数学建模竞赛-神经网络

合集下载

数学建模竞赛成绩的评价与预测

数学建模竞赛成绩的评价与预测

数学建模竞赛成绩的评价与预测摘要本文针对对以往的数学建模工作进行总结及对未来的发展进行预测两个问题,根据附件一二中各高校安徽赛区奖和全国奖的数据,运用层次分析法、模糊综合评价和BP 神经网络等方法,建立了模糊层次模型和BP神经网络模型,借助Excel、Matlab软件,给出安徽赛区各校和全国各院校建模成绩的科学、合理的排序,并且对安徽赛区各院校2012年建模成绩进行了预测,最后将模型结果与实际结合,提出了为科学、合理地进行评价和预测,除全国竞赛成绩、赛区成绩外,还需要考虑的因素。

针对问题一,根据附件一中安徽赛区各高校的数学建模获奖数据,给出安徽赛区各校建模成绩的科学、合理的排序,并对安徽赛区各院校2012年建模成绩进行预测。

首先,统计出安徽赛区16所高校的获奖数据,引入综合评价指数概念,运用层次分析法和模糊综合评价建立了模糊层次模型,由Matlab求的全国一二等奖和安徽赛区一二三等奖对数学建模成绩的权重,将安徽赛区奖归一化得到本问题中所需要的权重,算出各校综合评价指数,进而得出安徽赛区各校建模成绩的排序,前十名依次为安徽财经大学、安徽大学、安徽师范大学、中国科学技术大学、安庆师范学院、合肥工业大学、安徽工程大学、皖西学院、滁州学院、安徽建筑工业学院、宿州学院、铜陵学院、合肥师范学院、巢湖学院、淮南师范学院、合肥学院;再建立BP神经网络模型,借助Matlab软件求得安徽赛区16所高校2012年各奖项的获奖队数,具体数据见表3。

针对问题二,根据附件二中全国各高校的数学建模获奖数据,将问题一中的模糊层次模型推广,应用于全国各高校。

在问题求解时,本本文在本科组学校中选取49所,在专科组学校中40所学校,按一定的年份间隔来统计数据,最后运用Excel软件对这些学校进行排序,得出本科组排在前十的依次为解放军信息工程大学、国防科技大学、浙江大学、武汉大学、大连理工大学、海军航空工程学院、上海交通大学、山东大学、东南大学;专科组学校前五名依次为:石家庄经济学院、成都电子机械高等专科学校、海军航空工程学院、山西工程职业技术学院、深圳职业技术学院。

数学建模与数学建模竞赛简介

数学建模与数学建模竞赛简介

全国大学生数学建模竞赛简介数学建模就是根据客观的实际问题抽象出它的数学形式,用以分析、研究和解决实际问题的一种科学方法。

它强调的是以解决实际问题为背景的数学方法和计算手段。

随着计算机技术的普及和发展,使得数学得以进入了科研工作的各个领域。

人们逐渐认识到,在诸如化学、生物、医药、地质、管理、社会科学等传统领域中,不是没有数学的用武之地,而是由于计算手段的不足而影响到数学在这些领域中的应用。

计算机技术的不断发展,为数学进入这些领域提供了强有力的计算手段。

这不仅为数学的应用提供了广阔的发展空间,也为数学本身提出了众多新的课题。

“高技术本质上是一种数学技术”很早就在美国的科技界得到了共识。

传统的数学教育已经不能适应对未来科技人才需求。

基于这种前瞻性考虑,1985年美国数学教育界出现了一个名为Mathematical Competition in Modeling(数学建模竞赛)的一种通讯竞赛活动。

其目的就是以赛促教。

随着网络技术的发展,这项活动很快发展为一项国际性的竞赛。

我国的部分高校于1989年参加了国际大学生数模竞赛活动,1992年举行了首届全国联赛。

1994年教育部高教司正式发文,要求在全国普通高校陆续开展数学建模、机械设计、电子设计等三大竞赛。

自此,在一些社会单位的资助下大学生数学建模活动在全国迅猛发展起来。

大多数的本科高等院校相继开设了这门课程。

据统计,全国大学生数学建模竞赛的参赛队由1993年的420个发展到2008年的12836个,遍及全国31个省/市/自治区(包括香港)1022所院校。

数学建模竞赛的题目都来自各个领域的实际问题,如:“钻井布局”、“节水洗衣机”;有些还是来自当今前沿领域中的问题,如:“投资的收益和风险”、“DNA序列分类”。

与一般的竞赛活动不同,竞赛题目本身有些没有固定的答案。

评价建模工作看重的是建模的合理性、创造性、和使用的数学方法、算法等。

全国大学生数学建模竞赛面向全国大专院校的学生,不分专业(分甲、乙两组,甲组竞赛所有大学生均可参加,乙组竞赛只有大专生可以参加)。

数学建模实验四:Matlab神经网络以及应用于汽油辛烷值预测

数学建模实验四:Matlab神经网络以及应用于汽油辛烷值预测

实验四:Matlab 神经网络以及应用于汽油辛烷值预测专业年级: 2014级信息与计算科学1班姓名: 黄志锐 学号:201430120110一、实验目的1. 掌握MATLAB 创建BP 神经网络并应用于拟合非线性函数2. 掌握MATLAB 创建REF 神经网络并应用于拟合非线性函数3. 掌握MATLAB 创建BP 神经网络和REF 神经网络解决实际问题4. 了解MATLAB 神经网络并行运算二、实验内容1. 建立BP 神经网络拟合非线性函数2212y x x =+第一步 数据选择和归一化根据非线性函数方程随机得到该函数的2000组数据,将数据存贮在data.mat 文件中(下载后拷贝到Matlab 当前目录),其中input 是函数输入数据,output 是函数输出数据。

从输入输出数据中随机选取1900中数据作为网络训练数据,100组作为网络测试数据,并对数据进行归一化处理。

第二步 建立和训练BP 神经网络构建BP 神经网络,用训练数据训练,使网络对非线性函数输出具有预测能力。

第三步 BP 神经网络预测用训练好的BP 神经网络预测非线性函数输出。

第四步 结果分析通过BP 神经网络预测输出和期望输出分析BP 神经网络的拟合能力。

详细MATLAB代码如下:27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54disp(['神经网络的训练时间为', num2str(t1), '秒']);%% BP网络预测% 预测数据归一化inputn_test = mapminmax('apply', input_test, inputps); % 网络预测输出an = sim(net, inputn_test);% 网络输出反归一化BPoutput = mapminmax('reverse', an, outputps);%% 结果分析figure(1);plot(BPoutput, ':og');hold on;plot(output_test, '-*');legend('预测输出', '期望输出');title('BP网络预测输出', 'fontsize', 12);ylabel('函数输出', 'fontsize', 12);xlabel('样本', 'fontsize', 12);% 预测误差error = BPoutput-output_test;figure(2);plot(error, '-*');title('BP神经网络预测误差', 'fontsize', 12);ylabel('误差', 'fontsize', 12);xlabel('样本', 'fontsize', 12);figure(3);plot((output_test-BPoutput)./BPoutput, '-*');title('BP神经网络预测误差百分比');errorsum = sum(abs(error));MATLAB代码运行结果截图如下所示:MATLAB代码运行结果如下所示:图1 BP神经网络预测输出图示图2 BP神经网络预测误差图示图3 BP 神经网络预测误差百分比图示2. 建立RBF 神经网络拟合非线性函数22112220+10cos(2)10cos(2)y x x x x ππ=-+-第一步 建立exact RBF 神经网络拟合, 观察拟合效果详细MATLAB 代码如下:MATLAB代码运行结果如下所示:图4 RBF神经网络拟合效果图第二步建立approximate RBF神经网络拟合详细MATLAB代码如下:13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41F = 20+x1.^2-10*cos(2*pi*x1)+x2.^2-10*cos(2*pi*x2); %% 建立RBF神经网络% 采用approximate RBF神经网络。

关于数学建模竞赛的一点思考总结和建议

关于数学建模竞赛的一点思考总结和建议

关于数学建模竞赛的一点思考、总结和建议关于数学建模竞赛的一点思考、总结和建议宋一凡环境保护与安全工程学院核安全工程专业大学生活即将结束,回顾几年的经历,数学建模竞赛留给我太多的回忆。

虽然数模竞赛已经远去,但至今看到听到“三天三夜72小时”时,精神还会为之一振。

在要告别数模竞赛的时候,想写一点自己零零碎碎的思考和总结,并给以后参赛的学弟学妹一点建议。

1. 关于我的数模之路大一从学长口中知道了数模竞赛,就想参加,自学了姜启源的《数学模型》,但校赛时,队友不给力使第一次校赛不了了之,至今仍然遗憾大一时校赛未能入围;大二时,和本院的两个同学组队,比我高一级的闯哥给了不少经验和资料,经过暑假的培训和多次模拟赛训练,12年国赛拿到了湖南赛区的三等奖。

13年寒假,留在学校参加美赛,偌大的宿舍楼空无一人,好不凄凉,南方湿冷的冬天让我这个北方人冻得难以忍受,搞完比赛回到家时已经是腊月二十七夜里,美赛S奖使我很失落,也从中找到了自己的很多不足之处。

因今年考研,本不愿参加国赛,但两位新队友的盛情邀请让我不忍拒绝,于是重新组队,再战国赛,一雪前耻,最后拿到国家一等奖,为大学的数模之路画上一个圆满的句号。

从大一到现在,关于数模的比赛,热身赛、校赛、模拟赛、国赛、美赛,大大小小不记得参加过多少次,也不知道熬过了多少个“72小时”。

建模、程序员、写手,三个角色的工作我都认认真真做过,饱尝里面的酸甜苦辣,一步一个脚印走来,最后得到一个不错的成绩,收获颇多,感触颇深。

数模给我打开了一扇窗,窗外的世界带给我不一样的精彩,而不仅仅是拿几张证书,加几分综测。

外人看来,数模痛苦、费人,而我感觉数模自由、快乐。

尤其是竞赛结束,早上八点交卷的时刻,经过三天三夜的努力,队友通力合作,从第一天的一筹莫展,到最后一天的顺利解决,疲惫、兴奋、满足、急切、不安,很多的感受一时涌上心头,那是只有真正参加比赛的人才能体会到的快乐!2. 关于数学建模竞赛的作用在做一件事情之前总会去思考做成这件事情有什么好处,这样的心里再正常不过了。

2011数学建模A题神经网络优秀论文,带代码

2011数学建模A题神经网络优秀论文,带代码

图 1 该城区的地形分布图
首先,我们根据样本点的位置和海拔绘制出该城区的地貌,见图 1。我们运 用 matlab 软件,根据各个网格区域中的重金属含量,用三角形线性插值的方法 得到各种重金属含量在空间上分布的等值线图。
1 图 2-1
2
1 图 2-2
2
图 2-1 给出了 As 在该区域的空间分布:图中可以观察到 As 有两个明显的高 值中心,我们标记为区域 1 和 2。这两个区域都处于工业区分布范围内,并以该 两个区域作为中心向外延伸, 浓度逐渐减少,同时我们注意到在山区的很多区域
Ni
(3211,5686) (24001,12366)
Pb
(1991,3329) (4508,5412)
Zn
(1699,2867) (3725,5487) (9583,4512) (13653,9655)
综合分析所得污染源所在位置,发现不同金属的污染源有同源现象,依据 同源性汇聚污染源,绘制了八种重金属的污染源汇总图。 问题四:神经网络模型的优点是具有较强的自组织、自学习能力、泛化能 力和充分利用了海拔高度的信息;缺点是训练要求样本点容量较大。可以通过搜 集前几年该城区八种重金属浓度的采样数据和近几年工厂分布多少位置的变化、 交通路段车流量的变化、 人口及生活区分布变化与植被分布多少位置的变化等数 据,进一步拓展神经网络模型,得到该城市地质环境的演变模式。
符号
意义
k i j
x ij
xi
表示不同功能区 表示金属的种类 表示不同的样本 表示样本 j 中金属 i 的浓度 表示金属 i 背景值的平均值 表示金属 i 背景值的标准差
表示 x i j 标准化后的值
i
Y ij
i
Ik

BP神经网络

BP神经网络

BP神经⽹络2013参考数学建模常⽤⽅法:数学建模常⽤⽅法系列资料由圣才⼤学⽣数学建模竞赛⽹整理收集。

希望能对您有所帮助!BP神经⽹络⽅法摘要⼈⼯神经⽹络是⼀种新的数学建模⽅式,它具有通过学习逼近任意⾮线性映射的能⼒。

本⽂提出了⼀种基于动态BP神经⽹络的预测⽅法,阐述了其基本原理,并以典型实例验证。

关键字神经⽹络,BP模型,预测1 引⾔在系统建模、辨识和预测中,对于线性系统,在频域,传递函数矩阵可以很好地表达系统的⿊箱式输⼊输出模型;在时域,Box-Jenkins⽅法、回归分析⽅法、ARMA模型等,通过各种参数估计⽅法也可以给出描述。

对于⾮线性时间序列预测系统,双线性模型、门限⾃回归模型、ARCH模型都需要在对数据的内在规律知道不多的情况下对序列间关系进⾏假定。

可以说传统的⾮线性系统预测,在理论研究和实际应⽤⽅⾯,都存在极⼤的困难。

相⽐之下,神经⽹络可以在不了解输⼊或输出变量间关系的前提下完成⾮线性建模[4,6]。

神经元、神经⽹络都有⾮线性、⾮局域性、⾮定常性、⾮凸性和混沌等特性,与各种预测⽅法有机结合具有很好的发展前景,也给预测系统带来了新的⽅向与突破。

建模算法和预测系统的稳定性、动态性等研究成为当今热点问题。

⽬前在系统建模与预测中,应⽤最多的是静态的多层前向神经⽹络,这主要是因为这种⽹络具有通过学习逼近任意⾮线性映射的能⼒。

利⽤静态的多层前向神经⽹络建⽴系统的输⼊/输出模型,本质上就是基于⽹络逼近能⼒,通过学习获知系统差分⽅程中的⾮线性函数。

但在实际应⽤中,需要建模和预测的多为⾮线性动态系统,利⽤静态的多层前向神经⽹络必须事先给定模型的阶次,即预先确定系统的模型,这⼀点⾮常难做到。

近来,有关基于动态⽹络的建模和预测的研究,代表了神经⽹络建模和预测新的发展⽅向。

2BP神经⽹络模型BP⽹络是采⽤Widrow-Hoff学习算法和⾮线性可微转移函数的多层⽹络。

典型的BP 算法采⽤梯度下降法,也就是Widrow-Hoff算法。

神经元数学建模模型

神经元数学建模模型

神经元数学建模模型神经元是神经系统的基本单位,它是一种特殊的细胞,负责接收、传递和处理信息。

神经元之间通过突触连接,形成神经网络,完成大脑的各项功能。

神经元的数学建模模型是神经网络领域的核心内容之一,它可以用数学公式和算法来模拟神经元的工作过程。

首先,神经元可以被视为一个非线性的函数,可以用Sigmoid函数表示。

Sigmoid函数是一种常用的激活函数,可以将神经元的输入转化为输出。

其数学表达式为:f(x) = 1 / (1 + e^-x)在这个公式中,x表示神经元的输入,e为自然常数。

通过调整函数的参数,可以调节函数的输出,实现神经元的调控。

神经元还可以用神经元模型来表示,其中包括膜电位、阈值和动作电位等参数。

神经元在接受到一定强度的输入后,膜电位会发生变化,当膜电位超过一定的阈值时,神经元会发出动作电位,向外传递信息。

神经元模型可以用不同的方程来描述,如Hodgkin-Huxley模型、FitzHugh-Nagumo模型等,它们适用于不同类型的神经元。

神经网络模型是由多个神经元组成的复杂网络,可以用来模拟大脑中的信息处理和学习过程。

其中,输入层接受外部信号,隐层和输出层负责信号的传递和处理。

神经网络可以通过监督学习、强化学习等方法来学习和训练,从而提高网络的能力。

神经元数学建模模型在人工智能、机器学习、计算机视觉等领域具有广泛应用。

例如,在计算机视觉中,神经元模型可以通过学习图像特征来实现图像分类、目标识别等功能。

在自然语言处理中,神经元模型可以用来进行文本分类、情感分析等任务。

在机器人控制中,神经元模型可以用来模拟人类大脑的决策过程,实现自主控制和智能行动。

总之,神经元数学建模模型是神经网络领域中重要的研究内容之一,它可以用来分析和研究神经元的工作原理,实现人工智能和机器学习等领域的应用。

对于未来的发展和研究,还需要不断深入理解和探索神经元的数学模型,发掘新的应用和研究领域。

数学建模竞赛模型选择策略

数学建模竞赛模型选择策略

数学建模竞赛模型选择策略一、数学建模竞赛概述数学建模竞赛是一种将数学理论与实际问题相结合的竞赛形式,它不仅要求参赛者具备扎实的数学基础,还需要他们能够灵活运用数学工具解决实际问题。

这种竞赛形式在全球范围内广泛流行,吸引了众多数学爱好者和专业人士的参与。

数学建模竞赛的核心在于通过建立数学模型来描述和解决实际问题,这不仅是一种科学探索的过程,也是一种创新思维的体现。

1.1 数学建模竞赛的目的数学建模竞赛的主要目的在于培养学生的数学思维能力、创新能力和实践能力。

通过参与竞赛,参赛者可以更好地理解数学在实际问题中的应用,提高他们解决复杂问题的能力。

同时,竞赛还能激发参赛者的团队合作精神和竞争意识,促进他们在学术和职业生涯中的发展。

1.2 数学建模竞赛的特点数学建模竞赛具有以下几个显著特点:- 跨学科性:竞赛题目通常涉及多个学科领域,如经济、工程、生物等,要求参赛者具备跨学科的知识背景。

- 实践性:竞赛题目往往来源于实际问题,参赛者需要将理论知识与实际问题相结合,提出切实可行的解决方案。

- 创新性:竞赛鼓励参赛者进行创新思考,开发新的数学模型和算法,以解决复杂的实际问题。

- 团队性:竞赛通常以团队形式进行,强调团队合作和分工协作,培养参赛者的团队精神和协作能力。

二、数学建模竞赛模型选择策略在数学建模竞赛中,选择合适的模型是解决问题的关键。

模型的选择不仅影响解决方案的有效性,还影响整个竞赛的成败。

因此,制定科学的模型选择策略是至关重要的。

2.1 模型选择的重要性模型选择的重要性体现在以下几个方面:- 准确性:选择合适的模型可以更准确地描述和解决实际问题,提高解决方案的可靠性。

- 可行性:模型的选择需要考虑实际应用的可行性,确保模型能够在有限的时间内被有效求解。

- 创新性:选择创新的模型可以为解决问题提供新的思路和方法,提高解决方案的创新性。

- 通用性:选择具有通用性的模型可以提高解决方案的适用性,使其能够应用于更广泛的实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

神经网络

解:设计BP网,编写文件ch14eg4.m,结构和参数见程序中的说明。

clear;close all;
x = [0:0.25:10]; y = 0.12*exp(-0.213*x)+0.54*exp(-0.17*x).*sin(1.23*x); % x,y分别为输入和目标向量
net=newff(minmax(x),[20,1],{'tansig','purelin'}); % 创建一个前馈网络
y0 = sim(net,x); % 仿真未经训练的网络net
net.trainFcn='trainlm'; % 采用L-M优化算法TRAINLM
net.trainParam.epochs = 500; net.trainParam.goal = 1e-6; % 设置训练参数[net,tr]=train(net,x,y); % 调用相应算法训练网络
y1 = sim(net,x); % 对BP网络进行仿真
E = y-y1; MSE=mse(E) % 计算仿真误差
figure; % 下面绘制匹配结果曲线
plot(x,y0,':',x,y1,'r*',x,0.12*exp(-0.213*x)+0.54*exp(-0.17*x).*sin(1.23*x),'b');
运行如下:
>> ch14eg4
MSE =9.6867e-007
例14.6 蠓虫分类问题。

两种蠓虫Af和Apf已由生物学家W.L.Grogan和W.W.Wirth(1981)根据他们的触角长度和翅长加以区分。

现测得6只Apf蠓虫和9只Af蠓虫的触长、翅长的数据如下:
Apf: (1.14,1.78),(1.18,1.96),(1.20,1.86),(1.26,2.),(1.28,2.00),(1.30,1.96).
Af: (1.24,1.72),(1.36,1.74),(1.38,1.64),(1.38,1.82),(1.38,1.90),(1.4,1.7),
(1.48,1.82),(1.54,1.82),(1.56,2.08)
请用恰当的方法对触长、翅长分别为(1.24,1.80),(1.28,1.84),(1.40,2.04)的3个样本进行识别。

解:设计一个Lvq神经网络进行分类。

编写m文件ch14eg6.m
clear; close all;
Af=[1.24,1.36,1.38,1.38,1.38,1.4,1.48,1.54,1.56;1.27,1.74,1.64,1.82, 1.9,1.7,1.82,1.82,2.08];
Apf=[1.14 1.18 1.20 1.26 1.28 1.30;1.78 1.96 1.86 2.00 2.00 1.96];
x=[Af Apf];%输入向量
y0=[2*ones(1,9) ones(1,6)];%类2表示Af, 类1表示Apf
y=ind2vec(y0);%将下标向量转换为单值向量作为目标向量
net = newlvq(minmax(x),8,[0.6,0.4]);%建立LVQ网络
net.trainParam.show=100; net.trainParam.epochs = 1000;%设置参数
net = train(net,x,y); ytmp=sim(net,x);%对网络进行训练并用原样本仿真
y1=vec2ind(ytmp);%将单值向量还原为下标向量作为输出向量
xt=[1.24,1.28,1.40;1.80,1.84,2.04];%测试输入样本
yttmp=sim(net,xt)%对网络用新样本进行仿真
yt=vec2ind(yttmp)%输出新样本所属类别
figure;%打开一个图形窗口
plot(Af(1,:),Af(2,:),'+',Apf(1,:),Apf(2,:),'o',xt(1,:),xt(2,:),'*');
legend('Af','Apf','检测样本') 运行可得:
>> ch14eg6 yt =
1 1 1
可见测试样本属于Apf 。

14 Epochs
T r a i n i n g -B l u e G o a l -B l a c k。

相关文档
最新文档