最新数学建模bp神经网络.docx
BP神经网络概述

BP神经网络概述BP神经网络由输入层、隐藏层和输出层组成。
输入层接收外界输入的数据,隐藏层对输入层的信息进行处理和转化,输出层输出最终的结果。
网络的每一个节点称为神经元,神经元之间的连接具有不同的权值,通过权值的调整和激活函数的作用,网络可以学习到输入和输出之间的关系。
BP神经网络的学习过程主要包括前向传播和反向传播两个阶段。
前向传播时,输入数据通过输入层向前传递到隐藏层和输出层,计算出网络的输出结果;然后通过与实际结果比较,计算误差函数。
反向传播时,根据误差函数,从输出层开始逆向调整权值和偏置,通过梯度下降算法更新权值,使得误差最小化,从而实现网络的学习和调整。
BP神经网络通过多次迭代学习,不断调整权值和偏置,逐渐提高网络的性能。
学习率是调整权值和偏置的重要参数,过大或过小的学习率都会导致学习过程不稳定。
此外,网络的结构、激活函数的选择、错误函数的定义等也会影响网络的学习效果。
BP神经网络在各个领域都有广泛的应用。
在模式识别中,BP神经网络可以从大量的样本中学习特征,实现目标检测、人脸识别、手写识别等任务。
在数据挖掘中,BP神经网络可以通过对历史数据的学习,预测未来的趋势和模式,用于市场预测、股票分析等。
在预测分析中,BP神经网络可以根据历史数据,预测未来的房价、气温、销售额等。
综上所述,BP神经网络是一种强大的人工神经网络模型,具有非线性逼近能力和学习能力,广泛应用于模式识别、数据挖掘、预测分析等领域。
尽管有一些缺点,但随着技术的发展,BP神经网络仍然是一种非常有潜力和应用价值的模型。
BP神经网络算法预测模型

BP神经网络算法预测模型
BP神经网络(Back Propagation Neural Network,BPNN)是一种常
用的人工神经网络,它是1986年由Rumelhart和McClelland首次提出的,主要用于处理有结构的或无结构的、离散的或连续的输入和输出的信息。
它属于多层前馈神经网络,各层之间存在权值关系,其中权值是由算法本
身计算出来的。
BP神经网络借助“反向传播”(Back Propagation)来
实现权值的更新,其核心思想是根据网络的输出,将错误信息以“反馈”
的方式传递到前面的每一层,通过现行的误差迭代传播至输入层,用来更
新每一层的权值,以达到错误最小的网络。
BP神经网络的框架,可以有输入层、隐含层和输出层等组成。
其中
输入层的节点数即为输入数据的维数,输出层的节点个数就是可以输出的
维数,而隐含层的节点数可以由设计者自由设定。
每一层之间的权值是
BP神经网络算法预测模型中最重要的参数,它决定了神经网络的预测精度。
BP神经网络的训练步骤主要有以下几步:首先,规定模型的参数,
包括节点数,层数,权值,学习率等;其次,以训练数据为输入,初始化
权值,通过计算决定输出层的输出及误差;然后,使用反向传播算法,从
输出层向前,层层地将误差反馈到前一层。
BP神经网络学习及算法

BP神经网络学习及算法1.前向传播:在BP神经网络中,前向传播用于将输入数据从输入层传递到输出层,其中包括两个主要步骤:输入层到隐藏层的传播和隐藏层到输出层的传播。
(1)输入层到隐藏层的传播:首先,输入数据通过输入层的神经元进行传递。
每个输入层神经元都与隐藏层神经元连接,并且每个连接都有一个对应的权值。
输入数据乘以对应的权值,并通过激活函数进行处理,得到隐藏层神经元的输出。
(2)隐藏层到输出层的传播:隐藏层的输出被传递到输出层的神经元。
同样,每个隐藏层神经元与输出层神经元连接,并有对应的权值。
隐藏层输出乘以对应的权值,并通过激活函数处理,得到输出层神经元的输出。
2.反向传播:在前向传播后,可以计算出网络的输出值。
接下来,需要计算输出和期望输出之间的误差,并将误差通过反向传播的方式传递回隐藏层和输入层,以更新权值。
(1)计算误差:使用误差函数(通常为均方差函数)计算网络输出与期望输出之间的误差。
误差函数的具体形式根据问题的特点而定。
(2)反向传播误差:从输出层开始,将误差通过反向传播的方式传递回隐藏层和输入层。
首先,计算输出层神经元的误差,然后将误差按照权值比例分配给连接到该神经元的隐藏层神经元,并计算隐藏层神经元的误差。
依此类推,直到计算出输入层神经元的误差。
(3)更新权值:利用误差和学习率来更新网络中的权值。
通过梯度下降法,沿着误差最速下降的方向对权值和阈值进行更新。
权值的更新公式为:Δwij = ηδjxi,其中η为学习率,δj为神经元的误差,xi为连接该神经元的输入。
以上就是BP神经网络的学习算法。
在实际应用中,还需要考虑一些其他的优化方法和技巧,比如动量法、自适应学习率和正则化等,以提高网络的性能和稳定性。
此外,BP神经网络也存在一些问题,比如容易陷入局部极小值、收敛速度慢等,这些问题需要根据实际情况进行调优和改进。
BP神经网络模型应用实例

BP神经网络模型第1节基本原理简介近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注.目前,已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart等的多层感知机模型和Kohonen的自组织网络模型等等。
在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。
多层感知机神经网络的研究始于50年代,但一直进展不大。
直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,如图34-1所示。
BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。
对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。
节点的作用的激励函数通常选取S 型函数,如Qx e x f /11)(-+=式中Q 为调整激励函数形式的Sigmoid 参数。
该算法的学习过程由正向传播和反向传播组成。
在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层。
每一层神经元的状态只影响下一层神经输入层 中间层 输出层 图34-1 BP 神经网络模型元的状态。
如果输出层得不到期望的输出,则转入反向传播,将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使得误差信号最小。
社含有n 个节点的任意网络,各节点之特性为Sigmoid 型。
bp神经网络

BP神经网络框架BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。
BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。
它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。
BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。
1BP神经网络基本原理BP神经网络的基本原理可以分为如下几个步骤:(1)输入信号Xi→中间节点(隐层点)→输出节点→输出信号Yk;(2)网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y 和期望输出值t之间的偏差。
(3)通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度取值Tjk,以及阈值,使误差沿梯度方向下降。
(4)经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练到此停止。
(5)经过上述训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线性转换的信息。
2BP神经网络涉及的主要模型和函数BP神经网络模型包括输入输出模型、作用函数模型、误差计算模型和自学习模型。
输出模型又分为:隐节点输出模型和输出节点输出模型。
下面将逐个介绍。
(1)作用函数模型作用函数模型,又称刺激函数,反映下层输入对上层节点刺激脉冲强度的函数。
一般取(0,1)内的连续取值函数Sigmoid函数:f x=11+e^(−x)(2)误差计算模型误差计算模型反映神经网络期望输出与计算输出之间误差大小的函数:Ep=12(tpi−Opi)2其中,tpi为i节点的期望输出值;Opi为i节点的计算输出值。
(3)自学习模型自学习模型是连接下层节点和上层节点之间的权重矩阵Wij的设定和修正过程。
BP神经网络

BP神经⽹络2013参考数学建模常⽤⽅法:数学建模常⽤⽅法系列资料由圣才⼤学⽣数学建模竞赛⽹整理收集。
希望能对您有所帮助!BP神经⽹络⽅法摘要⼈⼯神经⽹络是⼀种新的数学建模⽅式,它具有通过学习逼近任意⾮线性映射的能⼒。
本⽂提出了⼀种基于动态BP神经⽹络的预测⽅法,阐述了其基本原理,并以典型实例验证。
关键字神经⽹络,BP模型,预测1 引⾔在系统建模、辨识和预测中,对于线性系统,在频域,传递函数矩阵可以很好地表达系统的⿊箱式输⼊输出模型;在时域,Box-Jenkins⽅法、回归分析⽅法、ARMA模型等,通过各种参数估计⽅法也可以给出描述。
对于⾮线性时间序列预测系统,双线性模型、门限⾃回归模型、ARCH模型都需要在对数据的内在规律知道不多的情况下对序列间关系进⾏假定。
可以说传统的⾮线性系统预测,在理论研究和实际应⽤⽅⾯,都存在极⼤的困难。
相⽐之下,神经⽹络可以在不了解输⼊或输出变量间关系的前提下完成⾮线性建模[4,6]。
神经元、神经⽹络都有⾮线性、⾮局域性、⾮定常性、⾮凸性和混沌等特性,与各种预测⽅法有机结合具有很好的发展前景,也给预测系统带来了新的⽅向与突破。
建模算法和预测系统的稳定性、动态性等研究成为当今热点问题。
⽬前在系统建模与预测中,应⽤最多的是静态的多层前向神经⽹络,这主要是因为这种⽹络具有通过学习逼近任意⾮线性映射的能⼒。
利⽤静态的多层前向神经⽹络建⽴系统的输⼊/输出模型,本质上就是基于⽹络逼近能⼒,通过学习获知系统差分⽅程中的⾮线性函数。
但在实际应⽤中,需要建模和预测的多为⾮线性动态系统,利⽤静态的多层前向神经⽹络必须事先给定模型的阶次,即预先确定系统的模型,这⼀点⾮常难做到。
近来,有关基于动态⽹络的建模和预测的研究,代表了神经⽹络建模和预测新的发展⽅向。
2BP神经⽹络模型BP⽹络是采⽤Widrow-Hoff学习算法和⾮线性可微转移函数的多层⽹络。
典型的BP 算法采⽤梯度下降法,也就是Widrow-Hoff算法。
BP神经网络ppt

人工神经网络 是生物神经网络的某种模型(数学模型) 是对生物神经网络的模仿 基本处理单元为人工神经元
1. 生物神经系统与生物神经元
大量生物神经元的广泛、复杂连接,形成生
物神经网络 (Biological Neural Network, BNN)。
实现各种智能活动
生物神经元(neuron)是基本的信息处理单元
(1)生物神经系统
生物神经元(neuron)是基本的信息处理单元, 其组成:
➢ 树突(dendrites), 接收来自外接的信息 ➢ 细胞体(cell body), 神经细胞主体,信息加工 ➢ 轴突(axon), 细胞的输出装置,将信号向外传递,
与多个神经元连接 ➢突触 (synapsse), 神经元经突触向其它神经元(胞体 或树突)传递信号
2 1m =
2 j1
dj f
net
L1 j
2
样本集内所有样本关于该网络的总输出误差
Etotal E
输出层l L 1节点j的净输入
实际输出
nL2
net
L1 j
O L1 L2
ij i
i 1
O L1 j
1
1+e-
net
L1 j
II
输出层的权值iLj 1调整
隐含层 L 2 输出层 L 1
nL2
net
L1 j
=
O L1 L2 ij i
i 1
权值iLj 1对误差E的影响
E
iLj 1
E
net
L1 j
net
L1 j
iLj 1
O L1 L2
j
i
输出层的权值iLj 1调整 iLj 1修正应使误差E最快减小
BP神经网络算法

1
目
录
一、BP神经网络算法概述
二、BP神经网络算法原理
三、BP神经网络算法特点及改进
2
一.BP神经网络算法概述
BP神经网络(Back-Propagation Neural Network),即误差
后向传播神经网络,是一种按误差逆向传播算法训练的多层前馈网
络,是目前应用最广泛的网络模型之一。
11
二.BP神经网络算法原理
图5 Tan-Sigmoid函数在(-4,4)范围内的函数曲线
12
二.BP神经网络算法原理
激活函数性质:
① 非线性
② 可导性:神经网络的优化是基于梯度的,求解梯度需要确保函
数可导。
③ 单调性:激活函数是单调的,否则不能保证神经网络抽象的优
化问题转化为凸优化问题。
④ 输出范围有限:激活函数的输出值范围有限时,基于梯度的方
= 1
=1
7
,
= 1,2,3 … , q
二.BP神经网络算法原理
输出层节点的输出为:
j = 2 ,
= 1,2,3. . . ,
=1
至此,BP网络完成了n维空间向量对m维空间的近似映射。
图2 三层神经网络的拓扑结构
8
二.BP神经网络算法原理
BP神经网络是多层前馈型神经网络中的一种,属于人工神经网
络的一类,理论可以对任何一种非线性输入输出关系进行模仿,因
此 被 广 泛 应 用 在 分 类 识 别 ( classification ) 、 回 归
(regression)、压缩(compression)、逼近(fitting)等领域。
在工程应用中,大约80%的神经网络模型都选择采用BP神经网
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BP神经网络算法原理:输入信号 x i通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号 y k,网络训练的每个样本包括输入向量x 和期望输出量d,网络输出值y 与期望输出值 d 之间的偏差,通过调整输入节点与隐层节点的联接强度取值w ij和隐层节点与输出节点之间的联接强度T jk以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。
此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。
变量定义:设输入层有 n 个神经元,隐含层有p 个神经元 , 输出层有 q 个神经元输入向量: x x1 , x2 ,L , x n隐含层输入向量:hi hi1, hi2 ,L , hi p隐含层输出向量:ho ho1 , ho2 ,L ,ho p输出层输入向量:yi yi1, yi2 ,L , yi q输出层输出向量:yo yo1, yo2 ,L , yo q期望输出向量 : do d1, d2 ,L , d q输入层与中间层的连接权值:w ih隐含层与输出层的连接权值:w ho隐含层各神经元的阈值: b h输出层各神经元的阈值:b o样本数据个数 :k1,2,L m激活函数 : f误差函数: e 1 q(d o (k )yo o (k )) 22 o1算法步骤:Step1. 网络初始化 。
给各连接权值分别赋一个区间( -1 , 1)内的随机数,设定误差函数 e ,给定计算精度值和最大学习次数 M 。
Step2. 随机选取第 k 个输入样本x( k)x 1( k ), x 2 (k),L , x n (k ) 及对应期望输出d o ( k) d 1 (k ), d 2 ( k),L , d q (k)Step3. 计算隐含层各神经元的输入nhi h ( k)w ih x i (k ) b h h 1,2,L , p 和输出i1ho h (k)f (hi h (k )) h 1,2, L , p及输 出 层各 神 经元的输入pyi o (k )w ho ho h (k) b o o 1,2,L q 和输出 yo o ( k) f ( yi o (k )) o 1,2, L , ph 1Step4. 利用网络期望输出和实际输出, 计算误差函数对输出层的各神经元的偏导数 o (k ) 。
e e yi ow ho yi o w hopyi o ( k) (hw ho ho h (k ) b o )ho h (k )w how hoe( 1q (d o ( k) yo o (k))) 2 2 o 1( d o (k )yi oyi o(d o (k) yo o (k ))f ( yi o (k )) @ o (k )Step5. 利用隐含层到输出层的连接权值、输出层的差函数对隐含层各神经元的偏导数h (k ) 。
e e yi o o ( k) ho h (k )w hoyi owhoeehi h (k)wihhi h ( k) w ihnhi h (k )( w ih x i (k ) b h )i1x i ( k)wihwihyo o (k )) yo o (k )o ( k) 和隐含层的输出计算误精品文档e hi h (k )(1q(do( k)yo (k)) 2 )2 o 1o ho h (k )ho h (k )hi h (k )(1q(d o ( k)f( yi o (k )))2 )ho h (k)2 o1ho h ( k)hi h (k)(1q((d o (k)f(p w ho ho h (k ) b o )2 ))2 o1h 1ho h (k )ho h (k)hi h (k ) q ho h (k)o 1( do(k )yoo(k ))f ( yio(k))who hi h(k) q(o (k )w ho )f (hi h ( k)) @h (k )o 1Step6. 利用输出层各神经元的o (k )和隐含层各神经元的输出来修正连接权值w ho (k ) 。
w ho (k )eo (k)ho h (k) whow ho N 1w ho N o (k )ho h (k)Step7. 利用隐含层各神经元的h (k ) 和输入层各神经元的输入修正连接权 w ih ( k) 。
w ih (k)e e hi h ( k)wih hi h ( k)h (k) x i ( k)wihw ih N 1w ih N h (k ) x i (k ) Step8. 计算全局误差。
1m qy o ( k)) 2E(d o (k)2m k 1 o1Step9. 判断网络误差是否满足要求。
当误差达到预设精度或学习次数大于设定的最大次数,则结束算法。
否则,选取下一个学习样本及对应的期望输出,返回到第三步,进入下一轮学习。
算法流程图:网络初始化输入 x ,根据网络的状态方程计算网络输出y计算全局误差:1m qE(d o (k) y o (k))22m k 1o 1YESENOYES达到最大学习次数NO修改权值:训练完成w Nw N 1(k )x(k )参数确定:确定了网络层数、每层节点数、传递函数、初始权系数、学习算法等也就确定了BP网络。
确定这些选项时有一定的指导原则,但更多的是靠经验和试凑。
1.样本数据采用 BP 神经网络方法建模的首要和前提条件是有足够多典型性好和精度高的样本。
而且,为监控训练(学习)过程使之不发生“过拟合”和评价建立的网络模型的性能和泛化能力,必须将收集到的数据随机分成训练样本、检验样本(10%以上)和测试样本( 10%以上) 3 部分。
2.输入 / 输出变量一般地,BP网络的输入变量即为待分析系统的内生变量(影响因子或自变量)数,一般根据专业知识确定。
若输入变量较多,一般可通过主成份分析方法压减输入变量,也可根据剔除某一变量引起的系统误差与原系统误差的比值的大小来压减输入变量。
输出变量即为系统待分析的外生变量(系统性能指标或因变量),可以是一个,也可以是多个。
一般将一个具有多个输出的网络模型转化为多个具有一个输出的网络模型效果会更好,训练也更方便。
3.数据的预处理由于 BP 神经网络的隐层一般采用Sigmoid 转换函数,为提高训练速度和灵敏性以及有效避开Sigmoid 函数的饱和区,一般要求输入数据的值在0~1 之间。
因此,要对输入数据进行预处理。
一般要求对不同变量分别进行预处理,也可以对类似性质的变量进行统一的预处理。
如果输出层节点也采用Sigmoid 转换函数,输出变量也必须作相应的预处理,否则,输出变量也可以不做预处理。
但必须注意的是,预处理的数据训练完成后,网络输出的结果要进行反变换才能得到实际值。
再者,为保证建立的模型具有一定的外推能力,最好使数据预处理后的值在0.2 ~0.8 之间。
标准化:d d dmindmaxdmin4.隐层数一般认为,增加隐层数可以降低网络误差,提高精度,但也使网络复杂化,从而增加了网络的训练时间和出现“过拟合 (overfitting) ”造成网络的性能脆弱,泛化能力(generalization ability) 下降。
Hornik 等早已证明:若输入层和输出层采用线性转换函数,隐层采用 Sigmoid 转换函数,则含一个隐层的 MLP网络能够以任意精度逼近任何有理函数。
显然,这是一个存在性结论。
在设计 BP 网络时可参考这一点,应优先考虑 3 层 BP网络(即有 1 个隐层)。
输入层隐含层输出层x1y z -T1111x2y2z 2-T2 2x NyN 2w z N3-1T Nih hj3N3图三层 BP网络的拓扑结构5.隐层节点数精品文档在BP 网络中,若隐层节点数太少,网络可能根本不能训练或网络性能很差;若隐层节点数太多,虽然可使网络的系统误差减小,但一方面使网络训练时间延长,另一方面,训练容易陷入局部极小点而得不到最优点,也是训练时出现“过拟合”的内在原因,但是目前理论上还没有一种科学的和普遍的确定方法。
为尽可能避免训练时出现“过拟合”现象,保证足够高的网络性能和泛化能力,确定隐层节点数的最基本原则是:在满足精度要求的前提下取尽可能紧凑的结构,即取尽可能少的隐层节点数。
因此,合理隐层节点数应在综合考虑网络结构复杂程度和误差大小的情况下用节点删除法和扩张法确定。
6.传递函数图 BP 网络常用的传递函数BP网络的传递函数有多种。
Log-sigmoid型函数的输入值可取任意值,输出值在0 和 1 之间; tan-sigmod 型传递函数 tansig的输入值可取任意值,输出值在-1 到+1之间;线性传递函数 purelin的输入与输出值可取任意值。
BP网络通常有一个或多个隐层,该层中的神经元均采用sigmoid 型传递函数,输出层的神经元则采用线性传递函数,整个网络的输出可以取任意值。
7. 学习率学习率影响系统学习过程的稳定性。
大的学习率可能使网络权值每一次的修正量过大,甚至会导致权值在修正过程中超出某个误差的极小值呈不规则跳跃而不收敛;但过小的学习率导致学习时间过长,不过能保证收敛于某个极小值。
所以,一般倾向选取较小的学习率以保证学习过程的收敛性(稳定性),通常在 0.01 ~0.8 之间。
8.网络的初始连接权值BP算法决定了误差函数一般存在(很)多个局部极小点,不同的网络初始权值直接决定了 BP 算法收敛于哪个局部极小点或是全局极小点。
因此,要求计算程序必须能够自由改变网络初始连接权值。
由于 Sigmoid 转换函数的特性,一般要求初始权值分布在 -0.5 ~ 0.5 之间比较有效。
10.收敛误差界值Emin在网络训练过程中应根据实际情况预先确定误差界值。
误差界值的选择完全根据网络模型的收敛速度大小和具体样本的学习精度来确定。
当Emin 值选择较小时,学习效果好,但收敛速度慢,训练次数增加。
如果网络模型的性能和泛化能力:训练神经网络的首要和根本任务是确保训练好的网络模型对非训练样本具有好的泛化能力(推广性),即有效逼近样本蕴含的内在规律,而不是看网络模型对训练样本的拟合能力。
判断建立的模型是否已有效逼近样本所蕴含的规律,主要不是看测Emin 值取得较大时则相反。
试样本误差大小的本身,而是要看测试样本的误差是否接近于训练样本和检验样本的误差。
非训练样本误差很接近训练样本误差或比其小,一般可认为建立的网络模型已有效逼近训练样本所蕴含的规律,否则,若相差很多(如几倍、几十倍甚至上千倍)就说明建立的网络模型并没有有效逼近训练样本所蕴含的规律,而只是在这些训练样本点上逼近而已,而建立的网络模型是对训练样本所蕴含规律的错误反映。