第二章 细胞的基本功能
生理学 第二章 细胞的基本功能

+
2. 继发性主动转运
方向: 低→高 介导蛋白质:转运蛋白 分类: 同向转运 逆向转运 转运物质举例:
Na
+
葡萄糖(小肠上皮、肾小 管上皮)、氨基酸
小分子物质跨膜运输方式的比较
单纯扩散 运输方向 载体 能量 举例 顺浓度梯度 不需要 不耗能 O2、CO2、H2O、 甘油、乙醇、苯 等 易化扩散 顺浓度梯度 需要 不耗能 葡萄糖进入红细 胞 主动转运 逆浓度梯度 需要 耗能 Na+、K+、Ca+等 离子; 小肠吸收葡萄糖、 氨基酸等
静息状态下细胞膜对K+的通透性最大
3)膜外正电变为流动阻力
4)当动力(浓度差)=阻力(电位 差)时,跨膜流动停止
5)达到 K+的电-化学平衡电位,
即 K+平衡电位。
结论:静息电位相当于K+平衡电位
3. 静息电位小结
1) K+外流是静息电位形成的主要原因,静息电位接近于K+的 电-化学平衡电位。 2) 静息状态时细胞膜对Na+也有一定的通透性,通常静息电位 略低于K+平衡电位。 3)静息电位=极化状态,是一个现象的两种表达方式。 4)静息电位的大小主要受细胞内外K+浓度的影响,细胞代谢障 碍也可影响静息电位。
一、小分子物质和离子的跨膜转运
二、大分子物质和颗粒物质的跨膜转运
一、小分子物质和离子的跨膜转运
(一)被动转运
(二)主动转运
(一)被动转运
概念: 是指物质从高浓度一侧向低浓度一侧(顺浓度差)的跨膜 转运形式,转运过程不需要细胞代谢提供能量,其动力为细 胞膜两侧存在的浓度差(或电位差)。 分类: 1.单纯扩散(不需膜蛋白辅助) 2.易化扩散(需膜蛋白辅助)
临床医学生理第二章

第二章细胞的基本功能一、名词解释1.单纯扩散;2.易化扩散;3.主动转运;4.阈值(阈强度);5.阈电位;6.钠-钾泵;7.静息电位;8.动作电位;9.刺激;10.兴奋;11.兴奋性;12.兴奋—收缩耦联;13.等长收缩和等张收缩;14.前负荷;15.后负荷;16.终板电位;17.强直收缩二、填空题1.细胞膜的基本结构是_______模型2.参与易化扩散的蛋白质包括_______和_______。
3.可兴奋细胞包括:______、_______和_______。
4.动作电位在同一细胞上的传导方式是________。
5.静息电位负值增加的细胞膜状态称为_______。
6.构成动作电位除极过程的主要电流是_______。
7.可兴奋组织受刺激后产生兴奋的标志是_______。
8.主动转运的特点是_______浓度梯度转运。
9.动作电位去极化过程中Na+内流的转运方式属于______扩散。
10.脂溶性小分子(O2和CO2)通过细胞膜的转运方式是_______。
11.阈电位是膜对_______的通透性突然增大的临界的膜电位数值。
12.静息电位的产生是由于细胞膜对_____离子通透性增大所造成的,故接近___的平衡电位。
13.降低神经细胞外液K+浓度,静息电位幅值_______,动作电位幅度______。
14.降低神经细胞外液Na+浓度,静息电位幅值________,动作电位幅度______。
15.Na+泵是______酶,它分解1分子A TP可以从胞外泵入_______,从胞内泵出_______。
16.影响骨骼肌收缩的因素有_______、_______、和________。
17.同一细胞上动作电位大小不随和而改变的现象称为“全或无”现象。
18.当肌纤维处于最适初长度时,肌小节内的粗、细肌丝处于最理想的重叠状态,此时肌肉若作等长收缩,它产生的最大,若作无负荷收缩,它的最大。
三、是非题1.细胞膜的超极化意味着兴奋。
第二章细胞的基本功能

第二章细胞的基本功能单纯扩散:脂溶性小分子物质以物理学上的扩散原理,从浓度高的一侧向浓度低的一侧做跨膜运动,不需要细胞提供能量称为单纯扩散。
易化扩散:水溶性小分子或带电离子借助载体或通道,由细胞膜高浓度向低浓度的跨膜转运过程不消耗能量。
主动转运:某些物质在膜蛋白的帮助下,由细胞代谢功能进行逆浓度梯度或电位梯度跨膜转运称为主动转运。
静息电位:细胞静息状态时,细胞膜两侧存在的外正内负且相对平稳的电位差。
动作电位:细胞在进行电位基础上接受有效刺激产生的一个迅速的可向远处传播的膜电位波动。
阈刺激:当刺激持续的时间和刺激的变化率一定时,引起组织细胞兴奋所需要的最小刺激强度。
阈电位:能使细胞膜上的钠离子通道全部打开,触发动作电位的膜电位临界值。
局部电流:静息部位膜内负外正,兴奋部位膜极性反转,兴奋区与非兴奋区之间存在的电位差,形成局部电流。
兴奋:细胞接受刺激后产生动作电位的过程及其表现,动作电位是细胞兴奋的客观指标。
兴奋性:可兴奋细胞接受刺激后产生兴奋的能力或特性,阈刺激和阈程强度是衡量细胞兴奋性的指标。
极化:细胞安静状态下膜外带正电膜内带负电的状态。
去极化:静息电位减小表示膜的极化状态减弱,这种静息电位减小的过程或状态称为去极化。
绝对不应期:在兴奋发生后的最初一段时间内,无论是加多强的刺激,也不能使细胞再次兴奋,这段时间称为绝对不应期。
相对不应期:在绝对不应期后兴奋性逐渐恢复受刺激后可发生兴奋,但刺激强度必须大于原来的阈值,这段时间称为相对不应期。
肌节:相邻两条z线之间的区域(1/2I+A+1/2I),是肌肉收缩和舒张的最基本单位。
在体骨骼肌安静时肌节长度约为2.0~2.2微米。
静息电位的形成机制:安静情况下,未受刺激的细胞膜对钾离子的通透性大,膜内K†浓度高,K†向外扩散;由于细胞内的阴离子不能通过细胞膜,因此出现“外正内负”的跨膜电位差;随着K†向外扩散的进行,这种电位差加大;而这种电位差是K†向外扩散的阻力,当这种阻力(电位差)和K†向外扩散的动力(浓度差)相等时,K†向外净扩散为0,膜电位不再发生变化而稳定于某一数值,即K†平衡电位。
生理学第二章_细胞的基本功能

出胞(exocytosis)
胞质内的大分子物质以分泌囊泡的形式排出细胞的过程。 例如
外分泌腺细胞排放酶原颗粒和粘液 内分泌腺细胞分泌激素 神经纤维末梢神经递质的释放。 形式 持续性出胞:安静自发 Байду номын сангаас调节性出胞:诱导释放
效应器酶:催化生成第二信使 腺苷酸环化酶 (AC)、磷脂酶C (PLC)、 磷脂酶A2 (PLA2)、鸟苷酸环化酶 (GC)
离子通道 转运蛋白
第二信使 (second messenger)
环磷酸腺苷(cAMP)、三磷酸肌醇(IP3)、二酰甘油(DG)、环磷 酸鸟苷(cGMP)、Ca2+
作用:使靶蛋白(蛋白激酶、离子通道)磷酸化、构象变化
Ca2+信号系统 Ca2+
总结:G蛋白偶联受体介导的信号转导过程
第一信使
G蛋白耦联 受体
G蛋白 α α
G蛋白 GT
GDβγ
PP
细胞 功能 改变
…
…
效应器酶 第二信使
蛋白激酶 或通道
三、酶联型受体介导的信号转导
酶联型受体: 自身具有酶的活性或能与酶结合的膜受体 结构特征:
仅一个跨膜区段 胞外结构域含有可结合配体的部位 胞内结构域则具有酶的活性或含能与酶结合的位点
本质:载体或转运体(transporter):贯穿脂质双层整合蛋白 对象:水溶性小分子(如葡萄糖、氨基酸、核苷酸等) 特点:
(1)结构特异性 (2)饱和现象 (3)竞争性抑制 (4)顺浓差或电位差 机制: 载体蛋白分子内部的变构
(三)主动转运 (active transport)
第二章 细胞的基本功能

D. 通道没有饱和性
电压门控通道( channel) 电压门控通道(voltage gated channel) 接受电信号的受体,并通过通道的开放、 接受电信号的受体,并通过通道的开放、闭合和离子跨 膜流动的变化把信号传递到细胞内部。 膜流动的变化把信号传递到细胞内部。 机械门控通道(mechanically 机械门控通道(mechanically gated channel) 接受机械信号的受体,通过通道把信号传递到细胞内部, 接受机械信号的受体,通过通道把信号传递到细胞内部,引 起细胞功能的改变。 起细胞功能的改变。
动转运
以通道为中介 动转运
动转运
(一)简单扩散
1 概念:如CO2 、O2 、尿素、乙醇、脂肪酸等 概念: 2 影响因素: ① 膜两侧分子的浓度差 影响因素: ② 膜对物质的通透性 3 特点: ① 脂溶性物质 特点: 顺浓度梯度: ② 顺浓度梯度:高→低 低 ③ 不耗能
(二)易化扩散 易化扩散
1 概念:如葡萄糖、氨基酸,Na+、K+、Ca2+等无机离子) 概念:如葡萄糖、氨基酸, 等无机离子) 2 特点: ① 顺浓度差; 特点: 顺浓度差; ② 不耗能; 不耗能; ③ 需膜蛋白参与 3 分类:(根据膜蛋白的不同) 分类:(根据膜蛋白的不同) :(根据膜蛋白的不同 ① 以载体为中介的易化扩散 ② 以通道为中介的易化扩散
(二)肌醇信号转导系统
配体 G蛋白偶联受体 配体配体-受体复合物 G蛋白 PLC PIP2 激活的G 激活的G蛋白 激活的PLC 激活的PLC IP3 Ca2+
+
DG PKC
激活酶蛋白 蛋白磷酸化 生理效应 生理效应
《生理学》第二章细胞的基本功能

细胞膜在新陈代谢过程中所需的营养物质,以及细胞产生的代谢产物,都必须跨越细胞膜这 一屏障才能转到相应的部位,即物质转运。常见的细胞膜物质转运方式有以下几种。
第一节 细胞膜的物质转运功能
一、单纯扩散
第5 页
单纯扩散是指脂溶性小分子物质从高浓度一侧向低浓度一侧跨细胞膜转运的过程。单
纯扩散是一种简单的物理现象。一般来说,只有脂溶性的小分子物质才能通过脂质分子的间隙进
103~105个)。离子扩散速率的
大小除取决于膜两侧离子的浓度 差外,还受膜两侧电位差的影响。 浓度差和电位差合称为电化学梯 度。电化学梯度越大,驱动力就 越大。
每种通道只对一种或几种 离子有较大的通透性,其他离子 则不易或不能通过。根据离子选
择性,通道可分为Na+通道、K+ 通道、Ca2+通道和Cl-通道等。
哺乳动物细胞膜上普遍存在着钠-钾 泵,简称钠泵。钠泵是镶嵌在脂质双分 子层中的具有ATP酶活性的一种特殊蛋白 质,它能因细胞内Na+浓度升高和细胞外
K+浓度升高而激活,因此又称为Na+-K+依
赖式ATP酶。
第一节 细胞膜的物质转运功能
三、主动转运
第 12 页
(一)原发性主动转运
正常细胞膜外Na+浓度远高于细胞内, K+浓度远低于细胞内,当细胞受到有效刺激后,导致细胞 内Na+浓度升高(仍低于膜外)或细胞外K+浓度升高(仍低于膜内)时,钠泵被激活,分解ATP,释放 能量,将Na+从细胞内泵出,同时将细胞外的K+泵入。通常每分解1个ATP分子,可将3个Na+泵出膜外, 同时将2个K+泵入膜内(图2-3)。但这种化学定比关系在不同情况下可以改变。
生理学 第2章细胞

传播,但随着传播距离的增加,其电位变化幅度减
小最后消失故不能在膜上作远距离的传播; (3)可以总和 ①空间性总和 ②时间性总和
01:04
小结:局部反应与动作电位之比较
项 目 局 部 反 阈下刺激 较少 小(在阈电位以下波动) 有(时间或空间总和) 无 呈电紧张性扩布,随时间 和距离的延长迅速衰减, 不能连续向远处传播 应 动 作 电 多 大(达阈电位以上) 无 有 能以局部电流的形式 连续而不衰减地向远 处传播 位
01:04
(三)产生机制
产生条件主要有两个: • ①细胞内外各种离子的浓度分布不均(外Na+内K+状态), 即存在浓度差; • ②在不同状态下,细胞膜对各种离子的通透性不同。 安静状态时,细胞膜主要对K+通透,K+顺浓度差外流, 随着K+外流,膜内外K+浓度差(化学驱动力)↓ , K+外 流引起的由细胞外向细胞内的电场力(阻力)↑,当动 力和阻力相等时,K+净移动为0,此时膜两侧的电位差 也稳定于某一数值,称为K+平衡电位。
01:04
受体是指细胞膜或细胞内一些能与某些化学物质特异 性结合并产生特定生理效应的蛋白质。可分为膜受体和胞 内受体,通常指膜受体。 受体基本功能: 1.能识别和结合体液中的特殊物质,具有高度特异性,
保证信息传递准确、可靠。
2.能转导各种化学信号,激发细胞内产生相应的生理 效应。
01:04
第三节 细胞的生物电现象
门控离子通道分为三类: 1) 电压门控通道:在膜去极化到一定电位时开放,如神经 元上的Na+ 通道;K+ 通道等。
专升本生理学第2章细胞的基本功能

第二章细胞的基本功能一、名词解释1.单纯扩散2.易化扩散3.经载体的易化扩散4.经通道的易化扩散5.被动转运6.主动转运7.受体8.静息电位9.极化10.去极化11.超级化12.复极化13.动作电位14.阈电位15.局部兴奋16.绝对不应期17.终板电位18.兴奋--收缩耦联19.前负荷20.后负荷21.等长收缩22.等张收缩23.单收缩24.强直收缩答案: 1.单纯扩散是指脂溶性小分子物质从高浓度一侧向低浓度一侧跨细胞膜转运的过程。
2.易化扩散是指某些非脂溶性或脂溶性很小的物质,在膜蛋白的帮助下顺浓度差的跨膜转运。
3.经载体的易化扩散是指一些亲水性小分子物质经载体蛋白的介导,顺浓度梯度的跨膜转运。
4.经通道的易化扩散是指各种带电离子经通道蛋白的介导,顺浓度梯度或电位梯度的跨膜转运。
5.被动转运是指物质顺浓度梯度和(或)电位梯度进行的跨膜转运,不需消耗能量。
包括单纯扩散和易化扩散。
6.主动转运是指某些物质在膜蛋白的帮助下由细胞代谢提供能量而实现的逆电-化学梯度的跨膜转运。
7.受体是指存在于细胞膜上或细胞内,能识别并结合特异性化学信息,进而引起细胞产生特定生物学效应的特殊蛋白质。
8.静息电位是指静息时细胞膜两侧存在的电位差。
9.极化是指静息电位存在时细胞膜所处的“外正内负”的稳定状态。
10.去极化是指静息电位的减小即细胞内负值的减小。
11.超极化是指静息电位的增大即细胞内负值的增大。
12.复极化是指细胞膜去极化后再向静息电位方向的恢复。
13.动作电位是指在静息电位基础上,给细胞一个有效的刺激,可触发其产生可传播的膜电位波动。
它是细胞产生兴奋的标志。
14.阈电位是指能触发动作电位的膜电位临界值。
15.局部兴奋是指细胞受到阈下刺激时产生的较小的、只限于膜局部的去极化。
16.绝对不应期是指组织细胞在兴奋后最初的一段时间,无论给予多大的刺激也不能使它再次兴奋。
17.终板电位是指神经-骨骼肌接头处的终板膜产生的去极化电位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章细胞的基本功能
细胞是人体结构和功能的基本单位,人体的一切生命活动都是在细胞功能的基础上进行的。
只有了解细胞的基本功能,才能对人体以及各器官、系统生命活动规律有更深入的理解和认识。
第一节细胞的跨膜物质转运功能
细胞膜是一种具有特殊结构和功能的生物膜,它把细胞内外的物质分隔开,构成细胞的屏障,从而使细胞内成分相对独立和稳定,成为一个相对独立的功能单位。
关于细胞膜的基本结构和组成,现在公认的是液态镶嵌模型。
其基本内容是细胞膜以液态的脂质双分子层为基架,其中镶嵌着具有不同功能的蛋白质。
一、单纯扩散
单纯扩散是指脂溶性小分子物质从细胞膜的高浓度一侧向低浓
度一侧转运的过程。
由于细胞膜的基架是脂质双分子层,因此,人体体液中的脂溶性物质(如氧气、二氧化碳、一氧化氮等)可以单纯依靠浓度差进行跨细胞膜转运。
跨膜转运物质的多少以通量表示,其大小取决于两方面的因素:
①细胞膜两侧该物质的浓度差,这是物质扩散的动力,浓度差愈大,扩散通量也愈大;
②该物质通过细胞膜的难易程度,即通透性的大小,细胞膜对该物质的通透性减小时,扩散通量也减小。
※水分子虽然是极性分子,但它的分子极小,又不带电荷,故膜对它是高度通透的。
另外,水分子还可通过水通道跨膜转运。
二、易化扩散
水溶性物质则不能直接通过细胞膜,它们必须借助细胞膜上某些物质的帮助才能通过。
水溶性或脂溶性很小的小分子物质在膜蛋白
的帮助下,由膜的高浓度一侧向低浓度一侧转运的过程,称为易化扩散。
根据参与的膜蛋白不同,将易化扩散分为两种,即经载体的易化扩散和经通道的易化扩散。
“载体”和“通道”都是一些贯穿脂质双分子层的镶嵌蛋白质。
1.经载体的易化扩散载体能在细胞膜的一侧与被转运物质相结合,通过本身构型改变而将物质运至膜的另一侧。
如葡萄糖、氨基酸等物质就是由相应的载体转运的。
经载体的易化扩散有三个特点:①特异性:一种载体一般只转运某一种物质,如葡萄糖载体只能转运葡萄糖,氨基酸载体只能转运氨基酸;②饱和性:当被转运物质增加到一定限度时,转运量不随之增加,这是由于载体数量有限的缘故;③竞争性抑制:如果一个载体可以同时运载A和B两种物质,而且物质通过细胞膜的总量又是一定的,那么当A物质扩散量增多时,B物质的扩散量必然会减少,这是因为量多的A物质占据了更多的载体的缘故。
2.经通道的易化扩散通道像贯通细胞内外并带有闸门装置的管道,开放时允许被转运的物质通过,关闭时物质转运停止(图2-3)。
各种离子的易化扩散主要是通过这种方式进行的。
现已确定,细胞膜上的离子通道有Na↑+通道、K↑+通道、Ca↑(2+)通道等,它们可分别让不同的离子通过。
离子通道的特征主要是:
①离子选择性。
即离子通道的活动表现出明显的对离子的选择性,每一种离子通道都对一种或几种离子有较大的通透性,而其它离子则不易或不能通过。
②门控特性。
通道内具有“闸门”样的结构控制离子通道的开放(激活)或关闭(失活),这一过程称为门控。
根据通道的门控机制,离子通道又可分为电压门控通道、化学门控通道、和机械门控通道。
三、主动运转
主动转运指细胞通过本身的耗能过程,在膜蛋白的帮助下将物质分子或离子由膜的低浓度一侧移向高浓度一侧的过程。
主动转运按其利用能量形式的不同,可分原发性主动转运(由ATP直接供能)和继发性主动转运(由ATP间接供能)。
(一)原发性主动转运
原发性主动转运是指细胞直接利用代谢产生的能量,将物质分子或离子逆浓度梯度或电位梯度跨膜转运的过程。
介导这一过程的膜蛋白称为离子泵。
离子泵可将细胞内的ATP水解为ADP,并利用高能磷酸键贮存的能量完成离子的跨膜转运。
由于离子泵具有水解ATP的能力,所以也把它称作ATP酶。
在哺乳动物的细胞膜上普遍存在的离子泵就是钠-钾泵,简称钠泵,也称Na+-K+-ATP酶。
●钠泵:糖蛋白,分子量25万,属C膜上的结合蛋白。
α亚单位:转运Na+、K+,分解ATP。
β亚单位:功能不详。
其活性因C 内Na+↑、C外K+↑而激活。
因C内Na+↓、C外K+↓而失活。
* 其每分解一个ATP可泵出3个Na+,同时泵入2个K+,使膜内维持负电位,膜外维持正电位——生电性钠泵。
●钠泵活动重要的生理意义:
1、维持细胞正常的渗透压与形态。
2、形成和保持细胞内外Na+、K+不均匀分布及建立一种势能贮备。
3、建立的Na+浓度势能贮备是营养物质跨小肠和肾小管上皮等跨膜主
动转运的能量来源叫继发性主动转运或联合转运。
Na↑+ -K↑+泵与细胞水肿
当细胞缺O↓2或中毒时,引起线粒体损伤,细胞生物氧化障碍,ATP生成减少,Na↑+-K↑+泵不能及时将流入细胞的Na↑+泵出细胞外,张渗透压作用下,水被吸进细胞内,使细胞内Na↑+、水增多而发生细胞水肿。
例如,严重的脑缺O↓2,引起脑细胞水肿,将会导致颅内压升高甚至脑组织移位,发生脑疝。
(2)继发性主动转运
许多物质在进行逆浓度梯度或电位梯度的跨膜转运时,所需的能量并不直接伴随供能物质ATP的分解,而是来自Na+在膜两侧的浓度势能差,后者是钠泵利用分解ATP释放能量建立的,这种间接利用ATP能量的主动转运过程称为继发性主动转运。
介导继发性主动转运的膜蛋白称为转运体。
葡萄糖和氨基酸在小肠粘膜上皮处的吸收以及它们在肾小管上皮处的重吸收,甲状腺上皮细胞的聚碘,Na+/ Ca2+交换,Na+、K+、Cl-同向转运等生理过程,均属于继发性主动转运。
如果被转运的离子或分子都向同一方向运动,称为同向转运,相应的转运体也称为同向转运体;如果被转运的离子或分子彼此向相反
方向运动,称为反向转运或交换,相应的转运体也称为反向转运体或交换体。
四、出胞和入胞
出膜蛋白可以介导水溶性小分子通过细胞膜,但它却不能转运大分子,如蛋白质、多聚核苷酸等。
这些大分子物质乃至物质团块以出胞或入胞的方式完成跨膜转运。
这些过程需要细胞提供能量。
大分子或团块物质通过细胞膜的运动从细胞内排至细胞外的过程称为出胞。
出胞主要见于细胞的分泌活动以及神经细胞轴突末梢的递质释放活动。
入胞是指大分子或团块物质通过细胞膜的运动从细胞外进入细胞内的过程,包括吞噬和吞饮两种形式。
固体物质的入胞过程称为吞噬,如粒细胞吞噬细菌的过程;液态物质的入胞过程称为吞饮,如小肠上皮对营养物质的吸收。