高考数学总复习 指数函数与对数函数会考专题专练(1)
指数函数对数函数专练习题含答案-V1

指数函数对数函数专练习题含答案-V1
本篇文章将针对指数函数和对数函数的专练习题含答案做重新整理,主要分为以下几个部分:
一、指数函数部分练习题
1、简单的指数函数练习题
如:化简y=2^x+2^x
解答:y=2^x+2^x=2*2^x=2^(x+1)
2、指数函数的性质
如:已知y=2^x,求y在x=3处的切线方程
解答:y'=ln2*2^x,当x=3时,y'=ln2*2^3=8ln2
切线方程:y-2^3=8ln2(x-3),即y=8ln2x-16ln2
3、指数函数与对数函数的综合练习
如:已知y=log2x,求y=2^x的解
解答:当y=log2x时,x=2^y
将x=2^y带入y=2^x,得到:y=2^(2^y)
令f(x)=2^x-x,则f'(x)=ln2*2^x-1>0,所以f(x)单增
故f(x)=0的解唯一,即y=2^x的解唯一,即y=log2(2^y)
二、对数函数练习题
1、简单的对数函数练习题
如:化简y=log(a^2b^3/(ab)^2)
解答:y=log(a^2b^3)-log(a^2b^2)=logb
2、对数函数的性质
如:已知y=logax,z=logbx,求y和z的关系式
解答:由对数函数的换底公式,可得y=logbx/logba,z=logbx
式中,x>0,且a、b均大于0且不等于1
3、对数函数与指数函数的综合练习
如:已知y=log2x,求y=2^x的解
解答:将x=2^y带入y=log2x,得到y=y*log2(2),
即y=0或y=1,因此,x=1或x=2
以上是指数函数和对数函数中的一些练习题,希望对大家的学习有所帮助。
2020_2021年高考数学一轮复习考点专项练习指数函数与对数函数

【2020 年高考全国Ⅰ卷文数 8】设 a log3 4 2 ,则 4a
2020-2021 年新高三数学一轮复习考点 指数函数与对数函数
1.最新考试说明:
1.理解指数幂的概念,理解指数函数的单调性,会解决与指数函数性质有关的问题.
【2020
年高考全国Ⅲ卷文数
10】设
a
log3
2
,
b
log5
3
,
c
2 3
,则
A. a c b
B. a b c
C. b c a
()
D. c a b
此时 f (a) f (b2) ,有 a b2 ,∴C、D 错误,故选 B.
【专家解读】本题的特点函数与方程的灵活运用,本题考查了函数与方程,考查函数的单调性,考查数学
运算、数学建模、逻辑推理等学科素养.解题关键是构造函数,应用函数的单调性解决问题.
【2020 年高考全国Ⅱ卷文数 12 理数 11】若 2x 2y 3x 3y ,则
b
log8
5 ,得 8b
5 ,结合 55
84 可得出 b
4 5
,由 c
log13 8 ,得13
c
8
,结合134 85 ,可得出 c 4 , 5
综合可得出 a 、 b 、 c 的大小关系.
【解析】解法一:由题意可知 a 、 b 、 c 0,1 ,
a b
log5 log8
3 5
lg 3 lg 5
指数函数与对数函数练习题(含详解)

指数函数1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小.对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质:函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性 非奇非偶单调性 在上是增函数在上是减函数函数值的 变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.指数函数习题一、选择题1.定义运算a ⊗b =⎩⎨⎧a a ≤bb a >b,则函数f (x )=1⊗2x 的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x )的大小关系是( ) A .f (b x )≤f (c x )B .f (b x )≥f (c x) C .f (b x )>f (c x )D .大小关系随x 的不同而不同3.函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2)4.设函数f (x )=ln[(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x-2x-1)的定义域是B ,若A ⊆B ,则正数a 的取值范围( )A .a >3B .a ≥3C .a > 5D .a ≥ 55.已知函数f (x )=⎩⎨⎧3-a x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( )A .[94,3)B .(94,3)C .(2,3)D .(1,3)6.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题7.函数y =a x (a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________.9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________. 三、解答题 10.求函数y =2342x x ---+的定义域、值域和单调区间.11.(2011·银川模拟)若函数y =a 2x+2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值. 12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x 的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.1.解析:由a ⊗b =⎩⎨⎧a a ≤bb a >b得f (x )=1⊗2x=⎩⎨⎧2xx ≤0,1x >0.答案:A2. 解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增.若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x). 若x <0,则3x <2x <1,∴f (3x )>f (2x ). ∴f (3x )≥f (2x ). 答案:A3.解析:由于函数y =|2x -1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4. 解析:由题意得:A =(1,2),a x -2x >1且a >2,由A ⊆B 知a x -2x >1在(1,2)上恒成立,即a x -2x-1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3. 答案:B5. 解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,注意a 8-6>(3-a )×7-3,所以⎩⎨⎧a >13-a >0a 8-6>3-a×7-3,解得2<a <3.答案:C6. 解析:f (x )<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,当a >1时,必有a -1≥12,即1<a ≤2,当0<a <1时,必有a ≥12,即12≤a <1,综上,12≤a <1或1<a ≤2.答案:C7. 解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =a x在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].答案:[-1,1]9. 解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110. 解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1. ∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-4或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52. ∴函数y =2341()2x x --+的值域为[28,1]. 由t =-x 2-3x +4=-(x +32)2+254(-4≤x ≤1)可知,当-4≤x ≤-32时,t 是增函数,当-32≤x ≤1时,t 是减函数.根据复合函数的单调性知:y =2341()2x x --+在[-4,-32]上是减函数,在[-32,1]上是增函数.∴函数的单调增区间是[-32,1],单调减区间是[-4,-32].11. 解:令a x =t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[1a,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a=-5舍去).②若0<a <1,∵x ∈[-1,1],∴t =a x ∈[a ,1a ],故当t =1a,即x =-1时,y max =(1a+1)2-2=14.∴a =13或-15(舍去).综上可得a =3或13.12. 解:法一:(1)由已知得3a +2=18⇒3a=2⇒a =log 32. (2)此时g (x )=λ·2x -4x , 设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立. 由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一.(2)此时g (x )=λ·2x -4x ,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x -ln4·4x =ln2[-2·(2x )2+λ·2x]≤0成立. 设2x =u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立. 因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.对数函数同步练习一、选择题1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+D 、 23a a -2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41 B 、4 C 、1 D 、4或13、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a aa x m n x+==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()12m n -4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,则αβ的值是( ) A 、lg5lg7 B 、lg35 C 、35 D 、351 5、已知732log [log (log )]0x =,那么12x -等于( ) A 、13B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称 7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭B 、()1,11,2⎛⎫+∞ ⎪⎝⎭C 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<< 10、2log 13a <,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x= D 、2log (45)y x x =-+12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的 二、填空题13、若2log 2,log 3,m n a a m n a +=== 。
(压轴题)高中数学必修一第三单元《指数函数和对数函数》测试题(含答案解析)(1)

一、选择题1.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:35]4[--.=,[]2.12=,已知函数21()12x x e f x e =++,()[()]g x f x =,则下列叙述正确的是( ) A .()g x 是偶函数 B .()f x 在R 上是增函数C .()f x 的值域是1,2⎛⎫-+∞ ⎪⎝⎭D .()g x 的值域是{1,0,1}-2.专家对某地区新冠肺炎爆发趋势进行研究发现,从确诊第一名患者开始累计时间t (单位:天)与病情爆发系数()f t 之间,满足函数模型:0.22(50)11()t f t e --=+,当()0.1f t =时,标志着疫情将要大面积爆发,则此时t 约为( )(参考数据: 1.13e ≈) A .38B .40C .45D .473.已知()()514,1log ,1a a x a x f x x x ⎧-+<=⎨≥⎩是(),-∞+∞上的减函数,那么a 的取值范围是( ).A .()0,1B .10,5⎛⎫ ⎪⎝⎭C .11,95⎡⎫⎪⎢⎣⎭D .1,19⎡⎫⎪⎢⎣⎭4.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微:数形结合百般好,隔离分家万事休”.在数学学习中和研究中,常用函数的图象来研究函数的性质,页常用函数的解析式来琢磨函数图象的特征,如函数()22xy xx R =-∈的大致图象是( )A .B .C .D .5.函数()()2 21lg21xxxfx-=+的部分图象大致为()A.B.C.D.6.已知函数||()2xf x=,记131(())4a f=,37(log)2b f=,13(log5)c f=,则a,b,c的大小关系为()A.c b a>>B.b a c>>C.a b c>>D.c a b>>7.设log a m 和log b m 是方程2420x x -+=的两个根,则log a bm 的值为( )AB.2 C.D.2±8.一种放射性元素最初的质量为500g ,按每年10%衰减.则这种放射性元素的半衰期为( )年.(注:剩余质量为最初质量的一半,所需的时间叫做半衰期),(结果精确到0.1,已知lg 20.3010=,lg30.4771=)A .5.2B .6.6C .7.1D .8.39.若13log 2a =,131()2b =,2log 3c =,则,,a b c 的大小关系是( )A .b a c <<B .b c a <<C .a b c <<D .c b a <<10.已知函数222,0()2,0x x x f x x x x ⎧+≥=⎨-<⎩,212(log )(log )2(1)f a f f a ≤+,则实数a 的取值范围是( )A .1,22⎡⎤⎢⎥⎣⎦B .102⎛⎤ ⎥⎝⎦,C .[]1,2D .(]0,2 11.已知函数()y f x =与x y e =互为反函数,函数()y g x =的图象与()y f x =的图象关于x 轴对称,若()1g a =,则实数a 的值为 A .e -B .1e-C .eD .1e12.若1a b >>,P ,1(lg lg )2Q a b =+,lg()2a b R +=,则( ) A .R P Q <<B .P Q R <<C .Q P R <<D .P R Q <<二、填空题13.若函数()2log 12a a f x x x ⎛⎫=-+ ⎪⎝⎭,()0,1a a >≠没有最小值,则实数a 的取值范围是______.14.若3763,a b ==则21a b+的值为_______ 15.已知函数2223,1,()log (6),1x mx x f x x m x ⎧---≤=⎨+>⎩在(,)-∞+∞上是单调函数,则m 的取值范围是__.16.已知函数1(2)1,2(),2x a x x f x a x --+<⎧=⎨≥⎩,在R 上单调递增,则实数a 的取值范围是_______.17.下列五个命题中:①函数log (21)2015(0a y x a =-+>且1)a ≠的图象过定点()1,2015; ②若定义域为R 函数()f x 满足:对任意互不相等的1x 、2x 都有()()()12120x x f x f x -->⎡⎤⎣⎦,则()f x 是减函数;③2(1)1f x x +=-,则2()2f x x x =-;④若函数22()21x x a a f x ⋅+-=+是奇函数,则实数1a =-;⑤若log 8(0,1)log 2c c a c c =>≠,则实数3a =. 其中正确的命题是________.(填上相应的序号). 18.已知3(1)4,1()1,1a a x a x f x og x x -+<⎧=⎨≥⎩是R 上的减函数,那么a 的取值范围是__________.19.已知27abm ==,1112a b +=,则m =_______. 20.设函数()f x 满足()22221x f x ax a =-+-,且()f x 在21222,2a aa --+⎡⎤⎣⎦上的值域为[]1,0-,则实数a 的取值范围为______.三、解答题21.已知函数1()log 1a mxf x x -=-(0a >且1a ≠)是奇函数. (1)求实数m 的值;(2)若关于x 的方程2()6(1)50f x kx x a -+--=对(1,)x ∈+∞恒有解,求k 的取值范围.22.已知函数122()log 2xf x x-=+. (1)求函数()f x 的定义域,并判断其奇偶性;(2)判断()f x 在其定义域上的单调性,并用单调性定义证明.23.计算11213321(4()40.1()ab a b ----⋅0a >,0b >)24.已知函数()log [(1)(1)]a f x x x =+-(其中0a >且1a ≠) (1)求函数()f x 的定义域,并判断它的奇偶性;(2)若2a =,当12x ⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的值域.25.(1)求值:)()141231()102208500---+⨯-(2)已知14,x x -+=3322x x -+. 26.已知:2256x ≤且21log 2x ≥ (1)求x 的取值范围;(2)求函数f (x )=2log 2x ⎛⎫⎪⎝⎭⎭的最大值和最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】计算(2),(2)g g -得出()()22g g ≠-判断选项A 不正确;通过分离常数结合复合函数的单调性,可得出()f x 在R 上是增函数,判断选项B 正确;由x y e =的范围,利用不等式的关系,可求出15()22f x <<,进而判断选项CD 不正确,即可求得结果. 【详解】对于A ,根据题意知,2152()1221x x xe f x e e =+=-++. ∵252(2)[(2)]221g f e ⎡⎤==-=⎢⎥+⎣⎦, 2222121(2)[(2)]01212e g f e e --⎡⎤⎡⎤-=-=+=+=⎢⎥⎢⎥++⎣⎦⎣⎦, (2)(2)g g ∴≠-,∴函数()g x 不是偶函数,故A 错误;对于B ,1x y e =+在R 上是增函数,则21xy e =+在R 上是减函数,则52()21xf x e =-+在R 上是增函数,故B 正确;对于C ,0x e >,11x e ∴+>,2202,20,11x x e e <<-<-<++ 15()22f x ∴<<,即()f x 的值域是15,22⎛⎫⎪⎝⎭,故C 错误; 对于D ,()f x 的值域是15,22⎛⎫⎪⎝⎭,则()g x 的值域是{0,1,2},故D 错误. 故选:B. 【点睛】本题要注意对函数的新定义的理解,研究函数的单调性和值域常用分离常数,属于较难题.2.B解析:B 【分析】 根据()0.1f t =列式求解即可得答案.【详解】 解:因为()0.1f t =,0.22(50)11()t f t e --=+,所以0.22(50)()0.111t f t e--==+,即0.22(50)011t e --=+,所以0.22(50)9t e --=,由于 1.13e ≈,故()21.12.29e e =≈,所以0.222().250t e e --=,所以()0.2250 2.2t --=,解得40t =. 故选:B. 【点睛】本题解题的关键在于根据题意得0.22(50)9t e --=,再结合已知 1.13e ≈得()21.12.29e e =≈,进而根据0.222().250t e e --=解方程即可得答案,是基础题.3.C解析:C 【分析】由51001514log 1a a a a a -<⎧⎪<<⎨⎪-+≥⎩解得结果即可得解. 【详解】因为()()514,1log ,1a a x a x f x x x ⎧-+<=⎨≥⎩是(),-∞+∞上的减函数,所以51001514log 1a a a a a -<⎧⎪<<⎨⎪-+≥⎩,解得1195a ≤<.故选:C 【点睛】易错点点睛:容易忽视两段交界点处函数值的大小关系.4.A解析:A 【分析】分析函数()()22xf x xx R =-∈的奇偶性,结合()01f =可得出合适的选项.【详解】令()22=-xf x x ,该函数的定义域为R ,()()()2222xxf x x x f x --=--=-=,函数()22=-xf x x 为偶函数,排除B 、D 选项;又()010f =>,排除C 选项. 故选:A. 【点睛】函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)从函数的特征点,排除不合要求的图象.5.B解析:B 【分析】求出函数()f x 的定义域,分析函数()f x 的奇偶性及其在区间()0,1上的函数值符号,进而可得出合适的选项. 【详解】 函数()()221lg 21xxx f x -=+的定义域为{}0x x ≠,()()()()()()()22221lg 221lg 12lg 2112221xx x xxxxxx x x f x f x ---------====-+++,函数()f x 为奇函数,当01x <<时,201x <<,则2lg 0x <,210x ->,210x +>,()0f x ∴<. 因此,函数()f x 的图象如B 选项中的图象.故选:B. 【点睛】函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)从函数的特征点,排除不合要求的图象.6.A解析:A 【分析】首先判断函数()f x 的性质,再比较133317,log ,log 542⎛⎫ ⎪⎝⎭的大小关系,从而利用单调性比较a ,b ,c 的大小关系. 【详解】()2xf x =是偶函数,并且当0x >时,2x y =是增函数,()133log 5log 5c f f ⎛⎫== ⎪⎝⎭,因为1310()14<<,3371log log 52<<,即1333170log log 542⎛⎫<<< ⎪⎝⎭又因为()y f x =在()0,∞+是增函数,所以a b c <<. 故选:A. 【点睛】关键点点睛:本题考查利用函数的单调性和奇偶性比较函数值的大小,本题的关键是判断函数()2xf x =的性质,后面的问题迎刃而解.7.D解析:D 【分析】利用换底公式先求解出+log log m m a b 、log log m m a b ⋅的结果,然后利用换底公式将log a bm 变形为1log log m m a b-,根据+log log m m a b 、log log m m a b ⋅的结果求解出log log m m a b -的结果,则log a bm 的值可求.【详解】因为log log 4log log 2a b a b m m m m +=⎧⎨⋅=⎩,所以114log log 112log log m m m m a b a b⎧+=⎪⎪⎨⎪⋅=⎪⎩ ,所以log +log 4log log 1log log 2m m m mm ma b a b a b ⎧=⎪⋅⎪⎨⎪⋅=⎪⎩,所以log +log 21log log 2m m m m a b a b =⎧⎪⎨⋅=⎪⎩, 又因为11log log log log a m m bmm aa b b==-,且()()22log log =log log lo +42g log m m m m m m a b a b b a -⋅=-,所以log log m m a b -=,所以log a bm ==,故选:D. 【点睛】关键点点睛:解答本题的关键是在于换底公式的运用,将log a bm 变形为1log log m m a b-,再根据方程根之间的关系求解出结果.8.B解析:B 【分析】先根据题意列出关于时间的方程,然后利用指对互化以及对数换底公式并结合所给数据可计算出半衰期. 【详解】设放射性元素的半衰期为x 年,所以()500110%250x-=, 所以()1110%2x-=,所以0.91log 2x =,所以109log 2x =, 所以lg 2lg10lg9x =-,所以lg 212lg 3x =-,所以0.3010120.4771x =-⨯,所以 6.6x ≈,故选:B. 【点睛】思路点睛:求解和对数有关的实际问题的思路: (1)根据题设条件列出符合的关于待求量的等式;(2)利用指对互化、对数运算法则以及对数运算性质、对数换底公式求解出待求量的值.9.C解析:C【分析】由题容易看出,0a <, 01b <<,2log 31c =>,便得出,,a b c 的大小关系. 【详解】1133log 2log 10a =<=,310110122b ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,22log 3log 21c =>=,因此a b c <<. 故选:C. 【点睛】本题考查指数函数和对数函数的比较大小,常与中间值0-1,1,来比较,再结合函数的单调性即可求解,属于中档题.10.A解析:A 【分析】根据条件判断()f x 的奇偶性和单调性,把不等式212(log )(log )2(1)f a f f a ≤+转化为2log 1a ≤进行求解即可.【详解】当0x <时,0x ->,则2()2()f x x x f x -=-=, 当0x >时,0x -<,则2()2()-=+=f x x x f x , ∴函数()f x 为偶函数,∴222122(log )(log )(log )(log )2(log )f a f a f a f a f a +=+-=.又当0x ≥时,函数()f x 单调递增,∴22(log )2(1)f a f ≤可转化为2((log 1))f a f ≤,则2log 1a ≤, ∴21log 1a -≤≤,解得122a ≤≤. 故选:A. 【点睛】本题考查了分段函数的性质,考查函数的单调性与奇偶性,考查学生的推理能力与计算求解能力,属于中档题.11.D解析:D 【分析】根据指数函数与对数函数的关系,以及函数()y g x =的图象与()y f x =的图象关于x 轴对称,求得()ln g x x =-,再由()1g a =,即可求解. 【详解】由题意,函数()y f x =与x y e =互为反函数,所以()ln f x x =,函数()y g x =的图象与()y f x =的图象关于x 轴对称,所以()ln g x x =-, 又由()1g a =,即ln 1a -=,解得 1a e= 故选D. 【点睛】本题主要考查了指数函数与对数函数的关系,其中熟记指数函数与对数函数的关系,以及函数的对称性求得函数()g x 的解析式是解答的关键,着重考查了推理与运算能力,属于基础题.12.B解析:B 【分析】利用对数函数lg y x =,结合基本不等式即可确定P 、Q 、R 的大小关系 【详解】由于函数lg y x =在(0,)+∞上是增函数 1a b >>,则lg lg 0a b >>由基本不等式可得11(lg lg )lg()lg 222a b P a b ab R +=+=== 因此,P Q R << 故选:B 【点睛】本题考查了利用对数函数的单调性比较大小,应用函数思想构造对数函数,并利用其单调性和基本不等式比较大小二、填空题13.【分析】讨论和两种情况结合对数函数的单调性可判断求解【详解】当时在单调递减没有最大值没有最小值符合题意;当时在单调递增则可得当有解时没有最小值解得综上的取值范围为故答案为:【点睛】关键点睛:结合对数 解析:(0,1)[4,)∞⋃+【分析】讨论01a <<和1a >两种情况结合对数函数的单调性可判断求解. 【详解】当01a <<时,log ay x =在(0,)+∞单调递减,212ay x x =-+没有最大值,()2log 12a a f x x x ⎛⎫∴=-+ ⎪⎝⎭没有最小值,符合题意;当1a >时,log ay x =在(0,)+∞单调递增,则可得当2102a x x -+≤有解时,()2log 12a a f x x x ⎛⎫=-+ ⎪⎝⎭没有最小值,2402a ⎛⎫∴∆=--≥ ⎪⎝⎭,解得4a ≥,综上,a 的取值范围为(0,1)[4,)∞⋃+.故答案为:(0,1)[4,)∞⋃+. 【点睛】关键点睛:结合对数函数的单调性进行讨论求解,将题目转化为2102ax x -+≤有解进行求解.14.1【分析】将指数式化为对数式得代入可得根据换底公式可求值【详解】由题意可得∵故答案为:1【点睛】本题主要考查对数与指数的互化对数的换底公式的应用考查基本运算求解能力解析:1 【分析】将指数式化为对数式得3log 63a =,7log 63b =,代入可得,372121log 63log 63a b +=+,根据换底公式可求值. 【详解】由题意可得,3log 63a =,7log 63b =, ∵6363363721212log 3log 7log 631log 63log 63a b +=+=+== 故答案为:1 【点睛】本题主要考查对数与指数的互化,对数的换底公式的应用,考查基本运算求解能力.15.【分析】根据对数部分函数为单调递增所以整个函数为递增函数两段函数各自递增且左段的右端点小于等于右段的左端点即可求得的取值范围【详解】函数在上是单调函数因为当时为增函数所以整个函数在上是单调递增函数因 解析:[5,4]--【分析】根据对数部分函数为单调递增,所以整个函数为递增函数.两段函数各自递增,且左段的右端点小于等于右段的左端点,即可求得m 的取值范围. 【详解】函数2223,1,()log (6),1x mx x f x x m x ⎧---≤=⎨+>⎩在(,)-∞+∞上是单调函数因为当1x >时, 2()log (6)f x x m =+为增函数,所以整个函数在(,)-∞+∞上是单调递增函数因而满足60x m +>对1x >恒成立,则6m ≥-. 当1x ≤时,2()23f x x mx =---为增函数,则14m -≥ 即2614(1)log (6)m m f m ≥-⎧⎪⎪-≥⎨⎪≤+⎪⎩,即2645log (6)0m m m m ≥-⎧⎪≤-⎨⎪+++≥⎩因为2()5log (6)g x x x =+++在(6,)-+∞为增函数,且(5)0g -=, 所以5m ≥-.综上可知54m -≤≤-,即[5,4]m ∈-- 故答案为:[5,4]-- 【点睛】本题考查了分段函数的单调性判断,根据函数单调性求参数的取值范围,属于中档题.16.【分析】根据分段函数单调性列出各段为增函数的条件并注意两段分界处的关系即可求解【详解】函数在R 上单调递增则需满足(1)当时函数单调递增;则(2)当时函数单调递增;则(3)函数在两段分界处满足即所以满 解析:23a <≤【分析】根据分段函数单调性,列出各段为增函数的条件,并注意两段分界处的关系,即可求解. 【详解】函数1(2)1,2(),2x a x x f x a x --+<⎧=⎨≥⎩,在R 上单调递增则需满足(1)当2x <时,函数()f x 单调递增;则2a > (2)当2x ≥时,函数()f x 单调递增;则1a >(3)函数()f x 在两段分界处2x =,满足()21221a a --⨯+≤,即3a ≤所以满足条件的实数a 的范围是23a <≤ 故答案为:23a <≤ 【点睛】关键点睛:本题考查由函数的单调性求参数范围,解答本题的关键是分段函数在上单调递增,从图象上分析可得从左到右函数图象呈上升趋势,即函数()f x 在[)2+∞,上的最小值大于等于函数在(),2-∞上的最大值.则()21221a a --⨯+≤,这是容易忽略的地方,属于中档题.17.①③⑤【分析】对①由对数函数恒过即可判断;对②由函数单调性的定义即可判断函数的单调性;对③利用换元法即可求得函数的解析式;对④由奇函数的定义即可判断;对⑤由换底公式即可求得的值【详解】解:对①令解得解析:①③⑤ 【分析】对①,由对数函数恒过(1,0),即可判断; 对②,由函数单调性的定义即可判断函数的单调性; 对③,利用换元法即可求得函数()f x 的解析式; 对④,由奇函数的定义即可判断; 对⑤,由换底公式即可求得a 的值. 【详解】解:对①,令211x -=, 解得:1x =,则(1)2015f =,()f x ∴的图象过定点()1,2015,故①正确;对②,()()()12120x x f x f x -->⎡⎤⎣⎦,当12x x <时,()()12f x f x <; 当12x x >时,()()12f x f x >;()f x ∴是R 上的增函数,故②错误;对③,令1t x =+,则1x t =-;2()2f t t t ∴=-,即2()2f x x x =-,故③正确; 对④,由题意知()f x 的定义域为R , 又()f x 为奇函数,(0)0f ∴=,解得:1a =,故④不正确; 对⑤,log 8lg83lg 2=3log 2lg 2lg 2c c a ===,故⑤正确. 故答案为:①③⑤. 【点睛】方法点睛:求函数解析式常用方法:(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法; (2)换元法:已知复合函数(())f g x 的解析式,可用换元法,此时要注意新元的取值范围; (3)方程法:已知关于()f x 与1f x ⎛⎫⎪⎝⎭或()f x -的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).18.【分析】由在R 上单调减确定a3a-1的范围再根据单调减确定在分界点x=1处两个值的大小从而解决问题【详解】因为是上的减函数所以解得故答案为:【点睛】本题考查分段函数单调性问题关键根据单调性确定在分段解析:3,17⎡⎫⎪⎢⎣⎭【分析】由()f x 在R 上单调减,确定a , 3a -1的范围,再根据单调减确定在分界点x =1处两个值的大小,从而解决问题. 【详解】因为3(1)4,1()1,1aa x a x f x og x x -+<⎧=⎨≥⎩是R 上的减函数,所以10013(1)4log 10a a a a a -<⎧⎪<<⎨⎪-+≥=⎩,解得317a ≤<, 故答案为:3,17⎡⎫⎪⎢⎣⎭【点睛】本题考查分段函数单调性问题,关键根据单调性确定在分段点处两个值的大小,属于中档题.19.196【分析】将指数式化成对数式再根据对数的运算及对数的性质计算可得;【详解】解:∵∴∵∴∴解得故答案为:【点睛】本题考查指数与对数的关系对数的运算及对数的性质的应用属于中档题解析:196 【分析】将指数式化成对数式,再根据对数的运算及对数的性质计算可得; 【详解】 解:∵27a b m ==,∴2log a m =,7log b m =,1log 2m a ∴=,1log 7m b =∵1112a b +=,∴1log 2log 7log 142m m m +==,∴14=,解得196m =故答案为:196 【点睛】本题考查指数与对数的关系,对数的运算及对数的性质的应用,属于中档题.20.【分析】利用换元法可得然后采用等价转换的方法可得在的值域为最后根据二次函数的性质可得结果【详解】由令所以则令由在上的值域为等价为在的值域为的对称轴为且所以可得或所以故答案为:【点睛】本题主要考查函数解析:⎤⎡⋃⎥⎢⎣⎦⎣⎦【分析】利用换元法,可得()2221g x x ax a =-+-,然后采用等价转换的方法,可得()g x 在21,22a a a ⎡⎤--+⎣⎦的值域为[]1,0-,最后根据二次函数的性质,可得结果.【详解】由()22221x f x ax a =-+-令22,log xt x t ==,所以()()2222log 2log 1f t t a t a =-+-则令()2221g x x ax a =-+-由()f x 在21222,2a aa --+⎡⎤⎣⎦上的值域为[]1,0- 等价为()g x 在21,22a a a ⎡⎤--+⎣⎦的值域为[]1,0-()g x 的对称轴为x a =,且()()1,10g a g a =--= 所以()()22122222a a a a a a -+-+≤≤-+可得312a ≤≤或322a +≤≤所以a ⎤⎡∈⋃⎥⎢⎣⎦⎣⎦故答案为:⎤⎡⋃⎥⎢⎣⎦⎣⎦【点睛】本题主要考查函数值域的应用,难点在于使用等价转换思想,使问题化繁为简,属中档题.三、解答题21.(1)1m =-;(2)(0,7). 【分析】(1)由函数()f x 为奇函数,则()()f x f x -=-,可得()2210m x -=,从而求出m 的值.(2)由(1)即将原问题化为2610kx x --=对(1,)x ∈+∞恒有解,即216k x x=+,令1t x=,则26k t t =+,(0,1)t ∈有解,从而得出答案. 【详解】解:(1)因为函数()f x 为奇函数,则()()f x f x -=-,即11log log 11a a mx mxx x +-=---- 化简得()2210m x-=,所以1m =±,当1m =时1101mx x +=-<--不成立,当1m =-时1111mx x x x +-=--+,经验证成立 所以1m =-.(2)由(1)知函数1()log 1ax f x x +=-,则方程可化为: 216(1)501x kx x x +-+--=-,即2610kx x --=对(1,)x ∈+∞恒有解 所以分离参数得216k x x=+,令1t x =,则26k t t =+,(0,1)t ∈有解 而2067t t <+<,故k 的取值范围为(0,7). 【点睛】关键点睛:本题考查根据函数为奇函数求参数和不等式有解求参数的范围,解答本题的关键是将问题转化为2610kx x --=对(1,)x ∈+∞恒有解,分离参数即216k x x=+在(1,)x ∈+∞恒有解,属于中档题.22.(1)定义域为(2,2)-,奇函数(2)函数()f x 在(2,2)-上为增函数,证明见解析 【分析】(1)根据真数大于0可得定义域,根据奇函数的定义可得函数为奇函数;(2)设1222x x -<<<,根据对数函数的单调性可得12()()f x f x <,再根据定义可证函数()f x 在(2,2)-上为增函数. 【详解】(1)由函数有意义得202xx->+,解得22x -<<, 所以函数的定义域为(2,2)-,因为1112222()log log ()22x x f x f x x x -+-⎛⎫-===- ⎪-+⎝⎭,所以函数为奇函数.(2)因为124()log 12f x x ⎛⎫=-+ ⎪+⎝⎭,所以函数()f x 在(2,2)-上为增函数,证明:设1222x x -<<<,则120224x x <+<+<,则1244122x x >>++,则124411022x x -+>-+>++, 因为1012<<,所以12()()f x f x <,所以函数()f x 在(2,2)-上为增函数, 【点睛】思路点睛:判断函数的奇偶性的思路: ①求出定义域,并判断其是否关于原点对称;②若定义域不关于原点对称,则函数为非奇非偶函数,若定义域关于原点对称,再判断()f x -与()f x 的关系,若()()f x f x -=-,则函数为奇函数;若()()f x f x -=,则函数为偶函数.23.85【分析】将小数转化为分数,根式转化为分数幂的形式,利用指数幂的运算性质化简求值. 【详解】11131322133133221(4)1(4)()=()440.1()()()10ab ab a b a b --------⋅⋅ 原式13113322211()()(4)()410ab a b ----=原式33333002222211848555a b a b a b --=⨯⨯=⨯⨯=【点睛】本题考查指数幂的运算,要熟练掌握基本的运算法则和运算性质,小数转化为分数,根式转化为分数幂的形式,更有利于运算.24.(1)(1,1)-,()f x 在(1,1)-内为偶函数;(2)[2,0]-. 【分析】(1)由对数真数大于0可得定义域,由奇偶性定义判断奇偶性;(2)确定函数在1,22⎡⎤-⎢⎥⎣⎦的单调性可得最大值和最小值,从而得值域. 【详解】(1)由题意知:(1)(1)0x x +->,解得11x -<<, 所以函数()f x 的定义域为(1,1)-由()log [(1)(1)]()a f x x x f x -=-+=,所以函数()f x 在(1,1)-内为偶函数.(2)由2a=,有()222()log [(1)(1)]log 1f x x x x =-+=-又因为12x ⎡⎤∈⎢⎥⎣⎦,所以()f x 在⎡⎤⎢⎥⎣⎦上为增函数,在10,2⎡⎤⎢⎥⎣⎦上为减函数,所以min 21()log 224f x f ⎛=-==- ⎝⎭,max 2()(0)log 10f x f ===,所以函数()f x 在12⎡⎤⎢⎥⎣⎦内值域为[2,0]-. 【点睛】本题考查对数型复合函数的定义域,奇偶性,单调性,值域.掌握对数函数的性质是解题关键.本题还需掌握复合函数的单调性的判断:同增异减.25.(1)16-;(2) 【分析】(1)由指数幂的运算法则直接计算即可;(2)由2111222x x x x --⎛⎫+=++ ⎪⎝⎭可求出1122x x -+,再利用()3311122221x x x x x x ---⎛⎫+=++- ⎪⎝⎭即可求出.【详解】(1)原式412500102012=-+⨯- )10201126=+-20201616=+-=-;(2)14x x -+=,2111222426x x x x --⎛⎫∴+=++=+= ⎪⎝⎭, 又11220x x ->+,1122x x -∴=+())112233122141x x x x x x ---⎛⎫+=+-=-= ⎪⎝⎭+【点睛】本题考查指数幂的运算,考查完全平方公式和立方和公式的应用,属于基础题.26.(18x ;(2)min max 1(),()24f x f x =-= 【分析】(1)利用指数与对数不等式求出x 的范围,求出交集即可.(2)通过x 的范围求出log 2x 的范围,化简函数表达式,通过二次函数的最值求出函数的最值即可. 【详解】(1)由2x ≤256得x≤8,21log 2x >得2,28x x ∴.(2)由(18x 得21log 32x ,f (x )=2log 2x ⎛⎫⎪⎝⎭⎭=(log 2x ﹣log 22)()2=(log 2x ﹣1)(log 2x ﹣2)=2231log 24x ⎛⎫-- ⎪⎝⎭,当log 2x =32,f (x )min =﹣14; 当log 2x =3,f (x )max =2. 【点睛】本题考查指数函数、对数函数的单调性,考查换元,配方法,考查学生的计算能力,属于中档题.。
指数函数与对数函数专项训练(解析版)

指数函数与对数函数专项训练一、单选题1.(23-24高一下·云南玉溪·期末)函数()()2lg 35f x x x =-的定义域为()A .()0,∞+B .50,3⎛⎫⎪C .()5,0,3∞∞⎛⎫-⋃+ ⎪D .5,3⎛⎫+∞ ⎪【答案】C【详解】由题意知,2350x x ->,即(35)0x x ->,所以0x <或53x >.故选:C.2.(23-24高一上·云南昭通·期末)函数()327x f x x =+-的零点所在的区间是()A .()0,1B .31,2⎛⎫ ⎪⎝⎭C .3,22⎛⎫⎪D .()2,3【答案】B【详解】∵3x y =和27y x =-均在R 上单调递增,∴()327x f x x =+-在R 上单调递增;又()12f =-,327402f ⎛⎫=-> ⎪⎝⎭,∴()f x 在31,2⎛⎫ ⎪⎝⎭上有唯一的零点,故选:B.3.(23-24高一上·云南昆明·期末)滇池是云南省面积最大的高原淡水湖,一段时间曾由于人类活动的加剧,滇池水质恶化,藻类水华事件频发.在适当的条件下,藻类的生长会进入指数增长阶段.滇池外海北部某年从1月到7月的水华面积占比符合指数增长,其模型为23 1.65x y -=⨯.经研究“以鱼控藻”模式能有效控制藻类水华.如果3月开始向滇池投放一定量的鱼群后,鱼群消耗水华面积占比呈现一次函数 5.213.5y x =-,将两函数模型放在同期进行比较,如图所示.下列说法正确的是(参考数据:671.6520.2,1.6533.3≈≈)()A .水华面积占比每月增长率为1.65B .如果不采取有效措施,到8月水华的面积占比就会达到60%左右C .“以鱼控藻”模式并没有对水华面积占比减少起到作用D .7月后滇池藻类水华会因“以鱼控藻”模式得到彻底治理【答案】B【详解】对于A ,由于模型23 1.65x y -=⨯呈指数增长,故A 错误;对于B ,当8x =时,8220.63 1.605326.y -⨯==⨯≈,故B 正确;对于C ,因为鱼群消耗水华面积占比呈现一次函数 5.213.5y x =-,所以“以鱼控藻”模式对水华面积占比减少起到作用,故C 错误;对于D ,由两函数模型放在同期进行比较的图象可知,7月后滇池藻类水华并不会因“以鱼控藻”模式得到彻底治理,故D 错误.故选:B.4.(23-24高一上·云南昭通·期末)()()1log 14a f x x =-+(0a >且1a ≠)的图象恒过定点M ,幂函数()g x 过点M ,则12g ⎛⎫⎪⎝⎭为()A .1B .2C .3D .4【答案】D【详解】()()1log 14a f x x =-+,令11x -=,得2x =,()124f =,则()()1log 14a f x x =-+(0a >且1a ≠)恒过定点12,4M ⎛⎫⎪⎝⎭,设()g x x α=,则124α=,即2α=-,即()2g x x -=,∴142g ⎛⎫= ⎪⎝⎭,故选:D.5.(23-24高一下·云南楚雄·期末)已知0.320.3lo g 3,2,lo g 2a b c -===,则()A .c b a <<B .<<b c aC .<<c a bD .a b c<<【答案】A【详解】因为2log y x =在(0,)+∞上单调递增,且234<<,所以222log 2log 3log 4<<,所以21log 32<<,即12a <<,因为2x y =在R 上递增,且0.30-<,所以0.300221-<<=,即01b <<,因为0.3log y x =在(0,)+∞上单调递减,且12<,所以0.30.3log 1log 2>,所以0.3log 20<,即0c <,所以c b a <<.故选:A6.(23-24高一上·云南·期末)若()21()ln 1||f x x x =+-,设()0.3(3),(ln2),2a f b f c f =-==,则a ,b ,c 的大小关系为()A .c a b >>B .b c a >>C .a b c >>D .a c b>>【答案】D【详解】由题意知()(),00,x ∈-∞⋃+∞,由()()()21ln 1f x x f x x⎡⎤-=-+-=⎣⎦-,所以()f x 为偶函数,图象关于y 轴对称,当0x >时,由复合函数的单调性法则知()f x 随x 的增大而增大,即()0,x ∈+∞,()21()ln 1||f x x x =+-单调递增,因为()()33a f f =-=,()0.3(ln2),2b f c f ==,且00.3112222=<<=,0ln2lne 1<<=,所以0.3ln 223<<,所以()()()0.3ln223f f f <<-,即b c a <<,也就是a c b >>.故选:D7.(23-24高一下·云南·期末)设222,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若关于x 的方程2[()](2)()20f x a f x a -++=恰有5个不同实数解,则实数a 的取值范围是()A .[]1,2B .(2,3]C .()2,+∞D .()3,+∞【答案】B【详解】方程2[()](2)()20f x a f x a -++=化为[()2][()]0f x f x a --=,解得()2f x =或()f x a =,函数()f x 在(,0]-∞上单调递增,函数值的集合为(2,3],在(0,1]上单调递减,函数值的集合为[0,)+∞,在[1,)+∞上单调递增,函数值的集合为[0,)+∞,在同一坐标系内作出直线2,y y a ==与函数()y f x =的图象,显然直线2y =与函数()y f x =的图象有两个交点,由关于x 的方程2[()](2)()20f x a f x a -++=恰有5个不同实数解,则直线y a =与函数()y f x =的图象有3个交点,此时23a <≤,所以实数a 的取值范围是(2,3].故选:B8.(23-24高一下·云南昆明·期末)若()12:lo g 11,:39a p a q --<<,则p 是q 的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要【答案】A【详解】对于()22:log 11log 2p a -<=,则012a <-<,解得13a <<;对于1:39a q -<,则12a -<,解得3a <;因为{}|13a a <<是{}|3a a <的真子集,所以p 是q 的充分不必要条件.故选:A.二、多选题9.(23-24高一上·云南迪庆·期末)已知函数()()2ln 2f x x x =-,则下列结论正确的是()A .函数()f x 的单调递增区间是[)1,+∞B .函数()f x 的值域是RC .函数()f x 的图象关于1x =对称D .不等式()ln 3f x <的解集是()1,3-【答案】BC【详解】对于A ,当1x =时,2210x x -=-<,此时()()2ln 2f x x x =-无意义,故A 错误;对于B ,由于()22y g x x x ==-的值域为[)1,-+∞,满足()[)0,1,+∞⊆-+∞,所以函数()f x 的值域是R ,故B 正确;对于C ,由题意()()()22ln 2ln 11f x x x x ⎡⎤=-=--⎣⎦,且定义域为()(),02,-∞+∞ ,它满足()()()21ln 11f x x f x+=-=-,即函数()f x 的图象关于1x =对称,故C 正确;对于D ,由于()f x 的定义域为()(),02,-∞+∞ ,故D 错误.故选:BC.10.(23-24高一上·云南昆明·期末)已知函数2212,0()2|log ,0x x x f x x x ⎧--≤⎪=⎨⎪⎩,若1234x x x x <<<,且()()()()1234fx fx fx fx ===,则下列结论中正确的是()A .122x x +=-B .1204x x <<C .()41,4x ∈D .342x x +的取值范围是332,4⎡⎫⎪⎢⎣⎭【答案】BC【详解】作出函数2212,0()2|log ,0x x x f x x x ⎧--≤⎪=⎨⎪⎩的图像如图.对于选项A,根据二次函数的对称性知,12()224x x +=⨯=--,故A 项错误;对于选项B ,因120x x <<,由上述分析知124x x +=-,则21212120()()()42x x x x x x --<=-⋅-≤=,因12x x ≠,故有1204x x <<,即B 项正确;对于选项C ,如图,因0x ≤时,2211()2(2)2222f x x x x =--=-++≤,0x >时,2()|log |f x x =,依题意须使20|log |2x <<,由2|log |0x >得1x ≠,由2|log |2x <解得:144x <<,故有3411,144x x <<<<,即C项正确;对于选项D ,由图知2324log log x x -=,可得341x x =,故431x x =,则343322x x x x ++=,3114x <<,不妨设21,(,1)4y x x x =+∈,显然函数2y x x =+在(1,14)上单调递减,故23334x x <+<,即342x x +的取值范围是(333,4),故D 项错误.故选:BC.11.(23-24高一上·云南昆明·期末)关于函数()ln f x x x =+,以下结论正确的是()A .方程()0f x =有唯一的实数解c ,且(0,1)c ∈B .对,0,()()()x y f xy f x f y ∀>=+恒成立C .对()1212,0x x x x ∀>≠,都有()()1212f x f x x x ->-D .对12,0x x ∀>,均有()()121222f x f x x x f ++⎛⎫≤⎪【答案】AC【详解】A 选项,由于1y x =在R 上单调递增,2ln y x =在()0,∞+上单调递增,故()ln f x x x =+在定义域()0,∞+上单调递增,又()11ln 30,11033f f ⎛⎫=-<=> ⎪⎝⎭,故由零点存在性定理可得,方程()0f x =有唯一的实数解c ,且(0,1)c ∈,A 正确;B 选项,()ln f xy xy xy =+,()()ln ln ln f x f y x x y y x y xy +=+++=++,显然,0x y ∀>,由于xy 与x y +不一定相等,故()()f x f y +与()f xy 不一定相等,B 错误;C 选项,由A 选项可知,()ln f x x x =+在定义域()0,∞+上单调递增,对()1212,0x x x x ∀>≠,都有()()12120f x f x x x ->-,C 正确;D 选项,12,0x x ∀>,均有121212ln 222x xx x x x f +++⎛⎫=+ ⎪⎝⎭,()()12112212121212ln ln ln ln 22222f x f x x x x x x x x x x x x x ++++++==+=+,由于12122x x x x +≥,当且仅当12x x =时,等号成立,故1212ln ln 2x x x x +≥,即()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭,D 错误.故选:AC 三、填空题12.(23-24高一上·云南昆明·期末)()()2,(1)29,1x a x f x x ax a x ⎧>⎪=⎨-++-≤⎪⎩是R 上的单调递增函数,则实数a 的取值范围为.【答案】[]2,5【详解】因为在R 递增,则112129a a a a a⎧⎪⎪≥⎨⎪-++-≤⎪⎩>,解得:25a ≤≤,故答案为:[]2,513.(23-24高一下·云南昆明·期末)设函数()ln(1)f x x =+,2()g x x a =-+,若曲线()y f x =与曲线()y g x =有两个交点,则实数a 的取值范围是.【答案】(0,)+∞【详解】当0x ≥时,()ln(1),f x x =+当0x <时()ln(1),f x x =-+函数图象示意图为则2()g x x a =-+与()ln (1)f x x =+有两个零点知a 的取值范围是(0,)+∞.故答案为:(0,).+∞14.(23-24高一下·云南玉溪·期末)苏格兰数学家纳皮尔(J.Napier ,1550-1617)在研究天文学的过程中,经过对运算体系的多年研究后发明的对数,为当时的天文学家处理“大数”的计算大大缩短了时间.即就是任何一个正实数N 可以表示成10(110,)n N a a n =⨯≤<∈Z ,则lg lg (0lg 1)N n a a =+≤<,这样我们可以知道N 的位数为1n +.已知正整数M ,若10M 是10位数,则M 的值为.(参考数据:0.9 1.1107.94,1012.56≈≈)【答案】8或9【详解】依题意可得910101010M ≤<,两边取常用对数可得91010lg10lg lg10M ≤<,即910lg 10M ≤<,所以0.9lg 1M ≤<,即0.91010M ≤<,又M 为正整数,所以8M =或9M =.故答案为:8或9四、解答题15.(23-24高一上·云南昆明·期末)设函数()log (3)(,10a f x x a =-+>且1)a ≠.(1)若(12)3f =,解不等式()0f x >;(2)若()f x 在[4,5]上的最大值与最小值之差为1,求a 的值.【答案】(1)10(,)3+∞(2)2a =或12a =【详解】(1)由(12)3f =可得log (123)13a -+=,解得3a =,即3()log (3)1,(3)f x x x =-+>,则()0f x >,即3log (3)10x -+>,即310,1333x x x >⎧⎪∴>⎨->⎪⎩,故不等式()0f x >的解集为10(,)3+∞;(2)由于()f x 在[4,5]上的最大值与最小值之差为1,故log 11(log 21)1a a +-+=,即log 21,2a a =∴=或12a =,即a 的值为2a =或12a =.16.(23-24高一上·云南昭通·期末)化简求值:(1)()13103420.027π4160.49--++;(2)ln22311lg125lg40.1e log 9log 1632-+++⨯.【答案】(1)8(2)9【详解】(1)()13103420.027π4160.49--++()()()1313423420.3120.7⎡⎤⎡⎤⎡⎤=-++⎣⎦⎣⎦⎣⎦0.3180.78=-++=;(2)ln22311lg125lg4lg 0.1e log 9log 1632-++++⨯3211112lg34lg2lg5lg23222lg2lg3=+-++⨯lg 5lg28=++9=.17.(23-24高一上·云南·期末)已知定义域为R 的函数()11333xx m f x +-⋅=+是奇函数.(1)求m 的值并利用定义证明函数()f x 的单调性;(2)若对于任意t ∈R ,不等式()()22620f t t f t k -+-<恒成立,求实数k 的取值范围.【答案】(1)1m =,证明见解析(2)3k <-【详解】(1)因为()f x 是奇函数,函数的定义域为R ,所以(0)0f =,所以1033m-=+,所以1m =,经检验满足()()f x f x -=-易知()11312133331x x x f x +-⎛⎫==-+ ⎪++⎝⎭设12x x <,则2112122(33)()()3(31)(31)x x x x f x f x --=++因为3x y =在实数集上是增函数,故12()()0f x f x ->.所以()f x 在R 上是单调减函数(2)由(1)知()f x 在(,)-∞+∞上为减函数.又因为()f x 是奇函数,所以()()22620f t t f t k -+-<等价于()()2262f t t f k t-<-,因为()f x 为减函数,由上式可得:2262t t k t ->-.即对一切t R ∈有:2360t t k -->,从而判别式361203k k ∆=+<⇒<-.所以k 的取值范围是3k <-.18.(23-24高一下·云南昆明·期末)已知函数1()xx f x a a ⎛⎫=- ⎪⎝⎭ (0a >且1a ≠).(1)讨论()f x 的单调性(不需证明);(2)若2a =,(ⅰ)解不等式3()2≤f x x;(ⅱ)若21()(22))2(x g f x t x x f +=-+在区间[]1,1-上的最小值为74-,求t 的值.【答案】(1)答案见解析(2)(ⅰ)(](],10,1-∞-⋃;(ⅱ)2t =-或2t =【详解】(1)若1a >,则1()()x xf x a a=-在R 上单调递增;若01a <<,则1()()x xf x a a=-在R 上单调递减.(2)(ⅰ)3()2≤f x x ,即132()022xx x --≤,设13()2()22xx g x x=--,则(1)0g =,()()g x g x -=-,所以()g x 为奇函数,当0x >时,()g x 单调递增,由()(1)g x g ≤,解得01x <≤,根据奇函数的性质,当0x <时,()(1)g x g ≤的解为1x ≤-,综上所述,3()2≤f x x的解集为(](],10,1-∞-⋃.(ⅱ)2122()2(2)2()222(22)x x x x x g x f x tf x t +--=-+=++-,令22x x m --=,因为[]1,1x ∈-,则33,22m ⎡⎤∈-⎢⎥⎣⎦,所以2()()22g x h m m tm ==++,其图象为开口向上,对称轴为m t=-的抛物线,①当32t -≤-,即32t ≥时,min 39177()()3232444h m h t t =-=-+=-=-,解得2t =.②当3322t -<-<,即3322t -<<时,222min 7()()2224h m h t t t t =-=-+=-+=-,解得1152t =,2152t =-矛盾.③当32t -≥,即32t ≤-时,min 39177()()3232444h m h t t ==++=+=-,解得2t =-.综上所述,2t =-或2t =.19.(23-24高一上·云南昆明·期末)函数()e (0)x f x mx m =-<.(1)求(1)f -和(0)f 的值,判断()f x 的单调性并用定义加以证明;(2)设0x 是函数()f x 的一个零点,当1em <-时,()02f x k >,求整数k 的最大值.【答案】(1)1(1)e f m --=+,(0)1f =,()f x 在定义域R 上单调递增,证明见解析,(2)整数k 的最大值为1-【详解】(1)1(1)e f m --=+,(0)1f =,判断()f x 在定义域R 上单调递增,证明如下:在R 上任取1x ,2x ,且12x x <,则1212121212()()e (e )(e e )()x x x x f x f x mx mx m x x -=---=---,因为12x x <,0m <,所以12e e x x <,120x x -<,0m ->,所以12e e 0x x -<,12()0m x x --<,所以1212(e e )()0x x m x x ---<,即12())0(f x f x -<,所以12()()f x f x <,所以()f x 在定义域R 上单调递增.(2)由题意得0()0f x =,即00e 0x mx -=,1em <-,则10e m +<,即0(1)0()f f x -<=,由()f x 是R 上的增函数,所以01x -<,又0(0)10()f f x =>=,所以010x -<<,0200(2)e 2x f x mx =-002e 2e x x =-,令01e (ext =∈,1),则22()2(1)1g t t t t =-=--,所以()g t 在1(e ,1)上单调递减,所以()()11g t g >=-,即0(2)1f x >-,当1em <-时,0(2)f x k >,所以1k ≤-,所以整数k 的最大值为1-.。
指数函数对数函数专项训练

指数函数对数函数专项训练一、介绍指数函数和对数函数是高中数学中的重要概念,它们在数理化学、经济学、生物学等学科中都有广泛的应用。
本文将对指数函数和对数函数进行深入探讨,包括其定义、性质、图像、运算规律以及实际应用等方面。
二、指数函数1. 定义指数函数是以底数为常数的函数,自变量位于实数集上。
一般形式为:f(x)=a x,其中a是底数,x是自变量,f(x)是函数值。
底数a必须是一个正实数且不等于1。
2. 图像和性质•当底数a>1时,指数函数的图像呈现上升趋势,且在x=0处经过点(0, 1)。
•当底数0<a<1时,指数函数的图像呈现下降趋势,且在x=0处经过点(0,1)。
•指数函数的性质包括:增减性、奇偶性、单调性和零点等。
3. 运算规律指数函数有一些重要的运算规律,如指数相乘、指数相除、指数相加、指数相减等。
这些运算规律可以简化指数函数的计算。
三、对数函数1. 定义对数函数是指以某个正实数为底数的函数。
对数函数的定义与指数函数是互逆的。
一般形式为:f(x)=log a x,其中a是底数,x是自变量,f(x)是函数值。
2. 图像和性质•对数函数的图像呈现递增趋势,与指数函数的图像相互关联。
•对数函数的性质包括:定义域、值域、奇偶性、单调性等。
3. 运算规律对数函数有一些重要的运算规律,如对数乘法法则、对数除法法则、对数加法法则、对数减法法则等。
这些运算规律可以简化对数函数的计算。
四、指数函数和对数函数的关系1. 指数函数和对数函数的互逆关系指数函数和对数函数是一对互逆函数,即指数函数和对数函数可以互相抵消。
例如,a log a x=x和log a(a x)=x。
2. 指数函数和对数函数的性质指数函数和对数函数具有一些重要的性质: - f(x)=a x和g(x)=log a x是一对互为反函数的函数; - 两个函数的图像关于y=x对称; - 指数函数和对数函数的复合函数为x本身; - 指数函数和对数函数的性质可以相互推导。
(完整版)指数函数对数函数专练习题(含答案)

指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小.对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.指数函数习题一、选择题1.定义运算a ⊗b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ),则函数f (x )=1⊗2x的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x)的大小关系是( )A .f (b x )≤f (c x)B .f (b x )≥f (c x)C .f (b x )>f (c x)D .大小关系随x 的不同而不同3.函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2)4.设函数f (x )=ln [(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x-2x-1)的定义域是B ,若A ⊆B ,则正数a 的取值范围( ) A .a >3 B .a ≥3 C .a > 5D .a ≥ 55.已知函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A .[94,3)B .(94,3)C .(2,3)D .(1,3)6.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题7.函数y =a x(a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是________.9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题10.求函数y =2的定义域、值域和单调区间.11.(2011·银川模拟)若函数y =a 2x +2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.1.解析:由a ⊗b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b )得f (x )=1⊗2x=⎩⎨⎧2x(x ≤0),1 (x >0).答案:A2. 解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增. 若x ≥0,则3x≥2x≥1,∴f (3x)≥f (2x).若x <0,则3x<2x<1,∴f (3x)>f (2x).∴f (3x)≥f (2x).答案:A3.解析:由于函数y =|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4. 解析:由题意得:A =(1,2),a x-2x>1且a >2,由A ⊆B 知a x-2x>1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3.答案:B5. 解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,注意a 8-6>(3-a )×7-3,所以⎩⎨⎧a >13-a >0a 8-6>(3-a )×7-3,解得2<a <3.答案:C6. 解析:f (x)<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,当a >1时,必有a -1≥12,即1<a ≤2,当0<a <1时,必有a ≥12,即12≤a <1,综上,12≤a <1或1<a ≤2.答案:C7. 解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b没有公共点,则b 应满足的条件是b ∈[-1,1].答案:[-1,1]9. 解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110. 解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1.∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-4或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =2341()2x x --+的值域为[28,1]. 由t =-x 2-3x +4=-(x +32)2+254(-4≤x ≤1)可知,当-4≤x ≤-32时,t 是增函数,当-32≤x ≤1时,t 是减函数.根据复合函数的单调性知:y =2341()2x x --+[-4,-32]上是减函数,在[-32,1]上是增函数.∴函数的单调增区间是[-32,1],单调减区间是[-4,-32].11. 解:令a x=t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[1a,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去). ②若0<a <1,∵x ∈[-1,1],∴t =a x∈[a ,1a ],故当t =1a,即x =-1时,y max =(1a+1)2-2=14.∴a =13或-15(舍去).综上可得a =3或13.12. 解:法一:(1)由已知得3a+2=18⇒3a=2⇒a =log 32.(2)此时g (x )=λ·2x-4x,设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立. 由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一. (2)此时g (x )=λ·2x-4x,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x-ln4·4x=ln2[-2·(2x )2+λ·2x ]≤0成立.设2x=u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立.因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.对数与对数函数同步练习一、选择题1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a -2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或13、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n +D 、()12m n -4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=g的两根是,αβ,则αβg 的值是( )A 、lg5lg 7gB 、lg35C 、35D 、351 5、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭UB 、()1,11,2⎛⎫+∞ ⎪⎝⎭UC 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<<10、2log 13a <,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭UB 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭U11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的 二、填空题13、若2log 2,log 3,m n a a m n a +=== 。
高考数学总复习 指数函数与对数函数会考专题专练

高中数学会考指数函数与对数函数专题训练一、选择题:(本大题共12小题,每小题4分,共48分)143的结果为 A 、5B 、5C 、-5D 、-52、函数y=5x+1的反函数是A 、y=log 5(x+1)B 、y=log x 5+1C 、y=log 5(x -1)D 、y=log (x+1)53、函数f x x()=-21,使f x ()≤0成立的x 的值的集合是A 、{}x x <0B 、{}x x <1C 、{}x x =0D 、{}x x =14、设5.1344.029.01)21(,8,4-===y y y ,则A 、y 3>y 1>y 2B 、y 2>y 1>y 3C 、y 1>y 2>y 3D 、y 1>y 3>y 25、25532lg 2lg lg 16981-+等于A 、lg2B 、lg3C 、lg4D 、lg56、若3a=2,则log 38-2log 36用a 的代数式可表示为A 、a -2B 、3a -(1+a)2C 、5a -2D 、3a -a 27、某企业2002年的产值为125万元,计划从2003年起平均每年比上一年增长20%,问哪一年这个企业的产值可达到216万元A 、2004年B 、2005年C 、2006年D 、2007年8、“等式log 3x 2=2成立”是“等式log 3x=1成立”的 A 、充分不必要条件 B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件9、若f(10x )=x ,则f(3)的值是A 、log 310B 、lg3C 、103D 、31010、若lg lg 0(1,1),()()x x a b a b f x a g x b +=≠≠==其中则函数与的图象 A 、关于直线y =x 对称 B 、关于x 轴对称C 、关于y 轴对称D 、关于原点对称11、下列函数图象中,函数y a a a x =>≠()01且,与函数y a x =-()1的图象只能是y y y yO x O x O x O xA B C D111112、下列说法中,正确的是①任取x ∈R 都有3x >2x ②当a >1时,任取x ∈R 都有a x >a -x ③y =(3)-x 是增函数④y =2|x |的最小值为1 ⑤在同一坐标系中,y =2x与2y log x =的图象关于直线y=x对称A 、①②④B 、④⑤C 、②③④D 、①⑤二、填空题:(本大题共4小题,每小题4分,共16分)13、已知21366log log x =-,则x 的值是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学会考指数函数与对数函数专题训练
一、选择题:(本大题共12小题,每小题4分,共48分)
143
的结果为 A 、5
B 、5
C 、-5
D 、-5
2、函数y=5x
+1的反函数是
A 、y=log 5(x+1)
B 、y=log x 5+1
C 、y=log 5(x -1)
D 、y=log (x+1)5
3、函数f x x
()=-21,使f x ()≤0成立的x 的值的集合是
A 、{}
x x <0
B 、{}
x x <1
C 、{}
x x =0
D 、{}
x x =1
4、设5.1344.029.01)2
1
(,8,4-===y y y ,则
A 、y 3>y 1>y 2
B 、y 2>y 1>y 3
C 、y 1>y 2>y 3
D 、y 1>y 3>y 2
5、25532
lg 2lg lg 16981
-+等于
A 、lg2
B 、lg3
C 、lg4
D 、lg5
6、若3a
=2,则log 38-2log 36用a 的代数式可表示为
A 、a -2
B 、3a -(1+a)2
C 、5a -2
D 、3a -a 2
7、某企业2002年的产值为125万元,计划从2003年起平均每年比上一年增长20%,问哪一年这个企业的产值可达到216万元
A 、2004年
B 、2005年
C 、2006年
D 、2007年
8、“等式log 3x 2=2成立”是“等式log 3x=1成立”的 A 、充分不必要条件 B 、必要不充分条件
C 、充要条件
D 、既不充分也不必要条件
9、若f(10x )=x ,则f(3)的值是
A 、log 310
B 、lg3
C 、103
D 、310
10、若lg lg 0(1,1),()()x x a b a b f x a g x b +=≠≠==其中则函数与的图象 A 、关于直线y =x 对称 B 、关于x 轴对称
C 、关于y 轴对称
D 、关于原点对称
11、下列函数图象中,函数y a a a x =>≠()01且,与函数y a x =-()1的图象只能是
y y y y
O x O x O x O x
A B C D
1
1
1
1
12、下列说法中,正确的是
①任取x ∈R 都有3x >2x ②当a >1时,任取x ∈R 都有a x >a -x ③y =(3)-x 是增
函数
④y =2|x |
的最小值为1 ⑤在同一坐标系中,y =2x
与2y log x =的图象关于直线y=x
对称
A 、①②④
B 、④⑤
C 、②③④
D 、①⑤
二、填空题:(本大题共4小题,每小题4分,共16分)
13、已知21366log log x =-,则x 的值是 。
14、计算:21
0319)4
1
()2(4)21(----+-⋅- = .
15、函数y=lg(ax+1)的定义域为(-∞,1),则a= 。
16、当x ∈[-2,2)时,y =3-x
-1的值域是 _ .
三、解答题:(本大题共4小题,共36分)
17、(8分)已知函数f (x )=a x +b 的图象过点(1,3),且它的反函数f -1(x )的图象过(2,
0)点,试确定f (x )的解析式.
18、(8分)设A={x∈R|2≤x ≤ },定义在集合A上的函数y=log a x
(a>0,a≠1)的最大值比最小值大1,求a的值
19、(10分).已知f(x)=x2+(2+lg a)x+lg b,f(-1)=-2且f(x)≥2x恒成立,
求a、b的值.
20、(10分)设0≤x≤2,求函数y=
12
2
421
2
x x a
a
-
-⋅++的最大值和最小值.
数学参考答案 三、指数函数与对数函数
一、选择题: BCCDA ABBBC CB
二、填空题: 14 619. 15. -1 16.889⎛⎤
- ⎥⎝⎦
,
. 三、解答题:
17. f (x )=2x +1
18.解: a >1时,y =log a x 是增函数,log a π-log a 2=1,即log a
2π=1,得a =2π.
0<a <1时,y =log a x 是减函数,log a 2-log a π=1,即log a π2=1,得a =π
2. 综上知a 的值为2π或π
2. 19.解:由f (-1)=-2得:即lg b =lg a -1 ①10
1
=a b 由f (x )≥2x 恒成立,即x 2+(lg a )x
+lg b ≥0, 把①代入得,lg 2
a -4lg a +4≤0,(lg a -2)2
≤0 ∴lg a =2,∴a =100,
b =10
20.解:设2x
=t ,∵0≤x ≤2,∴1≤t ≤4 原式化为:y =
2
1(t -a )2
+1 ①当a ≤1时,y min =942,2322
max 2+-=+-a a y a a ;
②当1<a ≤25时,y min =1,y max =23
22+-a a ;
③当25<a <4 时 y min =1,y max =2
492
a a -+
④当a ≥4时,y min =2
32,9422max 2+-=+-a a y a a .。