次方程1)等式:用“=”号连接而成的式子叫等式.2)方程:含有未知数的等式叫做方程.3)一元一次方程:只含有一个未知数,并且未知数的次数都是1,等号的两边都是整式,这样的方程叫做一元一次方程.注:判断一元一次方程的条件:⑴首先必须是方程;⑵其次必须只含有一个未知数,且未知数的指数是1;⑶分母中不含有未知数.4)方程的解:使方程左右两边的值相等的未知数的值叫做方程的解.说明:方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论5)一元一次方程都可以化为一般形式:ax+b=0(a≠0)Ⅱ. 等式的性质1)等式的性质:⑴等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质1:如果a=b,那么a±c=b±c⑵等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.等式的性质2:如果a=b,那么ac=bc;如果a=b(c≠0),那么ab= cc2)解以x为未知数的方程,就是把方程逐步转化为x=a(常数)的形式,等式的性质是转化的重要依据.Ⅲ. 解一元一次方程1)解一元一次方程——合并同类项与移项1、合并同类项通过合并同类项可以把一元一次方程化为最简形式:ax=b,其中未知数的系数a满足的条件是a≠0.2、系数化为1:解方程系数化为1这一步的理论根据是等式的性质2.3、移项:把等式一边的某项变号后移动到另一边,叫做移项.4、移项的目的:通过移项,含有未知数的项与常数项分别在等号的两边,使方程更接近ax=b的形式.5、移项的理论根据是等式的性质1.2)解一元一次方程——去括号与去分母1、去括号法则:括号前面是“+”号,去括号时符号不变,括号前面是“-”号,去括号时各项都变号.2、去括号的理论根据是:乘法分配律.3、去分母:去分母的理论根据是:等式的性质2.4、去分母注意事项:⑴方程两边同乘的`数是各分母的最小公倍数;⑵不要漏乘不含分母的项;⑶当分子是多项式时分别乘以每一项.5、解一元一次方程的一般步骤:⑴去分母:方程两边同乘各分母的最小公倍数.⑵去括号:按去括号法则和分配律.⑶移项:把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号. ⑷合并同类项:把方程化成ax=b(a≠0)形式.⑸系数化为1:在方程两边都除以未知数的系数a,得到方程的解x=Ⅳ. 实际问题与一元一次方程1)列方程解一元一次方程的步骤:⑴审——审题:找出等量关系;⑵设——设未知数:根据提问,巧设未知数;⑶列——列方程:利用已找出的等量关系列方程;⑷解——解方程:解所列的方程,求出未知数的值;⑸检——检验所求的未知数的值是否是方程的解,同时要注意该值是否符合实际情况; ⑹答——作答.2)与一元一次方程有关的实际问题:类型1:若干应用问题等量关系的规律(1)和、差、倍、分问题此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。

人教版数学五年级上册《解方程(例4、5)》说课稿

人教版数学五年级上册《解方程(例4、5)》说课稿

人教版数学五年级上册《解方程(例4、5)》说课稿一. 教材分析人教版数学五年级上册《解方程(例4、5)》这一节内容,是在学生已经掌握了方程的概念、一元一次方程的解法的基础上进行教学的。

本节课的主要内容是利用等式的性质解方程,进一步培养学生的逻辑思维能力和解决问题的能力。

例4和例5都是关于一元一次方程的解法,例4是利用等式的性质1解方程,例5是利用等式的性质2解方程。

通过这两个例题的学习,让学生掌握解方程的基本方法,提高他们解决实际问题的能力。

二. 学情分析五年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,他们已经掌握了方程的概念和一元一次方程的解法。

但是,学生在解方程过程中,可能还存在着对等式性质的理解不深、解题方法不够灵活等问题。

三. 说教学目标1.知识与技能目标:理解并掌握等式的性质,学会利用等式的性质解方程。

2.过程与方法目标:通过自主学习、合作交流,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们积极思考、勇于探索的精神。

四. 说教学重难点1.教学重点:掌握等式的性质,学会利用等式的性质解方程。

2.教学难点:对等式性质的理解和运用,以及解方程的灵活运用。

五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师引导的教学方法。

2.教学手段:利用多媒体课件、黑板、粉笔等教学工具。

六. 说教学过程1.导入新课:通过复习方程的概念和一元一次方程的解法,引出本节课的内容——利用等式的性质解方程。

2.自主学习:让学生自主探究等式的性质,引导学生发现等式两边同时加减乘除一个数,等式仍然成立。

3.合作交流:让学生分组讨论,分享各自的解题方法,培养学生的合作意识和团队精神。

4.教师引导:通过讲解例4和例5,引导学生理解并掌握利用等式的性质解方程的方法。

5.练习巩固:让学生独立完成课后练习题,检验学生对知识的掌握程度。

6.课堂小结:对本节课的内容进行总结,强调等式性质在解方程中的重要性。

一元一次方程的解法

一元一次方程的解法

(2) 调配问题。 从调配后的数量关系中找等量关系, 常见是“和、 差、 倍、 分”关系, 要注意调配对象流动的方向和数量。
例 1 . 学校组织植树活动,已知在甲处植树的有 27 人,在乙处植树的有 18 人.如果要使在甲处植树的人 数是乙处植树人数的 2 倍,需要从乙队调多少人到甲队?
例 2 . 学校组织植树活动,已知在甲处植树的有 23 人,在乙处植树的有 17 人.现调 20 人去支援,使在甲 处植树的人数是乙处植树人数的 2 倍多 3 人,应调往甲、乙两处各多少人?
5
表或画图来帮助理解题意。
例 1 .一项工程,甲、单独做需 20 天完成,乙单独做需 30 天完成,如果先由甲单独做 8 天,再由乙单独 做 3 天,剩下的由甲,乙两人合作还需要几天完成?
例 2. .一项工程,甲独做需12天完成,乙独做24天完成,丙独做需6天完成,现在甲与丙合作2天, 丙因事离去,由甲乙合作,甲乙还需几天才能完成这项工程?
一元一次方程的解法 知识点和方法概述 1、等式 等式:用“=”表示相等关系的式子。 等式的性质: 1) 等式两边都加上 (或减去) 同一个数或同一个整式, 所得结果仍是等式。 即: 若 A=B, 则 A±C=B±C。 2) 等式两边都乘以 (或除以) 同一个数 (除数不为 0) , 所得结果仍是等式。 即: 若 A=B, A B C ≠ 0 ,则 A⋅C=B⋅C, = 。 C C 3)等式的对称性:若 A=B,则 B=A。 4)等式的传递性:若 A=B,B=C,则 A=C。 等式的类型: 1)恒等式:当不论用任何数值代替等式中的字母,其左右两边的值总相等时,这样 的等式叫做恒等式。如 0 ⋅ x = 0 。 2)矛盾等式:如 2=0, 2 x = 2 x + 1 3)条件等式:字母取某特定值时才成立的等式,如 3 x − 4 = 3 2、方程 方程:含有未知数的等式叫做方程。 方程的解:使方程左右两边的值相等的未知数的值叫做方程的解。 方程的根:只含有一个未知数的方程的解,也叫方程的根。 解方程:求方程的解的过程叫做解方程。 同解方程:如果两个方程的解相同,那么这两个方程叫做同解方程。 (注:用等式的 两条性质所得的方程与原方程是同解方程。 ) 方程的同解原理: 1)方程两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 2)方程两边都乘以(或除以)同一个数(除数不为 0) ,所得结果仍是等式。 不难看出,方程的同解原理是由等式的性质演变出来的,其实质是一样的。 检验方程的解:检验一个数是不是某个方程的解,其方法是将数分别代入方程的左边和 右边,如果左边=右边,则该数就是原方程的解,否则就不是。 含绝对值符号的方程:绝对值符号内含有未知数的方程,叫含绝对值符号的方程,有时 也简称绝对值方程。 解含绝对值符号的方程的基本思想就是去掉绝对值符号,转化为一般方程。具体操作方 式有两种:其一是对含绝对值符号的各个式子分别讨论其正负,利用绝对值的定义去掉绝对

一元一次方程及其解法教案(精选多篇)[修改版]

一元一次方程及其解法教案(精选多篇)[修改版]

第一篇:一元一次方程及其解法教案课题:沪科版数学七年级(上册)§3.1 一元一次方程及其解法(第一课时)合肥市五十五中学蔡新莲一.教材分析:学生在小学已经学过列方程解简单应用题,但所学方程形式较简单,仅限于ax b c,ax bx c 的形式,(a,b,c,x都是非负数)。

本节教科书在描述一元一次方程的概念后,利用等式性质来解一元一次方程(比小学更为广泛),一元一次方程的解法是应用一元一次方程解决实际问题,解二元一次方程组及一元二次方程等内容的基础,是代数中的重要内容。

二.教学目标:1.通过对多个实际问题的分析,感受方程是刻画现实世界的有效模型体会学习方程的意义在于解决实际问题。

2.通过观察,归纳一元一次方程的概念。

3.理解等式的基本性质,会根据等式的基本性质解方程。

三.教学重难点:重点:一元一次方程的概念,运用等式的性质解方程难点:运用等式的性质解方程。

四.教学流程:1. 通过一些具体问题,引出一元一次方程概念。

2. 复习等式的基本性质。

3. 利用等式的基本性质,解一元一次方程。

五.教具准备:教师:多媒体课件,投影仪学生:练习本六.教学过程:(一)。

创设情境,引出概念问题1:在2008年北京奥运会中,中国共获得了51枚金牌,比澳大利亚的3倍还多9枚,问澳大利亚共获得了多少枚金牌?设澳大利亚共获得了x枚金牌,引导学生列出等量关系式:3x951问题2:王玲今年12岁,她爸爸今年36岁, 问再过几年,他爸爸的年龄是她年龄的2倍?设再过x年,他爸爸的年龄是她的2倍,引导学生列出等量关系式:36x2(12x)观察思考:上面的两个式子有什么共同点?【设计意图】用学生感兴趣的身边的例子引入,唤起同学的注意力,同时也为下面得到一元一次方程的概念埋下伏笔。

师生互动:得到一元一次方程的概念,同时教师明确方程的解的概念,指出一元方程的解也叫做根。

考考你:1.判断下列式子是不是一元一次方程:(1)2x45x 3(4)x 32.判断对错:(1)x=2是方程x-10=4x的解. (2)x y1(5)3x1(3)3a211(6)x1x(2)x=3和x=-3都是方程x290的解.【设计意图】加深对一元一次方程及根的理解。

2024年人教版七年级上册教学设计 第五章 一元一次方程方程

2024年人教版七年级上册教学设计 第五章  一元一次方程方程

5.1.1从算式到方程课时目标1.通过引入实际问题情境,让学生在算式、代数两种方式下解决问题,体会由算术到代数是数学的一大进步,从而培养学生分析、归纳和抽象概括的思维能力,初步认识建立数学模型的思想.2.经历用含有未知数的等式表示实际问题中的相等关系,感悟方程的现实意义,理解方程的概念,培养学生获取信息、分析问题、处理问题的能力,提升方程模型的应用意识.3.通过数学背景材料,让学生理解并掌握方程、一元一次方程及其相关概念的内涵,培养学生的阅读理解、拓展探究的能力,增强学生的数学应用意识,调动学生学习数学的主动性.学习重点寻找相等关系列出方程,方程、一元一次方程及其相关概念.学习难点寻找相等关系列出方程的意识和过程.课时活动设计情境引入问题:甲、乙两支登山队沿同一条路线同时向一山峰进发.甲队从距大本营1 km的一号营地出发,每小时行进1.2km;乙队从距大本营3km的二号营地出发,每小时行进0.8km.多长时间后,甲队在途中追上乙队?学生先独立思考、作答,然后小组交流合作,最后选派学生代表板演展示,教师巡视指导.解:甲队追上乙队所用的时间为3−11.2−0.8=20.4=5(小时).教师适时追问:(1)这是算术解法,同学们,你们知道这样做的根据吗?(2)你还有其它的解决方法吗?教师引导学生尝试通过列方程的方法来解决这个问题.解:设x小时后,甲队在途中追上乙队.当甲队追上乙队时,甲队距大本营的路程为(1.2x+1)km,乙队距大本营的路程为(0.8x+3)km.因为甲队在途中追上乙队,即甲队距大本营的路程=乙队距大本营的路程,于是1.2x+1=0.8x+3.设计意图:通过设置这个学生熟悉的行程问题,让学生尝试用自身拥有的数学知识(算术方法)解决,然后逐步引导学生用含有未知数的式子表示有关的量,并进一步依据相等关系列出含有未知数的等式——方程,目的在于突出方程的根本特征,为引出方程的概念作铺垫.探究新知探究1方程的概念和列方程教师请同学们按照教学活动1中的方法,先设出未知数,再根据问题中的相等关系列出含有未知数的等式.学习先独立思考解答下列两个问题,然后再进行小组谈论,最后选派代表板演展示.问题1:用买3个大水杯的钱,可以买4个小水杯,大水杯的单价比小水杯的单价多5元,两种水杯的单价各是多少元?分析:根据题意,可知3个大水杯的总价=4个小水杯的总价,大水杯的单价-小水杯的单价=5,总价=数量×单价.因此,只要设出大水杯的单价或小水杯的单价,就可以列出方程了.解:设大水杯的单价为x元,那么小水杯的单价为(x-5)元.因为用买3个大水杯的钱,可以买4个小水杯,所以3x=4(x-5).由这个含有未知数x的等式可以求出大水杯的单价,进而可以求出小水杯的单价.问题2:如图是一枚长方形的庆祝中国共产党成立100周年纪念币,其面积是4 000mm2,长和宽的比为85(即宽是长的58).这枚纪念币的长和宽分别是多少毫米?分析:根据题意,可知这个长方形的宽=58×长方形的长,长方形的面积=长×宽,因此,只要设出长方形的长或宽,就可以列出方程了.解:设这枚纪念币的长为x mm,则纪念币的宽可以表示为58x mm,面积可以表58x2mm2.已知纪念币的面积为4000mm2,所以58x2=4000.由这个含有未知数x的等式可以求出这枚纪念币的长,进而可以求出纪念币的宽.教师引导学生归纳:像这样,先设出字母表示未知数,然后根据问题中的相等关系,列出一个含有未知数的等式,这样的等式叫作方程.教师适时追问:(1)你能解释这些方程的左边、右边各表示什么意思吗?(2)对于根据问题中的相等关系列方程,说说你的体会?学生思考,小组讨论交流.教师引导学生归纳:分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.这个过程可以表示如下:教师进一步指出:用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只含有已知数,不含未知数;而方程是根据问题中的相等关系列出的等式,其中既含有已知数,也含有用字母表示的未知数,这为解决许多问题带来了方便.探究2解方程和方程的解问题3:请同学们尝试解方程1.2x+1=0.8x+3.学生先独立解答,然后再小组交流,教师巡视指导.解:可以发现,当x=5时,左边=1.2×5+1=7,右边=0.8×5+3=7,这时方程左右两边的值相等.教师引导学生归纳:一般地,使方程左、右两边的值相等的未知数的值,叫作方程的解.例如,x=5就是方程1.2x+1=0.8x+3的解.求方程的解的过程,叫作解方程.判断未知数是否为方程的解的具体步骤:(1)把未知数的值分别代入方程的左、右两边进行计算;(2)若左边=右边,则这个未知数是方程的解;反之,则不是.探究3一元一次方程的概念问题4:观察下列方程,你有什么发现.1.2x+1=0.8x+3;3x=4(x-5).先让学生独立思考,自主探索,然后将分析结果在小组内进行交流,形成共识,最后由学生代表回答问题,教师巡视指导学生的学习情况.解:这些方程中只有1个未知数x,且未知数x的次数都是1.引导学生归纳出一元一次方程的概念:一般地,如果方程中只含有一个未知数(元),且含有未知数的式子都是整式,未知数的次数都是1,这样的方程叫作一元一次方程.设计意图:通过设置一系列问题,突出方程的根本特征,使学生认识到从算式到方程是更有力、更方便的数学工具,从算术方法到代数方法是数学的一大进步.初步培养了学生由实际问题抽象出方程模型的能力.典例精讲例1根据下列问题,设未知数并列出方程:(1)某校女生占全体学生数的52%,比男生多80人,这所学校有多少名学生?(2)如图,一块正方形绿地沿某一方向加宽5m,扩大后的绿地面积是500m2,求正方形绿地的边长.分析:(1)根据题意,可知女生人数-男生人数=80,并且女生人数=全体学生数×52%,因此,只需设出全体学生数就可以列出方程了;(2)由题意,可知扩大后的绿地的长=正方形绿地的长+5,扩大后的绿地面积=500,所以只需设出原来绿地的长就可以列出方程了.解:(1)设这所学校的学生数为x,那么女生数为0.52x,男生数为(1-0.52)x,根据“女生比男生多80人”,列得方程0.52x-(1-0.52)x=80.(2)设正方形绿地的边长为x m,那么扩大后的绿地面积为(x2+5x)m2,根据“扩大后的绿地面积是500m2”,列得方程x2+5x=500.例2(1)x=2,x=32是方程2x=3的解吗?(2)x=10,x=20是方程3x=4(x-5)的解吗?解:(1)当x=2时,方程2x=3的左边=2×2=4,右边=3,方程左、右两边的值不相等,所以x=2不是方程2x=3的解;当x=32时,方程2x=3的左边=2×32=3,右边=3,方程左、右两边的值相等,所以x=32是方程2x=3的解.(2)当x=10时,方程3x=4(x-5)的左边=3×10=30,右边=4×(10-5)=20,方程左、右两边的值不相等,所以x=10不是方程3x=4(x-5)的解;当x=20时,方程3x=4(x-5)的左边=3×20=60,右边=4×(20-5)=60,方程左、右两边的值相等,所以x=20是方程3x=4(x-5)的解.例32x+1=0.8x+3,3x=4(x-5),0.52x-(1-0.52)x=80,它们有什么共同特征?解:(1)只含有一个未知数x;(2)未知数x的次数都是1;(3)整式方程.设计意图:将列方程解决实际问题这一本章的教学难点分散在本章教学的每一节课中是设置这一系列教学活动的目的,化整为零地培养学生由实际问题抽象出方程模型的能力,持续渗透建模思想.教学中,通过先让学生独立思考、然后再进行小组合作的学习活动,既能培养学生的阅读理解能力、分析问题、解决问题的能力,又能提高学生的抽象思维能力.巩固训练1.x=3是下列哪个方程的解(B)A.2x+7=11B.5x-8=2x+1C.3x=1D.-x=32.小芬买了15份礼物,共花了900元,已知每份礼物内都有1包饼干及每支售价20元的棒棒糖2支,若每包饼干的售价为x元,则依题意可列出下列哪一个一元一次方程(C)A.15(2x+20)=900B.15x+20×2=900C.15(x+20×2)=900D.15×x×2+20=9003.当m=3或1时,关于x的方程x|2-m|+1=0是一元一次方程.4.下列式子中,哪些是方程,哪些是一元一次方程?并说明理由.①2x+1;②2m+15=3;③3x-5=5x+4;④x2+2x-6=0;⑤-3x+1.8=3y;⑥3a+9>15.解:上述式子是方程的有②③④⑤,其中②③是一元一次方程.理由:①是含有未知数的式子,不是等式;⑥是不等式;而②③④⑤是含有未知数的等式,符合方程的定义,其中④未知数的次数是2,⑤含有两个未知数,只有②③符合一元一次方程的定义,因此它们是一元一次方程.5.根据下列问题,设未知数并列出方程:(1)某长方形足球场的周长为310米,长和宽之差为25米,求这个足球场的宽;(2)《数学学习方法报》每份0.6元,《数学周报》每份0.5元,小明用10元钱买了两种报纸共18份,他买的两种报纸各多少份?解:(1)设这个足球场的宽为x米,则长为(x+25)米,依题意,得2x+2(x+25)=310.(2)设《数学学习方法报》买了x份,则《数学周报》买了(18-x)份,则有0.6x+0.5(18-x)=10.设计意图:通过练习,巩固方程及一元一次方程的概念,促进学生对知识的理解,使学生更加深刻地把握概念的内涵和外延,持续体会数学建模思想.课堂小结1.这节课你学到了哪些知识?2.在探寻方程的有关概念的学习过程中,你学到了哪些数学方法?积累了哪些活动经验?3.在利用列方程解实际问题的过程中,对你有哪些启示?设计意图:通过课堂小结的形式,让学生回顾知识点,形成知识体系,有利于学生养成回顾梳理知识的习惯.课堂8分钟.1.教材第118页习题5.1第1,2,3,5,6题.2.七彩作业.5.1.1从算式到方程1.解决数学实际问题的方式:(1)算式方法.(2)用含有未知数的等式表示问题中的相等关系.2.方程:含有未知数的等式叫作方程.3.用方程的方法解决实际问题是更方便的数学工具.4.方程的解、解方程的概念.5.一元一次方程的概念.教学反思5.1.2等式的性质课时目标1.通过使学生亲身经历运用所学知识探索等式的性质的过程,激发学生的数学学习兴趣,增强学生学好数学的信心,进而培养学生自主探究和实践能力.2.通过让学生从事自主学习、合作交流等数学活动,理解并掌握等式的性质,在实际操作中学习知识,在解决问题中深化认知,发展和提高学生的应用意识.3.通过使学生经历利用等式的性质解方程的过程,逐步培养学生观察、分析、概括的逻辑思维能力,从而渗透“化归”的思想.学习重点等式的性质和运用.学习难点应用等式的性质把简单的一元一次方程化成“x=m”的形式.课时活动设计情境引入用观察的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?(1)3x-5=22;(2)0.28-0.13y=0.27y+1.学生独立思考解答,然后小组交流,最后选派学生代表板演展示,教师巡视指导.解:对于(1),通过观察,可以看出x=9是方程的解;但是(2)不容易直接看出来.追问:既然不容易直接看出来,那么我们还能借助哪些知识来解这个方程呢?设计意图:设置悬念,引出等式的性质的讨论,为后面逐步过渡到用等式的性质讨论方程的解法作铺垫.探究新知探究1等式的性质问题1:请同学们填空,使式子成立.(1)如果m=n,那么n=m;(2)如果x+2x=3x,那么3x=x+2x;(3)如果a=3,b=3,那么a= b.(填“>”“=”或“<”)学生独立思考解答,然后小组交流,最后选派学生代表板演展示,教师巡视指导.教师归纳:诸如m+n=n+m,x+2x=3x,3×3+1=5×2,3x+1=5y这样的式子,都是等式.我们可以用a=b表示一般的等式.首先,给出关于等式的两个基本事实:(1)等式两边可以交换.如果a=b,那么b=a;(2)相等关系可以传递.如果a=b,b=c,那么a=c.思考:在小学,我们已经知道:等式两边同时加(或减)同一个正数,同时乘同一个正数,或同时除以同一个不为0的正数,结果仍相等.引入负数后,这些性质还成立吗?完成下列题目,试试你的猜想是否成立.问题2:用适当的数或整式填空,使所得结果仍是等式.(1)如果3x=-2x-1,那么3x+2x=-1,两边同时加2x;(2)如果12x=5,那么x=10,两边同时乘2;(3)如果13x-2=x-12,那么13x-x=-12+2,两边同时加2-x.学生独立思考解答,然后小组交流,最后选派学生代表板演展示,教师巡视指导.教师根据学生回答情况作出评价,适时进行追问:(1)在运用等式的性质时,等式的两边要做怎样的变化?(2)在等式两边同除以一个数时,应注意什么?师生共同归纳:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.用符号语言描述:如果a=b,那么a±c=b±c.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.用符号语言描述:如果a=b,那么ac=bc;如果a=b,c≠0,那么=.探究2利用等式的性质解方程问题3:利用等式的性质解下列方程:(1)x+3=5;(2)3x+2=8.学生独立思考,小组交流讨论,并派学生代表上台板演.解:(1)方程两边减3,得x+3-3=5-3.于是x=2.(2)方程两边减2,得3x+2-2=8-2.化简,得3x=6.方程两边除以3,得x=2.教师引导学生归纳:一般地,从方程解出未知数的值从后,通常需要代入原方程检验,看这个值能否使方程左、右两边的值相等.例如,将x=2代入方程3x+2=8的左边,得3×2+2=8.方程左、右两边的值相等,所以x=2是方程3x+2=8的解.解以x为未知数的方程,就是把方程逐步转化为x=m(常数)的形式,等式的性质是转化的重要依据.设计意图:设置上述教学环节,让学生借助具体的式子来验证等式的两条性质,加深对等式的性质的认知,同时又用文字语言和符号语言两种形式来描述这些性质,目的在于让学生切实理解等式的性质,体会如何用数学的符号语言抽象概括地表示它们.典例精讲例1根据等式的性质填空,并说明依据:(1)如果2x=5-x,那么2x+=5;(2)如果m+2n=5+2n,那么m=;(3)如果x=-4,那么·x=28;(4)如果3m=4n,那么32m=·n.解:(1)2x+x=5;根据等式的性质1,等式两边加x,结果仍相等.(2)m=5;根据等式的性质1,等式两边减2n,结果仍相等.(3)-7·x=28;根据等式的性质2,等式两边乘-7,结果仍相等.(4)32m=2·n;根据等式的性质2,等式两边除以2,结果仍相等.例2利用等式的性质解下列方程:(1)x+7=26;(2)-5x=20;(3)-13x-5=4.分析:要使方程x+7=26转化为x=m(常数)的形式,需要去掉方程左边的7,利用等式的性质1,方程两边减7就得出x的值.类似地,利用等式的性质,可以将另外两个方程转化为x=m的形式.解:(1)方程两边减7,得x+7-7=26-7.于是x=19.(2)方程两边除以-5,得-5-5=20-5.于是x=-4.(3)方程两边加5,得-13x-5+5=4+5.化简,得-13x=9.方程两边乘-3,得x=-27.设计意图:通过例题,让学生在观察等式的两边的变化情况后运用等式的性质做题,进一步加深学生对等式性质的准确把握,同时有助于引导学生利用等式的性质研究方程的解法,对于需要运用两次等式的性质来解方程的题目,需要学生有一定的思维顺序,能够锻炼学生的思维能力.巩固训练1.如果mx=my,那么下列等式中不一定成立的是(D)A.mx+1=my+1B.mx-3=my-3C.-12mx=-12myD.x=y2.下列方程的变形,符合等式的性质的是(D)A.由2x-3=7得2x=7-3B.由-3x=5得x=5+3C.由2x-3=x-1得2x-x=-1-3D.由-14x=1得x=-43.用适当的数或整式填空,使所得的式子仍是等式,并注明根据.(1)如果x+2=3,那么x=3+-2,根据是等式的性质1;(2)如果4x=3x-7,那么4x-3x=-7,根据是等式的性质1;(3)如果-2x=6,那么x=-3,根据是等式的性质2;(4)如果12x=-4,那么x=-8,根据是等式的性质2.4.利用等式的性质解方程:(1)x-4=1;(2)3x+5=0.解:(1)方程两边加4,得x-4+4=1+4.于是x=5.(2)方程两边减5,得3x+5-5=0-5.整理,得3x=-5.方程两边除以3,33=-53.于是x=-53.设计意图:通过巩固训练,进一步巩固学生对等式的性质的认识,让学生充分认识到如何应用等式的性质去解题.课堂小结1.本节课你学到了什么知识?2.在运用等式的性质解题时,应该注意什么?3.在运用等式的性质解方程时,你获得了哪些宝贵的经验?设计意图:通过课堂小结的形式,让学生回顾知识点,形成知识体系,有利于学生养成回顾梳理知识的习惯,让学生在对课堂所学有系统认知的基础上,深化对知识的理解程度.课堂8分钟.1.教材第118页习题5.1第4,7,8,10,11题.2.七彩作业.5.1.2等式的性质1.关于等式的两个基本事实:等式两边可以交换.如果a=b,那么b=a.相等关系可以传递.如果a=b,b=c,那么a=c.2.等式的基本性质:等式的性质1等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.教学反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程利用等式的性质解方程
一、目的要求使学生会用移项解方程。

二、内容分析
从本节课开始系统讲解一元一次方程的解法。

解一元一次方程是一个有目的、有根据、有步骤的变形过程。

其目的是将方程最终变为x=a的形式;其根据是等式的性质和移项法则,其一般步骤是去分母、去括号、移项、合并、系数化成1。

x=a的形式有如下特点:
(1)没有分母;
(2)没有括号;
(3)未知项在方程的一边,已知项在方程的另一边;
(4)没有同类项;
(5)未知数的系数是1。

在讲方程的解法时,要把所给方程与x=a的形式加以比较,针对它们的不同点,采取步骤加以变形。

根据方程的特点,以x=a的形式为目标对原方程进行变形,是解一元一次方程的基本思想。

解方程的第一节课告诉学生解方程就是根据等式的性质把原方程逐步变形为x=a的形式就可以了。

重点在于引进移项这一变形并用它来解方程。

用等式性质1解方程与用移项解方程,效果是一样的。

但移项用起来更方便一些。

如解方程 7x-2=6x-4
时,用移项可直接得到 7x-6x=4+2。

而用等式性质1,一般要用两次:
(1)两边都减去6x;(2)两边都加上2。

因为一下子确定两边都加上(-6x+2)不太容易。

因此要引进移项,用移项来解方程。

移项实际上也是用等式的性质,在引进过程中,要结合教科书第192页及第193页的图强调移项要变号。

移项解方程后的检验,可以验证移项解方程的正确性。

三、教学过程
复习提问:
(1)叙述等式的性质。

(2)什么叫做方程的解?什么叫做解方程?
新课讲解:
1.利用等式性质1可以解一些方程。

例如,方程 x-7=5
的两边都加上7,就可以得到 x=5+7,
x=12。

又如方程 7x=6x-4
的两边都减去6x,就可以得到 7x-6x=-4,
x=-4。

然后问学生如何用等式性质1解下列方程 3x-2=2x+1。

2.当学生感觉利用等式性质1解方程3x-2=2x+1比较困难时,转而分析解方程x-7=5,7x=6z-4的过程。

解这两个方程道首先把它们变形成未知项在方程的一边,已知项在方程的另一边的形式,要达到这个目的,可以在方程两边都加上(或减去)同一个数或整式。

这步变形也相当于
也就是说,方程中的任何一项改变符号后可以从方程的一边移到另一边。

3.利用移项解方程x-7=5和7x=6x-4,并分别写出检验,要强调移项时变号,检验时把数代入变形前的方程.
利用移项解前面提到的方程 3x-2=2x+l
解:移项,得 3x-2x=1+2。


合并,得 x=3。

检验:把x-3分别代入原方程的左边和右边,得
左边=3×3-2=7,右边=2×3+1=7,左边=右边,
所以x=3是原方程的解。

在上面解的过程中,由原方程①的移项是指:
(l)方程左边的-2,改变符号后,移到方程的右边;
(2)方程右边的2x,改变符号后,移到方程的左边。

在写方程①时,左边先写不移动的项3x(不改变符号),再写移来的项(改变符号);右边先写不移动的项1(不改变符号),再写移来的项(改变符号),便于检查。

课堂练习:教科书第73页练习
课堂小结:
1.解方程需要把方程中的项从一边移到另一边,移项要变号。

2.检验要把数分别代入原方程的左边和右边。

四、课外作业
习题2.1 P73 复习巩固。

相关文档
最新文档