20三维总复习数学---板块命题点专练(二) 不等式---(附解析)

合集下载

高考数学压轴专题2020-2021备战高考《不等式》知识点总复习附答案解析

高考数学压轴专题2020-2021备战高考《不等式》知识点总复习附答案解析

数学《不等式》高考知识点一、选择题1.抛物线的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足23AFB π∠=,设线段AB 的中点M 在l 上的投影为N ,则MN AB 的最大值是( )A 3B 3C 3D 3【答案】B 【解析】 【分析】 【详解】试题分析:设,A B 在直线l 上的投影分别是11,A B ,则1AF AA =,1BF BB =,又M是AB 中点,所以111()2MN AA BB =+,则1112MN AA BB AB AB +=⋅2AF BF AB +=,在ABF ∆中222AB AF BF =+22cos3AF BF π-22AF BF AF BF =++2()AF BF AF BF =+-2()AF BF ≥+2()2AF BF +-23()4AF BF =+,所以22()43AF BF AB+≤,即233AF BF AB +≤,所以33MN AB ≤,故选B .考点:抛物线的性质. 【名师点晴】在直线与抛物线的位置关系问题中,涉及到抛物线上的点到焦点的距离,焦点弦长,抛物线上的点到准线(或与准线平行的直线)的距离时,常常考虑用抛物线的定义进行问题的转化.象本题弦AB 的中点M 到准线的距离首先等于,A B 两点到准线距离之和的一半,然后转化为,A B 两点到焦点F 的距离,从而与弦长AB 之间可通过余弦定理建立关系.2.关于x 的不等式0ax b ->的解集是(1,)+∞,则关于x 的不等式()(3)0ax b x +->的解集是( ) A .(,1)(3,)-∞-+∞U B .(1,3)- C .(1,3) D .(,1)(3,)-∞+∞U【答案】A 【解析】 【分析】由0ax b ->的解集,可知0a >及1ba=,进而可求出方程()()30ax b x +-=的解,从而可求出()()30ax b x +->的解集. 【详解】由0ax b ->的解集为()1,+?,可知0a >且1ba=, 令()()30ax b x +-=,解得11x =-,23x =,因为0a >,所以()()30ax b x +->的解集为()(),13,-∞-+∞U , 故选:A. 【点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.3.若,x y 满足约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则122y x⎛⎫⋅ ⎪⎝⎭的最小值为( )A .116B .18C .1D .2【答案】A 【解析】 【分析】画出约束条件所表示的可行域,结合指数幂的运算和图象确定出目标函数的最优解,代入即可求解. 【详解】由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,其中可得(3,1)A -,(5,1)B ,(3,3)C ,因为1222yxx y -⎛⎫⋅= ⎪⎝⎭,令z x y =-,当直线y x z =-经过A 时,z 取得最小值,所以z 的最小值为min 314z =--=-,则1222yx x y -⎛⎫⋅= ⎪⎝⎭的最小值为41216-=. 故选:A .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.4.已知,x y 满足约束条件23023400x y x y y -+≥⎧⎪-+≤⎨⎪≥⎩,若目标函数2z mx ny =+-的最大值为1(其中0,0m n >>),则112m n+的最小值为( ) A .3 B .1C .2D .32【答案】D 【解析】 【分析】画出可行域,根据目标函数z 的最大值求得,m n 的关系式23m n +=,再利用基本不等式求得112m n +的最小值. 【详解】画出可行域如下图所示,由于0,0m n >>,所以基准直线0mx ny +=的斜率为负数,故目标函数在点()1,2A 处取得最大值,即221m n +-=,所以23m n +=.()111111515193222323232322n m n m m n m n m n m n m n ⎛⎛⎫⎛⎫+=⨯+⨯+=⨯++≥⨯+⋅=⨯= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当,1n m m n m n ===时等号成立,所以112m n +的最小值为32. 故选:D【点睛】本小题主要考查根据目标函数的最值求参数,考查基本不等式求最值,考查数形结合的数学思想方法,属于中档题.5.已知点P ,Q 分别是抛物线28x y =和圆22(2)1x y +-=上的动点,点(0,4)A ,则2||||PA PQ 的最小值为( ) A .10 B .4C .232D .421【答案】B 【解析】 【分析】设出点P 的坐标()00,x y ,用0y 表示出PA ;根据圆上一点到定点距离的范围,求得PQ 的最大值,再利用均值不等式求得目标式的最值. 【详解】设点()00,P x y ,因为点P 在抛物线上,所以()200080x y y =≥,因为点(0,4)A ,则()()2222200000||48416PA x y y y y =+-=+-=+.又知点Q 在圆22(2)1x y +-=上,圆心为抛物线的焦点(0,2)F ,要使2||||PA PQ 的值最小,则||PQ 的值应最大,即0max 13PQ PF y =+=+.所以()()222000003632516||||33y y y PA PQ y y +-+++==++ ()()0000252536236433y y y y =++-≥+⋅=++ 当且仅当02y =时等号成立.所以2 ||||PAPQ的最小值为4.故选:B.【点睛】本题考查抛物线上一点到定点距离的求解,以及圆上一点到定点距离的最值,利用均值不等式求最值,属综合中档题.6.已知x、y满足约束条件122326x yx yx y+≥⎧⎪-≥-⎨⎪+≤⎩,若22z x y=+,则实数z的最小值为()A.22B.25C.12D.2【答案】C【解析】【分析】作出不等式组所表示的可行域,利用目标函数的几何意义求出22x y+的最小值,进而可得出实数z的最小值.【详解】作出不等式组122326x yx yx y+≥⎧⎪-≥-⎨⎪+≤⎩所表示的可行域如下图所示,22z x y=+表示原点到可行域内的点(),x y的距离的平方,原点到直线10x y+-=的距离的平方最小,()222min2122x y⎛⎫+==⎪⎪⎝⎭.由于22z x y =+,所以,min 12z =. 因此,实数z 的最小值为12. 故选:C. 【点睛】本题考查线性规划中非线性目标函数最值的求解,考查数形结合思想的应用,属于中等题.7.已知变量,x y 满足2402400x y x y x +-≥⎧⎪+-≤⎨⎪≥⎩,则24x y --的最小值为( )A .855B .8C .16515D .163【答案】D 【解析】 【分析】222424512x y x y ----=⨯+,而222412x y --+表示点(,)x y 到直线240x y --=的距离,作出可行域,数形结合即可得到答案. 【详解】因为222424512x y x y ----=⨯+,所以24x y --可看作为可行域内的动点到直线240x y --=的距离的5倍,如图所示,点44(,)33A 到直线240x y --=的距离d 最小,此时224424333512d -⨯-==+ 所以24x y --1653d =. 故选:D. 【点睛】本题考查目标函数的含绝对值的线性规划问题,考查学生数形结合与转化与化归的思想,是一道中档题.8.已知ABC V 是边长为1的等边三角形,若对任意实数k ,不等式||1k AB tBC +>u u u r u u u r恒成立,则实数t 的取值范围是( ). A.,33⎛⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭B.,33⎛⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C.3⎛⎫+∞ ⎪ ⎪⎝⎭D.,3⎛⎫+∞ ⎪ ⎪⎝⎭【答案】B 【解析】 【分析】根据向量的数量积运算,将目标式转化为关于k 的二次不等式恒成立的问题,由0<n ,即可求得结果. 【详解】因为ABC V 是边长为1的等边三角形,所以1cos1202AB BC ⋅=︒=-u u u r u u u r ,由||1k AB tBC +>u u u r u u u r 两边平方得2222()2()1k AB kt AB BC t BC +⋅+>u u u r u u u r u u u r u u u r ,即2210k kt t -+->,构造函数22()1f k k tk t =-+-, 由题意,()22410t t ∆--<=,解得3t <-或3t >. 故选:B. 【点睛】本题考查向量数量积的运算,以及二次不等式恒成立问题求参数范围的问题,属综合中档题.9.若x ,y 满足约束条件40,20,20,x y x x y -+≥⎧⎪-≤⎨⎪+-≥⎩且z ax y =+的最大值为26a +,则a 的取值范围是( ) A .[1,)-+∞ B .(,1]-∞-C .(1,)-+∞D .(,1)-∞-【答案】A 【解析】 【分析】画出约束条件的可行域,利用目标函数的最值,判断a 的范围即可.【详解】作出约束条件表示的可行域,如图所示.因为z ax y =+的最大值为26a +,所以z ax y =+在点(2,6)A 处取得最大值,则1a -≤,即1a ≥-.故选:A【点睛】本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键.10.已知函数()2f x ax bx =+,满足()()241f f -≥≥,()12f -≤,则()2f 的最大值为( ) A .12 B .13C .14D .15【答案】C 【解析】 【分析】根据已知条件可得,a b 满足的不等式2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,作出不等式组所表示的平面区域,又()242f a b =+,利用线性规划即可求出()2f 的最大值.【详解】由已知得2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,可得(),P a b 的表示的平面区域如图:可求出()3,1A ,()2,2B ,()0,2C -, 目标函数()242z f a b ==+,可化为122b a z =-+,当直线过点A 时,max 14z =. 故选:C. 【点睛】本题主要考查求线性约束条件下的最值计算,关键是根据,a b 满足的不等式作出可行域,并将目标函数()242z f a b ==+变形为122b a z =-+进行平移,找到截距的最大值.11.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则263n n S a ++的最小值为( )A .4B .3C .232D .2【答案】D 【解析】 【分析】由题意得2(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,从而可得263n n S a ++,换元,利用基本不等式,即可求出函数的最小值.【详解】解:11a =Q ,1a 、3a 、13a 成等比数列,2(12)112d d ∴+=+.得2d =或0d =(舍去),21n a n ∴=-,2(121)2n n n S n +-∴==, ∴()()22211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则2642223n n S t a t +=+-≥=+ 当且仅当2t =,即1n =时,∴263n n S a ++的最小值为2.故选:D . 【点睛】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.12.已知实数,x y 满足线性约束条件1020x x y x y ≥⎧⎪+≥⎨⎪-+≥⎩,则1y x +的取值范围为( )A .(-2,-1]B .(-1,4]C .[-2,4)D .[0,4]【答案】B 【解析】 【分析】 作出可行域,1y x+表示可行域内点(,)P x y 与定点(0,1)Q -连线斜率,观察可行域可得最小值. 【详解】作出可行域,如图阴影部分(含边界),1y x+表示可行域内点(,)P x y 与定点(0,1)Q -连线斜率,(1,3)A ,3(1)410QA k --==-,过Q 与直线0x y +=平行的直线斜率为-1,∴14PQ k -<≤.故选:B .【点睛】本题考查简单的非线性规划.解题关键是理解非线性目标函数的几何意义,本题1 yx+表示动点(,)P x y与定点(0,1)Q-连线斜率,由直线与可行域的关系可得结论.13.在区间[]0,1内随机取两个数m、n,则关于x的方程20x nx m-+=有实数根的概率为()A.18B.17C.16D.15【答案】A【解析】【分析】根据方程有实根可得到约束条件,根据不等式组表示的平面区域和几何概型概率公式可求得结果.【详解】若方程20x nx m-+=有实数根,则40n m∆=-≥.如图,400101n mmn-≥⎧⎪≤≤⎨⎪≤≤⎩表示的平面区域与正方形0101mn≤≤⎧⎨≤≤⎩的面积之比即为所求的概率,即111124118 SPS⨯⨯===⨯阴影正方形.故选:A.【点睛】本题考查几何概型中面积型概率问题的求解,涉及到线性规划表示的平面区域面积的求解,关键是能够根据方程有实根确定约束条件.14.已知M、N是不等式组1,1,10,6xyx yx y≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所表示的平面区域内的两个不同的点,则||MN的最大值是()A.17B.34C.32D.172【答案】A【解析】【分析】先作可行域,再根据图象确定MN的最大值取法,并求结果.【详解】作可行域,为图中四边形ABCD及其内部,由图象得A(1,1),B(2,1),C(3.5,2.5),D(1,5)四点共圆,BD 为直径,所以MN的最大值为BD=21417+=,选A.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.15.若均不为1的实数a 、b 满足0a b >>,且1ab >,则( ) A .log 3log 3a b > B .336a b +> C .133ab a b ++> D .b a a b >【答案】B 【解析】 【分析】举反例说明A,C,D 不成立,根据基本不等式证明B 成立. 【详解】当9,3a b ==时log 3log 3a b <; 当2,1a b ==时133ab a b ++=; 当4,2a b ==时b a a b =; 因为0a b >>,1ab >,所以336a b +>=>>,综上选B. 【点睛】本题考查比较大小,考查基本分析论证能力,属基本题.16.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】 【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<.故选:D . 【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.17.若集合()(){}130M x x x =+-<,集合{}1N x x =<,则M N ⋂等于( ) A .()1,3 B .(),1-∞-C .()1,1-D .()3,1-【答案】C 【解析】 【分析】解一元二次不等式求得M ,然后求两个集合的交集. 【详解】由()()130x x +-<解得13x -<<,故()1,1M N ⋂=-,故选C. 【点睛】本小题主要考查集合交集的概念以及运算,考查一元二次不等式的解法,属于基础题.18.若实数x ,y 满足不等式组11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2x y +的最小值是( )A .3B .32C .0D .3-【答案】D 【解析】 【分析】根据已知的约束条件画出满足约束条件的可行域,再由目标函数2z x y =+可得2y x z =-+,此时Z 为直线在y 轴上的截距,根据条件可求Z 的最小值.【详解】解:作出不等式组所表示的平面区域,如图所示得阴影部分的ABC ∆, 由2z x y =+可得2y x z =-+,则z 为直线在y 轴上的截距 把直线:2l y x =-向上平移到A 时,z 最小,此时由1y xy =⎧⎨=-⎩可得(1,1)A -- 此时3z =-, 故选:D .【点睛】本题考查用图解法解决线性规划问题,分析题目的已知条件,找出目标函数中的z 的意义是关键,属于中档题.19.若函数()sin 2x x f x e e x -=-+,则满足2(21)()0f x f x -+>的x 的取值范围为( ) A .1(1,)2-B .1(,1)(,)2-∞-+∞U C .1(,1)2-D .1(,)(1,)2-∞-⋃+∞【答案】B 【解析】 【分析】判断函数()f x 为定义域R 上的奇函数,且为增函数,再把()()2210f x f x -+>化为221x x ->-,求出解集即可.【详解】解:函数()sin2xxf x e ex -=-+,定义域为R ,且满足()()sin 2xx f x ee x --=-+- ()()sin2x x e e xf x -=--+=-,∴()f x 为R 上的奇函数; 又()'2cos222cos20xxf x e ex x x -=++≥+≥恒成立,∴()f x 为R 上的单调增函数;又()()2210f x f x -+>,得()()()221f xf x f x ->-=-,∴221x x ->-, 即2210x x +->,解得1x <-或12x >, 所以x 的取值范围是()1,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭. 故选B . 【点睛】本题考查了利用定义判断函数的奇偶性和利用导数判断函数的单调性问题,考查了基本不等式,是中档题.20.已知,x y 满足33025010x y x y x y -+≥⎧⎪+≥⎨⎪+-≤⎩,则36y z x -=-的最小值为( )A .157B .913C .17D .313【答案】D 【解析】 【分析】画出可行域,目标函数36y z x -=-的几何意义是可行域内的点与定点(6,3)P 连接的斜率,根据图像得到答案. 【详解】画出可行域如图中阴影部分所示, 目标函数36y z x -=-的几何意义是可行域内的点与定点(6,3)P 连接的斜率. 直线330x y -+=与直线10x y +-=交于点13(,)22A -,由图可知,当可行域内的点为A 时,PA k 最小,故min 333211362z -==--. 故选:D .【点睛】本题考查了线性规划问题,画出图像是解题的关键.。

高中数学总复习知识点专题讲解与练习2不等式

高中数学总复习知识点专题讲解与练习2不等式

高中数学总复习知识点专题讲解与练习专题2不等式一、单项选择题1.(2021·江西六校联考)已知集合A ={x ∈N |2x -7<0},B ={x |x 2-3x -4≤0},则A ∩B =( )A .{1,2,3}B .{0,1,2,3}C.⎩⎨⎧⎭⎬⎫x |x ≤72D.⎩⎨⎧⎭⎬⎫x |0<x ≤72 答案 B解析 由已知得A ={0,1,2,3},B ={x |-1≤x ≤4}, 则A ∩B ={0,1,2,3}.故选B. 2.(2019·课标全国Ⅱ)若a >b ,则( )A .ln(a -b )>0B .3a <3bC .a 3-b 3>0D .|a |>|b | 答案 C解析 取a =2,b =1,满足a >b ,但ln(a -b )=0,则A 错误;由9=32>31=3,则B 错误;取a =1,b =-2,满足a >b ,但|1|<|-2|,则D 错误;因为幂函数y =x 3是增函数,a >b ,所以a 3>b 3,即a 3-b 3>0,C 正确.故选C.3.(2021·东北三省四市一模)设a >0,b >0,若2a +b =2,则1a +2b 的最小值为( ) A .2 B .4 C .6 D .8 答案 B解析 方法一:1a +2b =12⎝ ⎛⎭⎪⎫1a +2b (2a +b )=12⎝ ⎛⎭⎪⎫2+b a +4a b +2≥12⎝ ⎛⎭⎪⎫4+2b a ×4a b =4,当且仅当b a =4a b ,即a =12,b =1时,等号成立.故选B. 方法二:1a +2b =2a +b 2a +2a +b b =1+b 2a +2ab +1≥2+2b 2a ×2a b =4,当且仅当b 2a =2a b ,即a =12,b =1时,等号成立.故选B.4.已知a ,b 都是实数,则“ln 1a <ln 1b ”是“a 2>b 2”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件 答案 C解析 ∵ln 1a <ln 1b ,∴0<1a <1b ,∴a >b >0,∴a 2>b 2.而由a 2>b 2得到|a |>|b |,∴“ln 1a <ln 1b ”是“a 2>b 2”的充分不必要条件.故选C.5.下列各函数中,最小值为2的是( )A .y =x +1xB .y =sin x +4sin x ,x ∈⎝ ⎛⎭⎪⎫0,π2C .y =x 2+3x 2+2D .y =x +1x答案 D解析 当x >0时,y =x +1x ≥2,当x <0时,y =-⎣⎢⎡⎦⎥⎤(-x )+1(-x )≤-2,故A 不正确; 当x ∈⎝⎛⎭⎪⎫0,π2时,sin x ∈(0,1),令t =sin x ∈(0,1),则y =t +4t ≥4,当且仅当t =4t ,即t =2时等号成立,t =sin x ∈(0,1),t =2取不到,所以y >4,故B 不正确;y =x 2+3x 2+2=x 2+2+1x 2+2≥2,由于x 2+2=1x 2+2无解,所以等号不能取得,故C不正确; y =x +1x≥2x ×1x =2,当且仅当x =1x,即x =1时等号成立,故D 正确.故选D.6.(2021·山西晋中月考)已知a >-1,b >-2,(a +1)(b +2)=16,则a +b 的最小值是( ) A .4 B .5 C .6 D .7 答案 B解析 由a >-1,b >-2,得a +1>0,b +2>0,a +b =(a +1)+(b +2)-3≥2(a +1)(b +2)-3=2×4-3=5,当且仅当a +1=b +2=4,即a =3,b =2时等号成立,所以a +b 的最小值是5.故选B.7.(2021·湖北十一校联考)设a >0,b >0,则“1a +1b ≤4”是“ab ≥14”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 答案 A解析 因为a >0,b >0,所以4≥1a +1b ≥21a ·1b ,当且仅当a =b 时取等号,则2≥1ab,所以ab ≥14;若ab ≥14,取a =14,b =1,则1a +1b =4+1=5>4,即1a +1b ≤4不成立.所以“1a +1b ≤4”是“ab ≥14”的充分不必要条件.故选A.8.(2021·四川省宜宾二模)若不等式x 2+ax +1≥0对于一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值是( )A .0B .-2C .-52 D .-3 答案 C解析 不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12成立,等价于a ≥-x -1x 对于一切x ∈⎝ ⎛⎦⎥⎤0,12成立,∵y =-x -1x 在区间⎝ ⎛⎦⎥⎤0,12上是增函数,∴-x -1x ≤-12-2=-52,∴a ≥-52,∴a 的最小值为-52.故选C. 9.若log 3(2a +b )=1+log3ab ,则a +2b 的最小值为( )A .6 B.83 C .3 D.163 答案 C解析 本题考查基本不等式.由题意得log 3(2a +b )=1+log 3(ab ),所以2a +b =3ab ,a >0,b >0,即2b +1a =3,所以a +2b =13(a +2b )⎝ ⎛⎭⎪⎫2b +1a =13⎝ ⎛⎭⎪⎫5+2a b +2b a ≥13⎝ ⎛⎭⎪⎫5+2×2a b ×2b a =3,当且仅当a =b =1时等号成立.故选C.10.已知a ∈[-1,1],不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为( ) A .(-∞,2)∪(3,+∞) B .(-∞,1)∪(2,+∞) C .(-∞,1)∪(3,+∞) D .(1,3) 答案 C解析 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4,则f (a )>0对任意a ∈[-1,1]恒成立,易知只需f (-1)=x 2-5x +6>0,① 且f (1)=x 2-3x +2>0,② 联立①②,解得x <1或x >3.故选C. 二、多项选择题11.(2021·河北衡水中学二调)已知0<log 12a <log 12b <1,则下列说法正确的是( )A .1>a 2>b 2>14B .2>1a >1b >1C.a b -1>b a -1D.1e >e -b >e -a >1e 答案 ACD解析 已知0<log 12a <log 12b <1,因为y =log 12x 在区间(0,+∞)上单调递减,所以12<b <a <1,所以14<b 2<a 2<1,故A 正确;因为函数y =1x 在区间(0,+∞)上单调递减,且12<b <a <1,所以2>1b >1a >1,故B 错误;因为a b -1-ba -1=a (a -1)-b (b -1)(b -1)(a -1)=(a 2-b 2)-(a -b )(b -1)(a -1)=(a -b )(a +b -1)(b -1)(a -1).又12<b <a <1,所以(a -b )(a +b -1)(b -1)(a -1)>0,故C 正确;因为-12>-b >-a >-1,函数y =e x 为单调递增函数,所以1e <e -a <e -b <1e,故D 正确.12.(2021·长郡模拟)设a >b >1,0<c <1,则下列不等式中成立的是( ) A .a c <b c B .a b >b c C .log b c <log a c D .log c b <log c a 答案 BC解析 0<c <1⇒a c >b c ,故A 错误;因为a >b >1,0<c <1,所以a b >b b >b c ,故B 正确;由对数函数的单调性可得log c b >log c a ,故D 错误;因为log b c =1log cb ,log ac =1log ca ,0>log c b >log c a ,所以log b c <log a c ,故C 正确.故选BC. 13.下列结论正确的是( )A .若ab >0,则b a +ab ≥2 B .函数y =x 2+3x 2+2的最小值为2C .若x 2+y 2=1(x >0,y >0),则1x 2+4y 2≥9 D .函数f (x )=e -x +e x (x >0)有最小值2 答案 AC解析 因为ab >0,所以a b >0,b a >0,所以由基本不等式可得b a +ab ≥2,当且仅当a =b 时等号成立,A 正确;易知y =x 2+3x 2+2=x 2+2+1x 2+2,因为x 2+2≥2,f (x )=x +1x 在[2,+∞)上单调递增,所以y =x 2+2+1x 2+2≥2+12=322,所以函数y =x 2+3x 2+2的最小值为322,B 错误;因为x 2+y 2=1(x >0,y >0),所以1x 2+4y 2=(x 2+y 2)⎝ ⎛⎭⎪⎫1x 2+4y 2=5+y 2x 2+4x 2y 2≥9,当且仅当y 2=2x 2时等号成立,C 正确;f (x )=e -x +e x =1e x +e x ≥2,当且仅当x =0时取等号,而x >0,故D 错误.故选AC.14.(2021·唐山市三模)已知函数f (x )=x +1x (x >0),若f (a )=f (b ),且a <b ,则下列不等式成立的有( )A .ab =1B .a 2+b 2>2 C.1a +2b ≥22 D .log a b <log b a 答案 ABC解析 ∵f (x )=x +1x (x >0),f (a )=f (b ),∴a +1a =b +1b ,即a -b =1b -1a =a -b ab .∵a <b ,∴a -b ≠0,∴1ab =1,即ab =1,故A 正确. ∵a <b ,ab =1,∴a 2+b 2>2ab ,即a 2+b 2>2,故B 正确. 1a +2b ≥22ab =22,当且仅当⎩⎪⎨⎪⎧1a =2b ,ab =1,即⎩⎨⎧a =22,b =2时“=”成立,故C 正确. ∵ab =1,∴a =1b ,b =1a,∴log a b =log b a =-1,故D 错误.故选ABC. 15.已知2a =3b =6,则下列选项一定正确的是( ) A .ab >4 B .(a -1)2+(b -1)2<2 C .log 2a +log 2b >2 D .a +b >4 答案 ACD解析 ∵2a=3b=6,∴a =log 26,b =log 36.∴1a =log 62,1b =log 63,∴1a +1b =1.∵1=1a +1b ≥21ab ,∴ab ≥4.∵a ≠b ,∴ab >4,故A 正确.∵log 2a +log 2b =log 2(ab )>log 24=2,故C 正确.∵a +b =(a +b )·⎝ ⎛⎭⎪⎫1a +1b =a b +ba +2≥4.∵a ≠b ,∴a +b >4,故D 正确. ∵a -1=log 23,b -1=log 32,∴(a -1)·(b -1)=1,∴(a -1)2+(b -1)2≥2(a -1)·(b -1)=2.∵a -1≠b -1,∴(a -1)2+(b -1)2>2.故B 不正确.故选ACD.三、填空题16.(2021·济南学情诊断)若实数x ,y 满足lg x +lg y =lg(x +y ),则xy 的最小值为________. 答案 4解析 依题意可知x >0,y >0,由lg x +lg y =lg(x +y )得lg(xy )=lg(x +y ),得xy =x +y .由基本不等式得xy =x +y ≥2xy ,即xy -2xy =xy (xy -2)≥0,所以xy ≥2,xy ≥4,当且仅当x =y =2时取等号,所以xy 的最小值为4.17.(2021·辽宁五校期末联考)已知正实数a ,b 满足ab -b +1=0,则1a +4b 的最小值是________. 答案 9解析 本题考查基本不等式的应用.∵ab -b +1=0,∴a =b -1b >0,∴b -1>0. 又1a +4b =b b -1+4b =5+1b -1+4(b -1)≥5+21b -1·4(b -1)=5+4=9,当且仅当1b -1=4(b -1),即b =32,a =13时等号成立,则1a +4b 的最小值是9.18.(2021·吉林五校联考)若正实数a ,b 满足ab =1,则1a +1b +1a +b 的最小值为________.答案 52解析 方法一:因为a >0,所以a +1a ≥2,当且仅当a =1a =1时等号成立,又ab =1,所以a =1b ,则1a +1b +1a +b=1a +a +1a +1a .令t =a +1a ≥2,f (t )=t +1t ,则f (t )在[2,+∞)上单调递增,所以f (t )min =f (2)=2+12=52,所以1a +1b +1a +b的最小值为52.方法二:因为ab =1,所以a +b ≥2ab =2,当且仅当a =b =1时取“=”.1a +1b +1a +b =b +a +1a +b ,令t =a +b ≥2,f (t )=t +1t ,则f (t )在[2,+∞)上单调递增,所以1a +1b +1a +b 的最小值为2+12=52.19.(2021·临渭期末)已知正数x ,y 满足x 2+2xy -3=0,则2x +y 的最小值是( ) A .1 B .3 C .6 D .12 答案 B解析 ∵x 2+2xy -3=0,∴y =3-x 22x ,∴2x +y =2x +3-x 22x =3x 2+32x =3x 2+32x ≥23x 2·32x=3,当且仅当3x 2=32x ,即x =1时取等号.故选B.20.(2021·毕业班第二次文科卷)已知a -5=ln a 5<0,b -4=ln b 4<0,c -3=ln c3<0,则a ,b ,c 的大小关系是( )A .b <c <aB .a <c <bC .a <b <cD . c <b <a 答案 C解析 令f (x )=x -ln x ,则f ′(x )=1-1x =x -1x , 当x >1时,f ′(x )>0,函数单调递增.当0<x <1时,f ′(x )<0,函数单调递减,故f (5)>f (4)>f (3), ∴5-ln 5>4-ln 4>3-ln 3. ∵a -5=ln a5=ln a -ln 5<0, ∴a -ln a =5-ln 5,∴f (a )=f (5),且a ∈(0,1).同理f (b )=f (4),f (c )=f (3),且b ∈(0,1),c ∈(0,1), ∴f (a )>f (b )>f (c ),∴a <b <c .故选C.1.(2021·山东滨州市一模)已知p :|x -a |<1,q :3x +1>1,若p 是q 的充分不必要条件,则a 的取值范围为( )A .[0,1]B .(0,1]C .[-1,2)D .(-1,2) 答案 A解析 因为|x -a |<1,所以a -1<x <a +1,即p :a -1<x <a +1, 因为3x +1>1,所以-1<x <2,即q :-1<x <2. 因为p 是q 的充分不必要条件,所以⎩⎨⎧a -1≥-1,a +1≤2,且等号不能同时取到,解得0≤a ≤1.故选A.2.不等式x2x -1>1的解集为( )A.⎝ ⎛⎭⎪⎫12,1 B .(-∞,1) C.⎝ ⎛⎭⎪⎫-∞,12∪(1,+∞) D.⎝ ⎛⎭⎪⎫12,2 答案 A解析 原不等式等价于x2x -1-1>0,即x -(2x -1)2x -1>0,整理得x -12x -1<0,不等式等价于(2x -1)(x -1)<0,解得12<x <1.故选A.3.【多选题】(2021·梅州市高三总复习)若1a >1b >0,下列不等式中正确的是( )A .a 2(1+b )<ab (1+a )B .a 3+b 3>2ab 2 C.b -a <b -a D .log a +23>log b +13答案 AC解析 ∵1a >1b >0,∴b >a >0.a 2(1+b )-ab (1+a )=a 2+a 2b -ab -a 2b =a 2-ab =a (a -b )<0,故a 2(1+b )<ab (1+a ),故A 正确.a 3+b 3-2ab 2=a 3-ab 2+b 3-ab 2=a (a -b )·(a +b )+b 2(b -a )=(a -b )(a 2+ab -b 2). 令a =2,b =3,则a 2+ab -b 2>0.∴此时a 3+b 3<2ab 2,故B 不正确.b -a <b -a 等价于b +a -2ab <b -a ,即a <ab .即a <b .∴b -a <b -a 成立,故C 正确.令b =2,a =1,则log a +23=log b +13=1,故D 错误.故选AC.4.(2021·A 佳湖南大联考)已知a >0,b >0,则“a >b ”是“a -b >1a -1b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 若a >b >0,则1b >1a ,所以a +1b >b +1a ,所以a -b >1a -1b ,充分性成立.若a -b >1a -1b ,则a +1b -b -1a >0,即(a -b )⎝ ⎛⎭⎪⎫1+1ab >0,又a >0,b >0,所以1+1ab >0,所以a -b >0,即a >b ,必要性成立.故“a >b ”是“a -b >1a -1b ”的充要条件.故选C.5.【多选题】(2021·山东滨州二模)下列命题为真命题的是( )A .若a >b ,则2a -b >12B .若a >b >0,则lg a lg b >1C .若a >0,b >0,则ab ≥2ab a +bD .若a >b ,则ac 2>bc 2 答案 AC 解析 对于A ,因为a >b ,所以a -b >0,所以2a -b >1>12,故正确;对于B ,a =10,b =110,lg a lg b >1不成立;对于C ,因为a >0,b >0,所以a +b ≥2ab ,所以ab =2ab 2ab ≥2ab a +b ,当且仅当a =b 时等号成立,故正确;对于D ,当c =0时不成立.故选AC.6.【多选题】(2021·高三5月数学)已知两个不为零的实数x ,y 满足x <y ,则下列结论正确的是( )A .3|x -y |>1B .xy <y 2C .x |x |<y |y | D.1x -1y <e x -e y答案 AC解析 因为x <y ,所以|x -y |>0,所以3|x -y |>1,则A 正确;因为x <y ,当y >0时,xy <y 2,当y <0时,xy >y 2,则B 错误;令f (x )=x |x |,易知f (x )在R 上单调递增,又x <y ,所以f (x )<f (y ),即x |x |<y |y |,则C 正确;对于D ,方法一:令g (x )=1x -e x ,易知g (x )在(-∞,0)和(0,+∞)上单调递减,不妨设0<x <y ,则g (x )>g (y ),即1x -e x >1y -e y ,亦即1x -1y >e x -e y ,则D 错误;方法二:取x =-1,y =1,则1x -1y =-2>e -1-e ,则D 错误.故选AC.7.【多选题】(2021·茂名第三次联考)已知1a <1b <0,则下列不等式错误的是( )A.⎝ ⎛⎭⎪⎫13a -b >1B.1b -a >1b C .a 3>b 3 D.b a +b <1a答案 ABD解析 ∵1a <1b <0,∴b <a <0.∴a -b >0,∴⎝ ⎛⎭⎪⎫13a -b ∈(0,1),故A 错误;不妨设b =-2,a =-1, ∴1b =-12,1b -a =-1,∴1b -a<1b ,故B 错误;∵b <a <0,y =x 3在R 上单调递增,∴a 3>b 3,故C 正确;不妨设b =-2,a =-1,∴b a +b =-2-3=23,1a=-1, ∴b a +b >1a,故D 错误.故选ABD. 8.【多选题】(2021·山东4月联考)若a >b >0,且ab =1,则( )A .a >b +1 B.1a 2+1<1b 2+1C.⎝ ⎛⎭⎪⎫12a >⎝ ⎛⎭⎪⎫12b D .log 2(a +b )>1 答案 BD解析 ∵a >b >0且ab =1,∴a >1>b >0,∴a -b -1=1b -b -1=1-b 2-b b =-⎝ ⎛⎭⎪⎫b +122+54b,不能确定正负,故A 错误. ∵a >b >0,∴a 2>b 2.∴a 2+1>b 2+1>0.∴1a 2+1<1b 2+1,故B 正确. ∵a >b >0,∴⎝ ⎛⎭⎪⎫12a <⎝ ⎛⎭⎪⎫12b ,故C 错误. 由基本不等式得a +b ≥2ab =2.∵a ≠b ,∴a +b >2,∴log 2(a +b )>1,故D 正确.故选BD.9.已知x >0,y >0,且2x +1y =1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围为________.答案 (-4,2)解析 记t =x +2y ,由不等式恒成立可得m 2+2m <t min .因为2x +1y =1,所以t =x +2y =(x +2y )·⎝ ⎛⎭⎪⎫2x +1y =4+4y x +x y . 而x >0,y >0,所以4y x +x y ≥2 4y x ·xy =4.⎝ ⎛⎭⎪⎫当且仅当4y x =x y ,即x =4,y =2时等号成立 所以t =4+4y x +x y ≥4+4=8,即t min =8.故m 2+2m <8,即(m -2)(m +4)<0,解得-4<m <2.所以实数m 的取值范围为(-4,2).10.已知正实数x ,y 满足2xy +2x +y =3,则2x +3y 的最小值为________. 答案 43-4解析 由2xy +2x +y =3得2x =3-y y +1. 又x ,y 为正实数,所以2x =3-y y +1>0,得0<y <3. 则2x +3y =3-y y +1+3y =4y +1+3(y +1)-4≥2 4y +1×3(y +1)-4=43-4, 当且仅当4y +1=3(y +1),即y =233-1时取等号.。

【三维设计】(新课标)高考数学大一轮复习 板块命题点专练(九)不等式(含解析) (2)

【三维设计】(新课标)高考数学大一轮复习 板块命题点专练(九)不等式(含解析) (2)

板块命题点专练(九) 不 等 式(研近年高考真题——找知识联系,找命题规律,找自身差距)1.(2014·天津高考)设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件2.(2014·四川高考)若a >b >0,c <d <0,则一定有( ) A.a d >b c B.a d <b c C.a c >b dD.a c <b d3.(2014·新课标全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x的取值范围是________.4.(2014·江苏高考)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是____________________.1.(2014·新课标全国卷Ⅰ)不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2; p 2:∃(x ,y )∈D ,x +2y ≥2; p 3:∀(x ,y )∈D ,x +2y ≤3; p 4:∃(x ,y )∈D ,x +2y ≤-1.其中真命题是( ) A .p 2,p 3B .p 1,p 4C .p 1,p 2D .p 1,p 32.(2014·广东高考)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =( )A .8B .7C .6D .53.(2013·北京高考)设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0 表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2.求得m 的取值范围是( )A.⎝⎛⎭⎪⎫-∞,43B.⎝⎛⎭⎪⎫-∞,13C.⎝⎛⎭⎪⎫-∞,-23 D. ⎝⎛⎭⎪⎫-∞,-534.(2013·安徽高考)在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA |=|OB |=OA ·OB =2,则点集{P |OP =λOA +μOB ,|λ|+|μ|≤1,λ,μ∈R }所表示的区域的面积是( )A .2 2B .2 3C .4 2D .4 35.(2014·湖南高考)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k =________.6.(2013·广东高考)给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0.令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.7.(2014·浙江高考)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.1.(2014·福建高考)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元2.(2014·重庆高考)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3 B .7+2 3 C .6+4 3D .7+4 33.(2014·上海高考)若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________. 4.(2014·湖北高考)某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为F =76 000vv 2+18v +20l.(1)如果不限定车型,l =6.05,则最大车流量为________辆/小时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/小时.答 案命题点一1.选 C 构造函数f (x )=x |x |,则f (x )在定义域R 上为奇函数.因为f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以函数f (x )在R 上单调递增,所以a >b ⇔f (a )>f (b )⇔a |a |>b |b |.选C.2.选B ∵c <d <0,∴1d <1c <0,∴-1d >-1c >0,而a >b >0,∴-a d >-bc>0,∴a d <b c,故选B.3.解析:选D 当x <1时,由ex -1≤2得x ≤1+ln 2,∴x <1;当x ≥1时,由x 13≤2得x ≤8,∴1≤x ≤8.综上,符合题意的x 的取值范围是x ≤8.答案:(-∞,8]4.解析:由题可得f (x )<0对于x ∈[m ,m +1]恒成立,即⎩⎪⎨⎪⎧f m =2m 2-1<0,fm +=2m 2+3m <0,解得-22<m <0. 答案:⎝⎛⎭⎪⎫-22,0 命题点二1.选C 画出可行域如图中阴影部分所示,由图可知,当目标函数z =x +2y 经过可行域内的点A (2,-1)时,取得最小值0,故x +2y ≥0,因此p 1,p 2是真命题,选C.2.选C 作出可行域(如图中阴影部分所示)后,结合目标函数可知,当直线y =-2x +z 经过点A 时,z 的值最大,由⎩⎪⎨⎪⎧y =-1,x +y =1⇒⎩⎪⎨⎪⎧x =2,y =-1,则m =z max =2×2-1=3.当直线y =-2x +z 经过点B 时,z 的值最小,由⎩⎪⎨⎪⎧y =-1,y =x ⇒⎩⎪⎨⎪⎧x =-1,y =-1,则n =z min =2×(-1)-1=-3,故m -n =6.3.选C 问题等价于直线x -2y =2与不等式组所表示的平面区域存在公共点,由于点(-m ,m )不可能在第一和第三象限,而直线x -2y =2经过第一、三、四象限,则点(-m ,m )只能在第四象限,可得m <0,不等式组所表示的平面区域如图中阴影部分所示,要使直线x -2y =2与阴影部分有公共点,则点(-m ,m )在直线x -2y -2=0的下方,由于坐标原点使得x -2y -2<0,故-m -2m -2>0,即m <-23.4.选D 由|OA |=|OB |=OA ·OB =2, 可得∠AOB =π3,又A ,B 是两定点,可设A (3,1),B (0,2),P (x ,y ), 由OP =λOA +μOB ,可得⎩⎨⎧x =3λ,y =λ+2μ,⇒⎩⎪⎨⎪⎧λ=33x ,μ=y 2-36x .因为|λ|+|μ|≤1, 所以⎪⎪⎪⎪⎪⎪33x +⎪⎪⎪⎪⎪⎪y2-36x ≤1, 当⎩⎨⎧x ≥0,3y -3x ≥03y +3x ≤6,时,由可行域可得S 0=12×2×3=3,所以由对称性可知点P所表示的区域面积S =4S 0=43,故选D.5.解析:作出不等式组表示的平面区域,如图中阴影部分所示,z =2x +y ,则y =-2x +z ,易知当直线y =-2x +z 过点A (k ,k )时,z =2x +y 取得最小值,即3k =-6,k =-2.答案:-26.解析:解决本题的关键是要读懂数学语言,x 0,y 0∈Z ,说明x 0,y 0是整数,作出图形可知,△ABF 所围成的区域即为区域D ,其中A (0,1)是z 在D 上取得最小值的点,B ,C ,D ,E ,F 是z 在D 上取得最大值的点,则T 中的点共确定AB ,AC ,AD ,AE ,AF ,BF 共6条不同的直线.答案:67.解析:由线性规划的可行域(如图),求出三个交点坐标分别为A (1,0),B (2,1),C ⎝⎛⎭⎪⎫1,32,都代入1≤ax +y ≤4,可得1≤a ≤32.答案:⎣⎢⎡⎦⎥⎤1,32 命题点三1.选C 设该容器的总造价为y 元,长方体的底面矩形的长为x m ,因为无盖长方体的容积为4 m 3,高为1 m ,所以长方体的底面矩形的宽为4xm ,依题意,得y =20×4+10⎝ ⎛⎭⎪⎫2x +2×4x =80+20⎝⎛⎭⎪⎫x +4x ≥80+20×2x ×4x=160⎝ ⎛⎭⎪⎫当且仅当x =4x ,即x =2时取等号, 所以该容器的最低总造价为160元. 2.选D 因为log 4(3a +4b )=log 2ab , 所以log 4(3a +4b )=log 4(ab ), 即3a +4b =ab ,且⎩⎪⎨⎪⎧3a +4b >0,ab >0,即a >0,b >0,所以4a +3b=1(a >0,b >0),a +b =(a +b )·⎝ ⎛⎭⎪⎫4a +3b =7+4b a +3a b ≥7+24b a ·3a b =7+43,当且仅当4b a =3a4时取等号,故选D.3.解析:∵x 2+2y 2≥2x 2·2y 2=22xy =22,当且仅当x =2y 时取“=”, ∴x 2+2y 2的最小值为2 2. 答案:2 2 4.解析:(1)F =76 000v +20×6.05v+18≤76 0002121+18=1 900,当且仅当v =11时等号成立.(2)F =76 000v +20×5v+18≤76 0002100+18=2 000,当且仅当v =10时等号成立,2 000-1 900=100. 答案:1 900 100。

高考数学压轴专题人教版备战高考《不等式》知识点总复习有答案解析

高考数学压轴专题人教版备战高考《不等式》知识点总复习有答案解析

【高中数学】高考数学《不等式》练习题一、选择题1.已知变量,x y 满足约束条件121x y x +⎧⎨-⎩剟…,则x y y +的取值范围是( )A.12,23⎡⎤⎢⎥⎣⎦B .20,3⎛⎤⎥⎝⎦C .11,3⎛⎤-- ⎥⎝⎦D .3,22⎡⎤⎢⎥⎣⎦【答案】B 【解析】 【分析】作出不等式121x y x +⎧⎨-⎩剟…表示的平面区域,整理得:x y y +1x y =+,利用yx 表示点(),x y 与原点的连线斜率,即可求得113x y -<-…,问题得解. 【详解】将题中可行域表示如下图,整理得:x y y+1xy =+ 易知yk x=表示点(),x y 与原点的连线斜率, 当点(),x y 在()1.3A -处时,yk x=取得最小值-3. 且斜率k 小于直线1x y +=的斜率-1, 故31k -≤<-,则113x y -<-…, 故203x y y +<…. 故选B 【点睛】本题主要考查了利用线性规划知识求分式型目标函数的取值范围,考查转化能力,属于中档题.2.在平面直角坐标系中,不等式组20{200x y x y y +-≤-+≥≥,表示的平面区域的面积是( )A .42B .4C .22D .2【答案】B 【解析】试题分析:不等式组表示的平面区域如图所示的三角形ABC 及其内部.可得,A (2,0),B (0,2),C (-2,0),显然三角形ABC 的面积为.故选B .考点:求不等式组表示的平面区域的面积.3.已知点P ,Q 分别是抛物线28x y =和圆22(2)1x y +-=上的动点,点(0,4)A ,则2||||PA PQ 的最小值为( ) A .10 B .4C .232D .421【答案】B 【解析】 【分析】设出点P 的坐标()00,x y ,用0y 表示出PA ;根据圆上一点到定点距离的范围,求得PQ 的最大值,再利用均值不等式求得目标式的最值. 【详解】设点()00,P x y ,因为点P 在抛物线上,所以()200080x y y =≥,因为点(0,4)A ,则()()2222200000||48416PA x y y y y =+-=+-=+.又知点Q 在圆22(2)1x y +-=上,圆心为抛物线的焦点(0,2)F ,要使2||||PA PQ 的值最小,则||PQ 的值应最大,即0max 13PQ PF y =+=+.所以()()222000003632516||||33y y y PA PQ y y +-+++==++ ()()0000252536236433y y y y =++-≥+⋅-=++ 当且仅当02y =时等号成立.所以2||||PA PQ 的最小值为4.故选:B. 【点睛】本题考查抛物线上一点到定点距离的求解,以及圆上一点到定点距离的最值,利用均值不等式求最值,属综合中档题.4.若,,则( )A .B .C .D .【答案】C【解析】 【分析】 【详解】试题分析:用特殊值法,令,,得,选项A 错误,,选项B 错误,,选项D 错误,因为选项C 正确,故选C . 【考点】指数函数与对数函数的性质 【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.5.已知实数x 、y 满足约束条件103300x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .1-B .2C .7D .8【答案】C 【解析】 【分析】作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点C 时,z 取得最大值.【详解】解:作出约束条件表示的可行域是以(1,0),(1,0),(2,3)-为顶点的三角形及其内部,如下图表示:当目标函数经过点()2,3C 时,z 取得最大值,最大值为7.故选:C. 【点睛】本题主要考查线性规划等基础知识;考查运算求解能力,数形结合思想,应用意识,属于中档题.6.已知不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则实数a 的取值范围是( ) A .(,5]-∞ B .[5,)+∞C .(,4]-∞D .[4,)+∞【答案】C 【解析】若不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则4a x x≤+对于任意的[1,3]x ∈恒成立,∵当[1,3]x ∈时,4[4,5]x x+∈,∴4a ≤,即实数a 的取值范围是(,4]-∞,故选C .【方法点晴】本题主要考查利用导数求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数. 本题是利用方法 ① 求得a 的取值范围的.7.在锐角ABC V 中,内角,,A B C 所对的边分别为,,a b c ,若222cos 3a ab C b +=,则tan 6tan tan tan A B C A+⋅的最小值为( )A .3B .2C .2D .32【答案】B 【解析】 【分析】根据余弦定理得到4cos c b A =,再根据正弦定理得到sin cos 3sin cos A B B A =,故tan 3tan A B =,3t 53tan 4an 6ta 3ta tan tan n n B A B C AB ⎛⎫=+ ⎪⎝+⎭⋅,计算得到答案. 【详解】由余弦定理及222cos 3a ab C b +=可得222223a a b c b ++-=,即22222a b b c -=+,得22222cos a b a bc A -=+,整理得22 2cos a b bc A =+.2222cos a b c bc A =+-Q ,2222cos 2cos b bc A b c bc A ∴+=+-,得4cos c b A =.由正弦定理得sin 4sin cos C B A =,又()sin sin C A B =+,()sin 4sin cos A B B A ∴+=, 整理得sin cos 3sin cos A B B A =.易知在锐角三角形ABC 中cos 0A ≠, cos 0B ≠,tan 3tan A B ∴=, 且tan 0B >.πA B C ++=Q , ()tan tan C A B =-+tan tan 1tan tan A B A B +=--⋅24tan 3tan 1BB =-,tan 6tan tan tan A B C A ∴+⋅()233tan 124tan tan B B B-=+353tan 43tan B B ⎛⎫=+ ⎪⎝⎭34≥⨯当且仅当tan B 时等号成立. 故选:B . 【点睛】本题考查了正余弦定理,三角恒等变换,均值不等式,意在考查学生的计算能力和综合应用能力.8.已知直线22+=mx ny ()0,0m n >>过圆()()22125x y -+-=的圆心,则11m n+的最小值为( ) A .1 B .2C .3D .4【答案】D 【解析】 【分析】圆心坐标为(1,2),代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值. 【详解】圆22(1)(2)5x y -+-=的圆心为(1,2),由题意可得222m n +=,即1m n +=,m ,0n >,则1111()()24n m m n m n m n m n +=++=++…,当且仅当n mm n =且1m n +=即12m n ==时取等号, 故选:D . 【点睛】本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题.9.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( )A B .1)C .D .4【答案】D 【解析】 【分析】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则2||4||1PM x PF x=+-,利用均值不等式得到答案. 【详解】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则()()22222224||||44||1x yx x PM P P M x F x Q P x x-+-+====+≥-,当4x x =,即2x =时等号成立. 故选:D .【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.10.已知函数()2222,2{log ,2x x x f x x x -+≤=> ,若0R x ∃∈,使得()2054f x m m ≤- 成立,则实数m 的取值范围为 ( ) A .11,4⎡⎤-⎢⎥⎣⎦B .1,14⎡⎤⎢⎥⎣⎦C .12,4⎡⎤-⎢⎥⎣⎦D .1,13⎡⎤⎢⎥⎣⎦【答案】B 【解析】由函数的解析式可得函数的最小值为:()11f =,则要考查的不等式转化为:2154m m ≤-,解得:114m ≤≤,即实数m 的取值范围为 1,14⎡⎤⎢⎥⎣⎦. 本题选择B 选项.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.11.已知函数()2814f x x x =++,()()2log 4g x x =,若[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立,则a 的最大值为( )A .-4B .-3C .-2D .-1【答案】C 【解析】 【分析】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立得:()f x 的值域为()g x 的值域的子集,从而28142a a ++≤,故可求a 的最大值为2-.【详解】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立, 得:()f x 的值域为()g x 的值域的子集,由()()2log 4g x x =(]20,1x ∈()2g x ⇒≤ ,所以(](),2g x ∈-∞ 当43a --≤≤ 时,()21f x-#-,此时()f x 的值域为()g x 的值域的子集成立.当3a >-时,()22814f x a a -≤≤++,须满足()f x 的值域为()g x 的值域的子集,即28142a a ++≤,得62a -≤≤- 所以a 的最大值为2-. 故选:C. 【点睛】本题主要考查恒成立和存在性问题,注意把两类问题转化为函数值域的包含关系,此问题属于中档题目.12.已知x ,y 满足约束条件02340x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a =( )A .2B .12C .-2D .12-【答案】A 【解析】 【分析】由约束条件可得到可行域,根据图象可知最优解为()2,0A ,代入可构造方程求得结果. 【详解】由约束条件可知可行域如下图阴影部分所示:当直线:l y ax z =-+经AOB V 区域时,当l 过点()2,0A 时,在y 轴上的截距最大, 即()2,0A 为最优解,42a ∴=,解得:2a =. 故选:A . 【点睛】本题考查线性规划中的根据目标函数的最值求解参数值的问题,关键是能够通过约束条件准确得到可行域,根据数形结合的方式确定最优解.13.在区间[]0,1内随机取两个数m 、n ,则关于x 的方程20x nx m -+=有实数根的概率为( ) A .18B .17C .16D .15【答案】A 【解析】 【分析】根据方程有实根可得到约束条件,根据不等式组表示的平面区域和几何概型概率公式可求得结果. 【详解】若方程20x nx m -+=有实数根,则40n m ∆=-≥.如图,400101n m m n -≥⎧⎪≤≤⎨⎪≤≤⎩表示的平面区域与正方形0101m n ≤≤⎧⎨≤≤⎩的面积之比即为所求的概率,即111124118S P S ⨯⨯===⨯阴影正方形. 故选:A . 【点睛】本题考查几何概型中面积型概率问题的求解,涉及到线性规划表示的平面区域面积的求解,关键是能够根据方程有实根确定约束条件.14.已知离散型随机变量X 服从二项分布~(,)X B n p ,且()4E X =,()D X q =,则11p q+的最小值为( ) A .2 B .52C .94D .4【答案】C 【解析】【分析】根据二项分布()~X B n p ,的性质可得()E X ,()D X ,化简即44p q +=,结合基本不等式即可得到11p q+的最小值. 【详解】离散型随机变量X 服从二项分布()X B n p :,, 所以有()4E X np ==,()()1D X q np p ==-(,所以44p q +=,即14qp +=,(0p >,0q >) 所以11114q p p q p q ⎛⎫⎛⎫+=++= ⎪⎪⎝⎭⎝⎭ 5592144444q p q p p q p q ⎛⎫++≥⨯=+= ⎪⎝⎭, 当且仅当423q p ==时取得等号.故选C . 【点睛】本题主要考查了二项分布的期望与方差,考查了基本不等式,属于中档题.15.若两个正实数x ,y 满足142x y +=,且不等式2m 4y x m +<-有解,则实数m 的取值范围是 ( ) A .(1,2)- B .(,2)(1,)-∞-+∞U C .()2,1-D .(,1)(2,)-∞-+∞U【答案】D 【解析】 【分析】将原问题转化为求最值的问题,然后利用均值不等式求最值即可确定实数m 的取值范围. 【详解】 若不等式24y x m m +<-有解,即2()4min ym m x ->+即可, 142x y +=Q,1212x y∴+=, 则121221112121124422482y y x y x x x y y x ⎛⎫⎛⎫+=++=+++≥+=+=+⨯=+= ⎪ ⎪⎝⎭⎝⎭,当且仅当28x y y x =,即2216y x =,即4y x =时取等号,此时1x =,4y =, 即()24min y x +=, 则由22m m ->得220m m -->,即()()120m m +->,得2m >或1m <-,即实数m 的取值范围是()(),12,-∞-⋃+∞,故选D .【点睛】本题主要考查基本不等式的应用,利用不等式有解转化为最值问题是解决本题的关键.16.已知在锐角ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos b C c B =,则111tan tan tan A B C ++的最小值为( ) A.3 BC.3 D.【答案】A【解析】【分析】先根据已知条件,把边化成角得到B,C 关系式,结合均值定理可求.【详解】∵2cos cos b C c B =,∴2sin cos sinCcos B C B =,∴tan 2tan C B =.又A B C π++=,∴()()tan tan tan A B C B C π=-+=-+⎡⎤⎣⎦22tan tan 3tan 3tan 1tan tan 12tan 2tan 1B C B B B C B B +=-=-=---, ∴21112tan 111tan tan tan 3tan tan 2tan B A B C B B B-++=++27tan 36tan B B =+. 又∵在锐角ABC ∆中, tan 0B >,∴27tan 36tan 3B B +≥=,当且仅当tan 2B =时取等号,∴min111tan tan tan 3A B C ⎛⎫++= ⎪⎝⎭,故选A. 【点睛】本题主要考查正弦定理和均值定理,解三角形时边角互化是求解的主要策略,侧重考查数学运算的核心素养.17.已知实数x y ,满足1030350x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则()22(4)2z x y =-+-的最小值为( ) A .5 B .5 C .3 D .52【答案】D【解析】【分析】由题意作出其平面区域,22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,求阴影内的点到点(4,2)P 的距离的平方最小值即可.【详解】 解:由题意作出实数x ,y 满足1030350x y x y x y -+⎧⎪+-⎨⎪--⎩………平面区域, 22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,则22(4)(2)z x y =-+-的最小值为P 到350x y --=的距离的平方,解得,2222523(1)d -⎛⎫+ ⎪= ⎝⎭=⎪; 所以min 52z =故选:D .【点睛】本题考查了简单线性规划,作图要细致认真,用到了表达式的几何意义的转化,属于中档题.18.已知函数()lg f x x =,0a b >>,()()f a f b =,则22a b a b+-的最小值等于( ). AB.C.2 D.【答案】D【解析】 试题分析:因为函数()lg f x x =,0a b >>,()()f a f b =所以lg lg a b =- 所以1a b=,即1ab =,0a b >> 22a b a b+-22()2()22()a b ab a b a b a b a b a b -+-+===-+---≥= 当且仅当2a b a b-=-,即a b -=时等号成立 所以22a b a b+-的最下值为故答案选D考点:基本不等式.19.若x 、y 满足约束条件4200x y x y y +≤⎧⎪-+≥⎨⎪≥⎩,目标函数z ax y =+取得最大值时的最优解仅为(1,3),则a 的取值范围为( )A .(1,1)-B .(0,1)C .(,1)(1,)-∞⋃+∞D .(1,0]-【答案】A【解析】【分析】结合不等式组,绘制可行域,判定目标函数可能的位置,计算参数范围,即可.【详解】结合不等式组,绘制可行域,得到:目标函数转化为y ax z =-+,当0a -≥时,则<1a -,此时a 的范围为(]1,0-当0a -<时,则1a ->-,此时a 的范围为()0,1,综上所述,a 的范围为()1,1-,故选A .【点睛】本道题考查了线性规划问题,根据最值计算参数,关键明白目标函数在坐标轴上可能的位置,难度偏难.20.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A B 、两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时. A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( ) A .320千元B .360千元C .400千元D .440千元 【答案】B【解析】设生产甲、乙两种产品x 件,y 件时该企业每月利润的最大值,由题意可得约束条件: 2348069600,0,x y x y x y x N y N+≤⎧⎪+≤⎪⎨≥≥⎪⎪∈∈⎩, 原问题等价于在上述约束条件下求解目标函数2z x y =+的最大值.绘制目标函数表示的平面区域如图所示,结合目标函数的几何意义可知:目标函数在点()150,60B 处取得最大值:max 2215060360z x y =+=⨯+=千元. 本题选择B 选项.点睛:含有实际背景的线性规划问题其解题关键是找到制约求解目标的两个变量,用这两个变量建立可行域和目标函数,在解题时要注意题目中的各种相互制约关系,列出全面的制约条件和正确的目标函数.。

2018-2019学年高中新三维一轮复习数学浙江专版:板块

2018-2019学年高中新三维一轮复习数学浙江专版:板块

板块命题点专练(二) 不等式1.(2017·山东高考)若a >b >0,且ab =1,则下列不等式成立的是( ) A .a +1b <b2a <log 2(a +b )B.b 2a <log 2(a +b )<a +1b C .a +1b <log 2(a +b )<b 2aD .log 2(a +b )<a +1b <b2a解析:选B 根据题意,令a =2,b =12进行验证,易知a +1b =4,b 2a =18,log 2(a +b )=log 252>1,因此a +1b >log 2(a +b )>b 2a .2.(2016·四川高考)设p :实数x ,y 满足x >1且y >1,q :实数x ,y 满足x +y >2,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A ∵⎩⎪⎨⎪⎧x >1,y >1,∴x +y >2,即p ⇒q . 而当x =0,y =3时,有x +y =3>2,但不满足x >1且y >1, 即q ⇒/ p .故p 是q 的充分不必要条件.3.(2014·浙江高考)已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3 B.3<c ≤6 C .6<c ≤9D .c >9解析:选C 由题意,不妨设g (x )=x 3+ax 2+bx +c -m ,m ∈(0,3], 则g (x )的三个零点分别为x 1=-3,x 2=-2,x 3=-1, 因此有(x +1)(x +2)(x +3)=x 3+ax 2+bx +c -m , 则c -m =6,因此c =m +6∈(6,9].4.(2016·浙江高考)已知实数a ,b ,c ,( ) A .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100 B .若|a 2+b +c |+|a 2+b -c |≤1,则a 2+b 2+c 2<100 C .若|a +b +c 2|+|a +b -c 2|≤1,则a 2+b 2+c 2<100 D .若|a 2+b +c |+|a +b 2-c |≤1,则a 2+b 2+c 2<100 解析:选D 对于A ,取a =b =10,c =-110, 显然|a 2+b +c |+|a +b 2+c |≤1成立, 但a 2+b 2+c 2>100, 即a 2+b 2+c 2<100不成立. 对于B ,取a 2=10,b =-10,c =0, 显然|a 2+b +c |+|a 2+b -c |≤1成立, 但a 2+b 2+c 2=110, 即a 2+b 2+c 2<100不成立. 对于C ,取a =10,b =-10,c =0, 显然|a +b +c 2|+|a +b -c 2|≤1成立, 但a 2+b 2+c 2=200, 即a 2+b 2+c 2<100不成立.综上知,A 、B 、C 均不成立,所以选D.1.(2017·浙江高考)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +y -3≥0,x -2y ≤0,则z =x +2y 的取值范围是( )A .[0,6] B.[0,4] C .[6,+∞)D .[4,+∞)解析:选D 作出不等式组所表示的平面区域如图中阴影部分所示,由z =x +2y ,得y =-12x +z 2,∴z 2是直线y =-12x +z 2在y 轴上的截距, 根据图形知,当直线y =-12x +z 2过A 点时,z 2取得最小值.由⎩⎪⎨⎪⎧x -2y =0,x +y -3=0,得x =2,y =1,即A (2,1),此时,z =4, ∴z =x +2y 的取值范围是[4,+∞).2.(2016·北京高考)已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x -y 的最大值为( )A .-1 B.3 C .7D .8解析:选C 法一:作出线段AB ,如图所示.作直线2x -y =0并将其向下平移至直线过点B (4,1)时,2x -y 取最大值为2×4-1=7. 法二:依题意得k AB =5-12-4=-2, ∴线段l AB :y -1=-2(x -4),x ∈[2,4], 即y =-2x +9,x ∈[2,4],故2x -y =2x -(-2x +9)=4x -9,x ∈[2,4]. 设h (x )=4x -9,易知h (x )=4x -9在[2,4]上单调递增, 故当x =4时,h (x )max =4×4-9=7.3.(2015·重庆高考)若不等式组⎩⎪⎨⎪⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为( )A .-3 B.1 C.43D .3解析:选B 作出可行域,如图中阴影部分所示,易求A ,B ,C ,D 的坐标分别为A (2,0),B (1-m,1+m ),C 2-4m 3,2+2m3,D (-2m,0).S △ABC =S △ADB -S △ADC =12|AD |·|y B -y C |=12(2+2m )⎝⎛⎭⎫1+m -2+2m 3 =(1+m )⎝⎛⎭⎫1+m -23=43,解得m =1或m =-3(舍去).4.(2016·浙江高考)若平面区域⎩⎪⎨⎪⎧x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )A. 355 B. 2 C. 322D . 5解析:选B 根据约束条件作出可行域如图中阴影部分所示,当斜率为1的直线分别过A 点和B 点时满足条件,联立方程组⎩⎪⎨⎪⎧x +y -3=0,x -2y +3=0求得A (1,2),联立方程组⎩⎪⎨⎪⎧2x -y -3=0,x +y -3=0求得B (2,1),可求得分别过A ,B 两点且斜率为1的两条直线方程为x -y +1=0和x -y -1=0, 由两平行线间的距离公式得距离为|1+1|2=2,故选B.5.(2016·全国卷Ⅱ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________.解析:不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,x -3≤0表示的可行域如图阴影部分所示.由z =x -2y 得y =12x -12z .平移直线y =12x ,易知经过点A (3,4)时,z 有最小值,最小值为z =3-2×4=-5.答案:-56.(2014·浙江高考)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.解析:由线性规划的可行域(如图),求出三个交点坐标分别为A (1,0),B (2,1),C ⎝⎛⎭⎫1,32,都代入1≤ax +y ≤4,可得1≤a ≤32.答案:⎣⎡⎦⎤1,321.(2015·湖南高考)若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A. 2B.2 C .2 2D .4解析:选C 由1a +2b =ab ,知a >0,b >0,所以ab =1a +2b ≥22ab ,即ab ≥22,当且仅当⎩⎨⎧1a =2b ,1a +2b =ab ,即a =42,b =242时取“=”,所以ab 的最小值为2 2.2.(2014·重庆高考)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3 B.7+2 3 C .6+4 3D .7+4 3解析:选D 因为log 4(3a +4b )=log 2ab , 所以log 4(3a +4b )=log 4(ab ), 即3a +4b =ab ,且⎩⎪⎨⎪⎧3a +4b >0,ab >0,即a >0,b >0, 所以4a +3b=1(a >0,b >0),a +b =(a +b )·⎝⎛⎭⎫4a +3b =7+4b a +3a b≥7+24b a ·3ab =7+43,当且仅当4b a =3a4时取等号,故选D.3.(2017·天津高考)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为________.解析:因为ab >0,所以a 4+4b 4+1ab ≥24a 4b 4+1ab =4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab=4,当且仅当⎩⎪⎨⎪⎧a 2=2b 2,ab =12时取等号,故a 4+4b 4+1ab 的最小值是4. 答案:44.(2017·江苏高考)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4 ⎝⎛⎭⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.答案:301.(2015·山东高考)不等式|x -1|-|x -5|<2的解集是( ) A .(-∞,4) B.(-∞,1) C .(1,4)D .(1,5)解析:选A ①当x ≤1时,原不等式可化为1-x -(5-x )<2,∴-4<2,不等式恒成立,∴x ≤1.②当1<x <5时,原不等式可化为x -1-(5-x )<2, ∴x <4,∴1<x <4.③当x ≥5时,原不等式可化为x -1-(x -5)<2,该不等式不成立. 综上,原不等式的解集为(-∞,4),故选A.2.(2017·天津高考)已知函数f (x )=⎩⎪⎨⎪⎧x 2-x +3,x ≤1,x +2x ,x >1.设a ∈R ,若关于x 的不等式f (x )≥⎪⎪⎪⎪x2+a 在R 上恒成立,则a 的取值范围是( ) A.⎣⎡⎦⎤-4716,2 B.⎣⎡⎦⎤-4716,3916 C .[-23,2]D .⎣⎡⎦⎤-23,3916 解析:选A 法一:根据题意,作出f (x )的大致图象,如图所示.当x ≤1时,若要f (x )≥⎪⎪⎪⎪x 2+a 恒成立,结合图象,只需x 2-x +3≥-⎝⎛⎭⎫x2+a ,即x 2-x 2+3+a ≥0,故对于方程x 2-x2+3+a =0,Δ=⎝⎛⎭⎫-122-4(3+a )≤0, 解得a ≥-4716;当x >1时,若要f (x )≥⎪⎪⎪⎪x 2+a 恒成立,结合图象,只需x +2x ≥x2+a , 即 x 2+2x ≥a .又x 2+2x ≥2,当且仅当x 2=2x ,即x =2时等号成立,所以a ≤2.综上,a 的取值范围是⎣⎡⎦⎤-4716,2. 法二:关于x 的不等式f (x )≥⎪⎪⎪⎪x 2+a 在R 上恒成立等价于-f (x )≤a +x2≤f (x ), 即-f (x )-x 2≤a ≤f (x )-x2在R 上恒成立,令g (x )=-f (x )-x2.当x ≤1时,g (x )=-(x 2-x +3)-x 2=-x 2+x 2-3=-⎝⎛⎭⎫x -142-4716, 当x =14时,g (x )max =-4716;当x >1时,g (x )=-⎝⎛⎫x +2x -x 2=-⎝⎛⎭⎫3x 2+2x ≤-23, 当且仅当3x 2=2x ,且x >1,即x =233时,“=”成立,故g (x )max =-2 3. 综上,g (x )max =-4716. 令h (x )=f (x )-x2,当x ≤1时,h (x )=x 2-x +3-x 2=x 2-3x 2+3=⎝⎛⎭⎫x -342+3916, 当x =34时,h (x )min =3916;当x >1时,h (x )=x +2x -x 2=x 2+2x≥2,当且仅当x 2=2x ,且x >1,即x =2时,“=”成立,故h (x )min =2.综上,h (x )min =2.故a 的取值范围为⎣⎡⎦⎤-4716,2.3.(2016·江苏高考)设a >0,|x -1|<a 3,|y -2|<a3,求证:|2x +y -4|<a .证明:因为|x -1|<a 3,|y -2|<a3,所以|2x +y -4|=|2(x -1)+(y -2)|≤2|x -1|+|y -2|<2×a 3+a3=a .4.(2015·全国卷Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解:(1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0, 解得23<x <1;当x ≥1时,不等式化为-x +2>0, 解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x 23<x <2.(2)由题设可得f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).。

高考数学压轴专题2020-2021备战高考《不等式》知识点总复习附答案解析

高考数学压轴专题2020-2021备战高考《不等式》知识点总复习附答案解析

新数学复习题《不等式》专题解析(1)一、选择题1.对于函数()f x ,若12,x x 满足()()()1212f x f x f x x +=+,则称12,x x 为函数()f x 的一对“线性对称点”.若实数a 与b 和+a b 与c 为函数()3x f x =的两对“线性对称点”,则c 的最大值为( ) A .3log 4 B .3log 41+C .43D .3log 41-【答案】D 【解析】 【分析】根据已知有333b c a b c a ++++=,可得13131ca b+=+-,只需求出3a b +的最小值,根据333a b a b +=+,利用基本不等式,得到3a b +的最小值,即可得出结论.【详解】依题意知,a 与b 为函数()3xf x =的“线性对称点”,所以333a b a b +=+=≥ 故34a b +≥(当且仅当a b =时取等号).又+a b 与c 为函数()3xf x =的“线性对称点,所以333b c a b c a ++++=,所以3143131313a b ca b a b +++==+≤--,从而c 的最大值为3log 41-. 故选:D. 【点睛】本题以新定义为背景,考查指数函数的运算和图像性质、基本不等式,理解新定义含义,正确求出c 的表达式是解题的关键,属于中档题.2.某企业生产甲、乙两种产品需用到A,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用总量如下表所示.若生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )A .12万元B .16万元C .17万元D .18万元【答案】D 【解析】 【分析】根据条件列可行域与目标函数,结合图象确定最大值取法,即得结果. 【详解】设每天甲、乙产品的产量分别为x 吨、y 吨由已知可得3212,28,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩目标函数34z x y =+,作出约束条件表示的可行域如图中阴影部分所示,可得目标函数在点P 处取得最大值,由28,3212,x y x y +=⎧⎨+=⎩得()2,3P ,则max 324318z =⨯+⨯=(万元).选D.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.3.已知关于x 的不等式()()222240m x m x -+-+>得解集为R ,则实数m 的取值范围是( ) A .()2,6B .()(),26,-∞+∞UC .(](),26,-∞⋃+∞D .[)2,6【答案】D 【解析】 【分析】分20m -=和20m -≠两种情况讨论,结合题意得出关于m 的不等式组,即可解得实数m 的取值范围.【详解】当20m -=时,即当2m =时,则有40>,该不等式恒成立,合乎题意;当20m -≠时,则()()220421620m m m ->⎧⎪⎨∆=---<⎪⎩,解得26m <<. 综上所述,实数m 的取值范围是[)2,6. 故选:D. 【点睛】本题考查利用变系数的二次不等式恒成立求参数,要注意对首项系数是否为零进行分类讨论,考查运算求解能力,属于中等题.4.设变量,x y 满足约束条件0211x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩,则目标函数5z x y =+的最大值为( )A .2B .3C .4D .5【答案】D 【解析】 【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案. 【详解】根据约束条件0211x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩画出可行域如图:目标函数z =5x +y 可化为y =-5x +z ,即表示斜率为-5,截距为z 的动直线,由图可知,当直线5z x y =+过点()1,0A 时,纵截距最大,即z 最大, 由211x y x y +=⎧⎨+=⎩得A (1,0)∴目标函数z =5x +y 的最小值为z =5 故选D【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.设实数满足条件则的最大值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案. 【详解】如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.6.已知实数x ,y 满足不等式||2x y +≥,则22x y +最小值为( )A .2B .4C .22D .8【解析】 【分析】先去掉绝对值,画出不等式所表示的范围,再根据22x y +表示圆心在原点的圆求解其最小圆的半径的平方,即可求解. 【详解】 由题意,可得当0y ≥时,22xy +≥; (2)当0y <时,22x y -≥,如图所示,画出的图形,可得不等式表示的就是阴影部分的图形, 又由22xy +最小值即为原点到直线的垂线段的长度的平方,又由2222211d -==+,所以24d =,即22xy +最小值为4.故选:B .【点睛】本题主要考查了线性规划的知识,以及点到直线的距离公式的应用,着重考查了数形结合思想,以及计算能力.7.已知0a b >>,则下列不等式正确的是( ) A .ln ln a b b a ->- B .|||a b b a < C .ln ln a b b a -<- D .|||a b b a ->【答案】C 【解析】 【分析】利用特殊值代入法,作差比较法,排除不符合条件的选项,即可求解,得到答案.由题意,因为0a b >>,取,1a e b ==,则ln 0,ln a b b a e -=-=,1,1a b e b a e -=--=-,可排除A 、D 项;取11,49a b ==,则71,1812a b b a -=-=,可排除B 项; 因为满足0a b >>条件的排除法,可得A 、B 、D 是错误的. 故选:C . 【点睛】本题主要考查了不等式与不等关系,以及不等式的的基本性质,其中解答中合理赋值,代入排除是解答的关键,着重考查了推理与运算能力.8.已知变量,x y 满足2402400x y x y x +-≥⎧⎪+-≤⎨⎪≥⎩,则24x y --的最小值为( )A .85B .8C .165D .163【答案】D 【解析】 【分析】222424512x y x y ----=⨯+,而222412x y --+表示点(,)x y 到直线240x y --=的距离,作出可行域,数形结合即可得到答案. 【详解】因为222424512x y x y ----=⨯+,所以24x y --可看作为可行域内的动点到直线240x y --=的距离的5倍,如图所示,点44(,)33A 到直线240x y --=的距离d 最小,此时224424333512d -⨯-==+,所以24x y --163=. 故选:D. 【点睛】本题考查目标函数的含绝对值的线性规划问题,考查学生数形结合与转化与化归的思想,是一道中档题.9.设a b c ,,为非零实数,且a c b c >>,,则( ) A .a b c +> B .2ab c >C .a b2c +> D .112a b c+> 【答案】C 【解析】 【分析】取1,1,2a b c =-=-=-,计算知ABD 错误,根据不等式性质知C 正确,得到答案. 【详解】,a c b c >>,故2a b c +>,2a bc +>,故C 正确; 取1,1,2a b c =-=-=-,计算知ABD 错误; 故选:C . 【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.10.若,x y 满足4,20,24,x y x y x y +≤⎧⎪-≥⎨⎪+≥⎩则4y x -的最大值为( )A .72-B .52-C .32-D .1-【答案】D 【解析】 【分析】画出平面区域,结合目标函数的几何意义,求解即可. 【详解】该不等式组表示的平面区域,如下图所示4y x-表示该平面区域中的点(),x y 与(0,4)A 确定直线的斜率 由斜率的性质得出,当区域内的点为线段AB 上任意一点时,取得最大值.不妨取84(,)33B 时,4y x -取最大值443183-=- 故选:D 【点睛】本题主要考查了求分式型目标函数的最值,属于中档题.11.已知函数()2814f x x x =++,()()2log 4g x x =,若[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立,则a 的最大值为( )A .-4B .-3C .-2D .-1【答案】C 【解析】 【分析】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立得:()f x 的值域为()g x 的值域的子集,从而28142a a ++≤,故可求a 的最大值为2-.【详解】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立, 得:()f x 的值域为()g x 的值域的子集,由()()2log 4g x x =(]20,1x ∈()2g x ⇒≤ ,所以(](),2g x ∈-∞ 当43a --≤≤ 时,()21f x-#-,此时()f x 的值域为()g x 的值域的子集成立.当3a >-时,()22814f x a a -≤≤++,须满足()f x 的值域为()g x 的值域的子集,即28142a a ++≤,得62a -≤≤- 所以a 的最大值为2-. 故选:C.【点睛】本题主要考查恒成立和存在性问题,注意把两类问题转化为函数值域的包含关系,此问题属于中档题目.12.已知,x y满足33025010x yx yx y-+≥⎧⎪+≥⎨⎪+-≤⎩,则36yzx-=-的最小值为()A.157B.913C.17D.313【答案】D【解析】【分析】画出可行域,目标函数36yzx-=-的几何意义是可行域内的点与定点(6,3)P连接的斜率,根据图像得到答案.【详解】画出可行域如图中阴影部分所示,目标函数36yzx-=-的几何意义是可行域内的点与定点(6,3)P连接的斜率.直线330x y-+=与直线10x y+-=交于点13(,)22A-,由图可知,当可行域内的点为A时,PAk最小,故min333211362z-==--.故选:D.【点睛】本题考查了线性规划问题,画出图像是解题的关键.13.已知直线22+=mx ny()0,0m n>>过圆()()22125x y-+-=的圆心,则11m n+的最小值为()A .1B .2C .3D .4【答案】D 【解析】 【分析】圆心坐标为(1,2),代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值. 【详解】圆22(1)(2)5x y -+-=的圆心为(1,2),由题意可得222m n +=,即1m n +=,m ,0n >,则1111()()24n m m n m n m n m n +=++=++…,当且仅当n mm n =且1m n +=即12m n ==时取等号, 故选:D . 【点睛】本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题.14.已知实数x ,y 满足20x y >>,且11122x y x y+=-+,则x y +的最小值为( ).ABCD【答案】B 【解析】 【分析】令22x y m x y n-=⎧⎨+=⎩,用,m n 表示出x y +,根据题意知111m n +=,利用1的代换后根据基本不等式即可得x y +的最小值. 【详解】20,20,20x y x y x y >>∴->+>Q ,令22x y m x y n -=⎧⎨+=⎩,解得2525m n x n my +⎧=⎪⎪⎨-⎪=⎪⎩,则0,0m n >>,111m n +=,223111555m n n m n m x y m n +-+⎛⎫⎛⎫∴+=+⨯=⨯+ ⎪⎪⎝⎭⎝⎭13113(455n m m n ⎛⎫=⨯+++≥⨯+ ⎪⎝⎭45+=当且仅当3n m m n =,即m =,即22)x y x y -=+即x y ==. 故选:B .【点睛】本题主要考查的是利用基本不等式求最值的问题,换元后根据1的代换是解题的关键,考查学生的计算能力,是中档题.15.已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件【答案】C【解析】【分析】利用基本不等式和充分,必要条件的判断方法判断.【详解】22x y +≥Q 且224x y +≤ ,422x y ∴≤≤⇒+≤ ,等号成立的条件是x y =,又x y +≥Q ,0,0x y >>21xy ∴≤⇒≤ ,等号成立的条件是x y =,2241x y xy ∴+≤⇒≤, 反过来,当12,3x y ==时,此时1xy ≤,但224x y +> ,不成立, ∴ “224x y +≤”是“1xy ≤”的充分不必要条件.故选:C【点睛】本题考查基本不等式和充分非必要条件的判断,属于基础题型.16.在区间[]0,1内随机取两个数m 、n ,则关于x 的方程20x m +=有实数根的概率为( )A .18B .17C .16D .15【答案】A【解析】【分析】根据方程有实根可得到约束条件,根据不等式组表示的平面区域和几何概型概率公式可求得结果.【详解】 若方程20xnx m -+=有实数根,则40n m ∆=-≥.如图,400101n m m n -≥⎧⎪≤≤⎨⎪≤≤⎩表示的平面区域与正方形0101m n ≤≤⎧⎨≤≤⎩的面积之比即为所求的概率,即111124118S P S ⨯⨯===⨯阴影正方形. 故选:A .【点睛】 本题考查几何概型中面积型概率问题的求解,涉及到线性规划表示的平面区域面积的求解,关键是能够根据方程有实根确定约束条件.17.已知函数()lg f x x =,0a b >>,()()f a f b =,则22a b a b+-的最小值等于( ). A 5B .3C .23 D .22【答案】D 【解析】试题分析:因为函数()lg f x x =,0a b >>,()()f a f b =所以lg lg a b =-所以1a b=,即1ab =,0a b >> 22a b a b+-22()2()22()a b ab a b a b a b a b a b -+-+===-+---2()22a b a b ≥-⨯=- 当且仅当2a b a b-=-,即2a b -=时等号成立所以22a b a b+-的最下值为故答案选D考点:基本不等式.18.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n +的最小值为( ) A .92 B .9C .6D .3 【答案】D【解析】【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】 把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=, 又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=. Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225331212121n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立. 12m n∴+的最小值为3. 故选:D .【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.19.在三角形ABC 中,给出命题:p “2ab c >”,命题:q “3C π<”,则p 是q 的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】【分析】 由余弦定理将2c 化为222cos a b ab C +-,整理后利用基本不等式求得12cos 2C +>,求出C 范围,即可判断充分性,取4a =,7b =,6c =,则可判断必要性不成立,两者结合可得正确的选项.【详解】充分性:由余弦定理,2222cos c a b ab C =+-,所以2ab c >,即222cos ab a b ab C >+-,整理得,2212cos a b C ab++>, 由基本不等式,222222a b a b ab +≥=, 当且仅当a b =时等号成立,此时,12cos 2C +>,即1cos 2C >,解得3C π<, 充分性得证;必要性:取4a =,7b =,6c =,则164936291cos 247562C +-==>⨯⨯, 故3C π<,但228ab c =<,故3C π<推不出2ab c >.故必要性不成立;故p 是q 的充分不必要条件.故选:A【点睛】本题主要考查充分必要条件的判断、余弦定理的应用和基本不等式的应用,考查学生分析转化能力,属于中档题.20.若,,则( ) A .B .C .D .【答案】C 【解析】【分析】【详解】试题分析:用特殊值法,令,,得,选项A错误,,选项B错误,,选项D错误,因为选项C正确,故选C.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.。

不等式专题(期末复习完整绝密版)(含具体解析)

不等式专题(期末复习完整绝密版)1)【答案】C 【解析】试题分析:根据条件,作出可行域,如图所示,联立方程组,解得A(0,3),B(0,1),点到AB 的距离d=1,所以故选 D.考点:线性规划.2)A【答案】D 【解析】x,y 的取值范围如图所示.所以所求的概率为故选D. 考点:1.线性规划.2.几何概型.3取值范围是【答案】B 【解析】试题分析:分别把原点和点代入直线得到不等式组B考点:点位于直线两侧的充要条件4( )【答案】A【解析】考点:考查线性规划知识.5.已知点(-2,1)和点(1,1),则a 的取值范围是( ) A .),1()8,(+∞--∞B .(-1,8)C .(-8,1)D【答案】C【解析】试题分析:因为点(-2,1)和点(1,1),所以考点:本小题主要考查点与直线的位置关系.点评:点在直线上,则点的坐标适合直线方程,如果点不在直线上,则点的坐标代入方程可得大于或小于零.6.(理)AC【答案】C 【解析】所以考点:本小题考查了一元二次不等式表示的平面区域.点评:关键是利用特殊点定出可行域对应的不等式是解决此类问题的关键. 7.(文)点(3,1)和点(-4,6)ABC【答案】D 【解析】考点:考查二元一次不等式表示平面区域.点评:知识直线同侧的点不等式的符号相同,在直线两侧的点,不等式的符号异号.8)ABCD【答案】B 【解析】9.7ABC D 【答案】D【解析】10的取值范围是( )ABCD【答案】D-4 2,故选D11.如果实数x、y)A、【答案】B3,0)为圆心,1P的直线与圆相切时,斜率取最值;设直线方程为B12.已知x、y( )A. -15B. -20C. -25D. -30【答案】A-15,故选A13.C.16D.64【答案】BR3时,8,故选B14()A.3 B..9【答案】DD。

15.已知实数x,y 满足线性约束条件则的最大值为(A) -3(D)3【答案】D2zx=3,故选D16a的取值范围是().【答案】C【解析】考点:二元一次不等式(组)与平面区域.17)A【答案】C.【解析】考点:二元一次方程与平面区域.18.) A【答案】C(9-2+a)(-12-12+a)<0,解得为-7<a<24,选C.19( )BC D【答案】A【解析】略20.已知且,则的取值范围是…………………………… ( )A、【答案】C 【解析】略21( ) ACD【答案】D【解析】略22.设x 、yA.B.C. [1,5]【答案】C 【解析】略23.设x,y)A【答案】D【解析】略24)AB.3 CD.4【答案】B【解析】25)AD【答案】B【解析】的距离2,故选B。

高考数学压轴专题新备战高考《不等式》知识点总复习附答案

数学高考《不等式》复习资料一、选择题1.定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若s 满足不等式()()222323f s s f s s -+--+„,则s 的取值范围是( )A .13,2⎡⎫--⎪⎢⎣⎭B .[3,2]--C .[2,3)-D .[3,2]-【答案】D 【解析】 【分析】由已知可分析出()f x 在R 上为减函数且()y f x =关于原点对称,所以不等式等价于()()222323f s s f s s -+-+-„,结合单调性可得222323s s s s -+≥-+-,从而可求出s 的取值范围. 【详解】解:因为对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,所以()f x 在R 上为减函数;又(1)=-y f x 的图象关于(1,0)成中心对称,所以()y f x =关于原点对称, 则()()()222232323f s s f s s f s s -+--+=-+-„,所以222323s s s s -+≥-+-,整理得260s s +-≤,解得32s -≤≤. 故选:D. 【点睛】本题考查了函数的单调性,考查了函数的对称性,考查了一元二次不等式的求解.本题的关键是由已知得到函数的单调性和对称性,从而将不等式化简.2.变量,x y 满足约束条件1{2314y x y x y ≥--≥+≤,若使z ax y =+取得最大值的最优解不唯一,则实数a 的取值集合是( ) A .{3,0}- B .{3,1}-C .{0,1}D .{3,0,1}-【答案】B 【解析】若0a =,结合图形可知不合题设,故排除答案A ,C ,D ,应选答案B .3.若,x y 满足约束条件360,60,1,x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩则z x y =-的最小值为( )A .4B .0C .2-D .4-【答案】D 【解析】 【分析】画出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入即可求解. 【详解】由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,目标函数z x y =-,可化为直线y x z =-当直线y x z =-经过A 时,z 取得最小值, 又由3601x y y -+=⎧⎨=⎩,解得(3,1)A -,所以目标函数的最小值为min 314z =--=-. 故选:D .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.4.在下列函数中,最小值是2的函数是( ) A .()1f x x x=+ B .1cos 0cos 2y x x x π⎛⎫=+<< ⎪⎝⎭C .()223f x x =+D .()42xxf x e e =+- 【答案】D 【解析】 【分析】根据均值不等式和双勾函数依次计算每个选项的最小值得到答案. 【详解】 A. ()1f x x x=+,()122f -=-<,A 错误; B. 1cos 0cos 2y x x x π⎛⎫=+<< ⎪⎝⎭,故()cos 0,1x ∈,2y >,B 错误;C. ()2f x ==,故()f x ≥,C 错误;D. ()4222xx f x e e =+-≥=,当4xx e e=,即ln 2x =时等号成立,D 正确. 故选:D . 【点睛】本题考查了均值不等式,双勾函数求最值,意在考查学生的计算能力和应用能力.5.已知0a b >>,则下列不等式正确的是( )A .ln ln a b b a ->-B .|||b a <C .ln ln a b b a -<-D .|||b a ->【答案】C 【解析】 【分析】利用特殊值代入法,作差比较法,排除不符合条件的选项,即可求解,得到答案. 【详解】由题意,因为0a b >>,取,1a e b ==,则ln 0,ln a b b a e -=-=,1b a e ==-,可排除A 、D 项;取11,49a b ==711812b a ==,可排除B 项; 因为满足0a b >>条件的排除法,可得A 、B 、D 是错误的. 故选:C . 【点睛】本题主要考查了不等式与不等关系,以及不等式的的基本性质,其中解答中合理赋值,代入排除是解答的关键,着重考查了推理与运算能力.6.以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直,且该三棱锥外接球的表面积为8π,则以A 为顶点,以面BCD 为下底面的三棱锥的侧面积之和的最大值为( ) A .2 B .4 C .6 D .7 【答案】B 【解析】【分析】根据题意补全几何图形为长方体,设AB x =,AC y =,AD z =,球半径为R ,即可由外接球的表面积求得对角线长,结合侧面积公式即可由不等式求得面积的最大值. 【详解】将以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直的三棱锥补形成为一个长方体,如下图所示:长方体的体对角线即为三棱锥A BCD -外接球的直径, 设AB x =,AC y =,AD z =,球半径为R , 因为三棱锥外接球的表面积为8π, 则284R π=π, 解得2R =,所以体对角线为2,所以2228x y z ++=,111222S yz xy xz =++侧面积 由于()()()()222222240x y zS x y y x x z ++-=-+-+-≥,所以416S ≤,故4S ≤,即三棱锥的侧面积之和的最大值为4, 故选:B. 【点睛】本题考查了空间几何体的综合应用,三棱锥的外接球性质及应用,属于中档题.7.已知集合{}2230A x x x =-->,(){}lg 11B x x =+≤,则()R A B =I ð( )A .{}13x x -≤<B .{}19x x -≤≤C .{}13x x -<≤D .{}19x x -<<【答案】C 【解析】 【分析】解出集合A 、B ,再利用补集和交集的定义得出集合()R A B ⋂ð. 【详解】解不等式2230x x -->,得1x <-或3x >;解不等式()lg 11x +≤,得0110x <+≤,解得19x -<≤.{}13A x x x ∴=-或,{}19B x x =-<≤,则{}13R A x x =-≤≤ð,因此,(){}13R A B x x ⋂=-<≤ð,故选:C. 【点睛】本题考查集合的补集与交集的计算,同时也考查了一元二次不等式以及对数不等式的求解,考查运算求解能力,属于中等题.8.已知0a >,0b >,且()122y a b x =+为幂函数,则ab 的最大值为( ) A .18B .14C .12D .34【答案】A 【解析】 【分析】根据()122y a b x =+为幂函数,得到21a b +=,再将ab 变形为ab 122a b =⋅利用基本不等式求解. 【详解】因为()122y a b x =+为幂函数, 所以21a b +=, 又因为0a >,0b >,所以ab 2112122228a b a b +⎛⎫=⋅≤= ⎪⎝⎭,当且仅当21a b +=,2a b =即11,24a b ==取等号. 所以ab 的最大值为 18. 故选:A 【点睛】本题主要考查幂函数的定义和基本不等式的应用,还考查运算求解的能力,属于中档题.9.若x ,y 满足约束条件40,20,20,x y x x y -+≥⎧⎪-≤⎨⎪+-≥⎩且z ax y =+的最大值为26a +,则a 的取值范围是( ) A .[1,)-+∞ B .(,1]-∞-C .(1,)-+∞D .(,1)-∞-【答案】A 【解析】 【分析】画出约束条件的可行域,利用目标函数的最值,判断a 的范围即可. 【详解】作出约束条件表示的可行域,如图所示.因为z ax y =+的最大值为26a +,所以z ax y =+在点(2,6)A 处取得最大值,则1a -≤,即1a ≥-.故选:A【点睛】本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键.10.已知函数()2222,2{log ,2x x x f x x x -+≤=> ,若0R x ∃∈,使得()2054f x m m ≤- 成立,则实数m 的取值范围为 ( ) A .11,4⎡⎤-⎢⎥⎣⎦B .1,14⎡⎤⎢⎥⎣⎦C .12,4⎡⎤-⎢⎥⎣⎦D .1,13⎡⎤⎢⎥⎣⎦【答案】B 【解析】由函数的解析式可得函数的最小值为:()11f =,则要考查的不等式转化为:2154m m ≤-,解得:114m ≤≤,即实数m 的取值范围为 1,14⎡⎤⎢⎥⎣⎦. 本题选择B 选项.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.11.已知,a b 都是正实数,则222a ba b a b+++的最大值是( )A .23-B .3-C .1D .43【答案】A 【解析】 【分析】设2,2m a b n a b =+=+,将222a b a b a b+++,转化为2222233a b n ma b a b m n +=--++,利用基本不等式求解. 【详解】设2,2m a b n a b =+=+, 所以22,33m n n ma b --==,所以2222222333a b n m a b a b m n +=--≤-=-++, 当且仅当233n mm n=时取等号.所以222a b a b a b +++的最大值是23-. 故选:A 【点睛】本题主要考查基本不等式的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.12.已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】利用基本不等式和充分,必要条件的判断方法判断. 【详解】22x y +≥Q 且224x y+≤ ,422x y ∴≤≤⇒+≤ , 等号成立的条件是x y =,又x y +≥Q ,0,0x y >>21xy ∴≤⇒≤ , 等号成立的条件是x y =,2241x y xy ∴+≤⇒≤,反过来,当12,3x y ==时,此时1xy ≤,但224x y +> ,不成立, ∴ “224x y +≤”是“1xy ≤”的充分不必要条件. 故选:C 【点睛】本题考查基本不等式和充分非必要条件的判断,属于基础题型.13.若、a b 均为实数,则“()0->ab a b ”是“0a b >>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】通过列举,和推理证明可以推出充要性. 【详解】若()0ab a b ->中,取12a b --=,=,则推不出0a b >>; 若0a b >>,则0a b ->,则可得出()0ab a b ->; 故“()0ab a b ->”是“0a b >>”的必要不充分条件, 故选:B. 【点睛】本题考查充分必要不条件的定义以及不等式的性质,可通过代入特殊值解决.14.若均不为1的实数a 、b 满足0a b >>,且1ab >,则( ) A .log 3log 3a b > B .336a b +> C .133ab a b ++> D .b a a b >【答案】B 【解析】 【分析】举反例说明A,C,D 不成立,根据基本不等式证明B 成立. 【详解】当9,3a b ==时log 3log 3a b <; 当2,1a b ==时133ab a b ++=; 当4,2a b ==时b a a b =;因为0a b >>,1ab >,所以336a b +>=>>,综上选B.【点睛】本题考查比较大小,考查基本分析论证能力,属基本题.15.已知正数x ,y 满足144x y+=,则x y +的最小值是( ) A .9 B .6C .94D .52【答案】C 【解析】 【分析】 先把x y +转化成114()4x y x y ⎛⎫+⋅+ ⎪⎝⎭,展开后利用均值不等式即可求解. 【详解】Q 正数x ,y 满足144x y+=,1141419()1454444y x x y x y x y x y ⎛⎛⎫⎛⎫∴+=+⋅+=++++= ⎪ ⎪ ⎝⎭⎝⎭⎝…, 当且仅当4144y xx yx y⎧=⎪⎪⎨⎪+=⎪⎩,即34x =,32y =时,取等号.故选:C 【点睛】本题主要考查了基本不等式在最值问题中的应用,基本不等式一定要把握好“一正,二定,三相等”的原则,属于基础题.16.已知实数x y ,满足1030350x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则()22(4)2z x y =-+-的最小值为( )AB .5C .3D .52【答案】D 【解析】 【分析】由题意作出其平面区域,22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,求阴影内的点到点(4,2)P 的距离的平方最小值即可. 【详解】解:由题意作出实数x ,y 满足1030350x y x y x y -+⎧⎪+-⎨⎪--⎩……„平面区域, 22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方, 则22(4)(2)z x y =-+-的最小值为P 到350x y --=的距离的平方, 解得,2222523(1)d -⎛⎫+⎪= ⎝⎭=⎪; 所以min 52z =故选:D .【点睛】本题考查了简单线性规划,作图要细致认真,用到了表达式的几何意义的转化,属于中档题.17.设集合{}20,201x M x N x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( )A .{}01x x ≤< B .{}01x x <<C .{}02x x ≤<D .{}02x x <<【答案】B 【解析】 【分析】根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】由题意,集合{}20{01},20{|02}1x M xx x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭,所以{}01M N x x ⋂=<<.故选:B .【点睛】 本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.18.设x ,y 满足约束条件则的最大值与最小值的比值为( ) A . B . C . D .【答案】A【解析】 【分析】作出不等式组所表示的可行域,平移直线,观察直线在轴上取得最大值和最小值时相应的最优解,再将最优解代入目标函数可得出最大值和最小值,于此可得出答案。

备战中考数学分点透练真题不等式(组)及不等式的应用(解析版)

第七讲不等式(组)及不等式的应用命题点1 不等式的性质1.(2021•常德)若a>b,下列不等式不一定成立的是()A.a﹣5>b﹣5B.﹣5a<﹣5b C.>D.a+c>b+c【答案】C【解答】解:A.∵a>b,∴a﹣5>b﹣5,故本选项不符合题意;B.∵a>b,∴﹣5a<﹣5b,故本选项不符合题意;C.∵a>b,∴当c>0时,;当c<0时,,故本选项符合题意;D.∵a>b,∴a+c>b+c,故本选项不符合题意;故选:C.2.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,则a+b<2b;④若b>0,则<,其中正确的个数是()A.1B.2C.3D.4【答案】A【解答】解:a>b,∴当a>0时,a2>ab,当a=0时,a2=ab,当a<0时,a2<ab,故①结论错误∵a>b,∴当|a|>|b|时,a2>b2,当|a|=|b|时,a2=b2,当|a|<|b|时,a2<b2,故②结论错误;∵a>b,b<0,∴a+b>2b,故③结论错误;∵a>b,b>0,∴a>b>0,∴,故④结论正确;∴正确的个数是1个.故选:A.3.(2021•苏州)若2x+y=1,且0<y<1,则x的取值范围为.【答案】0<x<【解答】解:由2x+y=1得y=﹣2x+1,根据0<y<1可知0<﹣2x+1<1,∴﹣1<﹣2x<0,∴0<x<.故答案为:0<x<.命题点2 一元一次不等式(组)的解法类型一不等式(组)的解法及解集表示4.(2021•吉林)不等式2x﹣1>3的解集是()A.x>1B.x>2C.x<1D.x<2【答案】B【解答】解:2x﹣1>3,2x>3+1,2x>4,x>2.故选:B.5.(2021•临沂)不等式<x+1的解集在数轴上表示正确的是()A.B.C.D.【答案】B【解答】解:去分母,得:x﹣1<3x+3,移项,得:x﹣3x<3+1,合并同类项,得:﹣2x<4,系数化为1,得:x>﹣2,将不等式的解集表示在数轴上如下:故选:B.6.(2021•湘潭)不等式组的解集在数轴上表示正确的是()A.B.C.D.【答案】D【解答】解:解不等式x+1≥2,得:x≥1,解不等式4x﹣8<0,得:x<2,则不等式组的解集为1≤x<2,将不等式组的解集表示在数轴上如下:故选:D.7.(2021•凉山州)解不等式:﹣x<3﹣.【答案】x>﹣2【解答】解:去分母,得:4(1﹣x)﹣12x<36﹣3(x+2),去括号,得:4﹣4x﹣12x<36﹣3x﹣6,移项、合并,得:﹣13x<26,系数化为1,得:x>﹣2.8.(2021•宁夏)解不等式组:.【答案】x>2【解答】解:解不等式4(x﹣1)>3x﹣2,得:x>2,解不等式+≥1,得:x≥1,则不等式组的解集为x>2.9.(2021•天津)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】x≥﹣1;x≤3,﹣1≤x≤3【解答】解:(Ⅰ)解不等式①,得x≥﹣1;(Ⅱ)解不等式②,得x≤3;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣1≤x≤3.故答案为:x≥﹣1,x≤3,﹣1≤x≤3.10.(2019•凉山州)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为.(2)求不等式<0的解集(要求写出解答过程)【答案】(1)﹣1<x<3.(2)x>1或x<﹣4【解答】解:(1)原不等式可化为:①或②.由①得,空集,由②得,﹣1<x<3,∴原不等式的解集为:﹣1<x<3,故答案为:﹣1<x<3.(2)由<0知①或②,解不等式组①,得:x>1;解不等式组②,得:x<﹣4;所以不等式<0的解集为x>1或x<﹣4.类型二不等(组)的特殊解11.(2021•南充)满足x≤3的最大整数x是()A.1B.2C.3D.4【答案】C【解答】解:满足x≤3的最大整数x是3,故选:C.12.(2021•邵阳)下列数值不是不等式组的整数解的是()A.﹣2B.﹣1C.0D.1【答案】A【解答】解:,解不等式①,得:x>﹣,解不等式②,得:x≤1,∴不等式组的解集为:﹣<x≤1,∴不等式组的整数解为﹣1,0,1,故选:A.命题点3 含参不等式(组)问题13.(2020•潍坊)若关于x的不等式组有且只有3个整数解,则a的取值范围是()A.0≤a≤2B.0≤a<2C.0<a≤2D.0<a<2【答案】C【解答】解:解不等式3x﹣5≥1得:x≥2,解不等式2x﹣a<8得:x<,∴不等式组的解集为:2≤x<,∵不等式组有三个整数解,∴三个整数解为:2,3,4,∴4<≤5,解得:0<a≤2,故选:C.14.(2021•日照)若不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m≤3D.m<3【答案】C【解答】解:解不等式x+6<4x﹣3,得:x>3,∵x>m且不等式组的解集为x>3,∴m≤3,故选:C.15.(2021•黑龙江)关于x的一元一次不等式组有解,则a的取值范围是.【答案】a<6【解答】解:解不等式2x﹣a>0,得:x>,解不等式3x﹣4<5,得:x<3,∵不等式组有解,∴<3,解得a<6,故答案为:a<6.16.(2021•丹东)不等式组无解,则m的取值范围.【答案】m≥2.【解答】解:,解不等式①得:x<2,解不等式②x>m,∵不等式组无解∴m≥2,故答案为:m≥2.命题点4 不等式的实际应用17.(2020•朝阳)某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于20%,则这种品牌衬衫最多可以打几折?()A.8B.6C.7D.9【答案】B【解答】解:设可以打x折出售此商品,由题意得:240×,解得x≥6,故选:B.命题点5 方程与不等式结合的实际应用18.(2020•资阳)新冠肺炎疫情发生以来,国家紧急调拨了大量物资驰援武汉,全国各地的民间组织也积极捐赠,我市的民间组织捐赠了一批医用物资即将运往武汉,现有A、B 两种车型,A种型的载重量比B种车型的载重量多5吨,2辆A种车型与4辆B种车型的总载重量为100吨.(1)求A、B两种车型的载重量分别是多少吨?(2)现有医用物资264吨,计划用A、B两种车型共15辆将这批医用物资一次性的运往武汉,那么至少安排A种车型多少辆?【答案】(1)A种车型的载重量是20吨,B种车型的载重量是15吨(2)a的最小值为8,【解答】解:(1)设1辆A型车的载重量是x吨,1辆B型车的载重量是y吨,依题意,,解得.答:A种车型的载重量是20吨,B种车型的载重量是15吨;(2)设安排A种车型a辆,则B种种车型(15﹣a)辆,由题意得,20a+15(15﹣a)≥264,解得a,∵a为整数,∴a的最小值为8,答:至少安排A种车型8辆,才能将这批医用物资一次性的运往武汉.19.(2020•大庆)期中考试后,某班班主任对在期中考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,购买甲种笔记本15个,乙种笔记本20个,共花费250元.已知购买一个甲种笔记本比购买一个乙种笔记本多花费5元.(1)求购买一个甲种、一个乙种笔记本各需多少元?(2)两种笔记本均受到了获奖同学的喜爱,班主任决定在期末考试后再次购买两种笔记本共35个,正好赶上商场对商品价格进行调整,甲种笔记本售价比上一次购买时减价2元,乙种笔记本按上一次购买时售价的8折出售.如果班主任此次购买甲、乙两种笔记本的总费用不超过上一次总费用的90%,求至多需要购买多少个甲种笔记本?并求购买两种笔记本总费用的最大值.【答案】(1)甲种笔记本需要10元,购买一个乙种笔记本需要5元(2)m=21时,w取得最大值,最大值=4×21+140=224.【解答】解:(1)设购买一个甲种笔记本需要x元,购买一个乙种笔记本需要y元,依题意,得:,解得:.答:购买一个甲种笔记本需要10元,购买一个乙种笔记本需要5元.(2)设购买m个甲种笔记本,则购买(35﹣m)个乙种笔记本,依题意,得:(10﹣2)m+5×0.8(35﹣m)≤250×90%,解得:m≤21,又∵m为正整数,∴m可取的最大值为21.设购买两种笔记本总费用为w元,则w=(10﹣2)m+5×0.8(35﹣m)=4m+140,∵k=4>0,∴w随m的增大而增大,∴当m=21时,w取得最大值,最大值=4×21+140=224.答:至多需要购买21个甲种笔记本,购买两种笔记本总费用的最大值为224元.20.(2021•长沙)为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?【答案】(1)22 (2)23【解答】解:(1)设该参赛同学一共答对了x道题,则答错了(25﹣1﹣x)道题,依题意得:4x﹣(25﹣1﹣x)=86,解得:x=22.答:该参赛同学一共答对了22道题.(2)设参赛者需答对y道题才能被评为“学党史小达人”,则答错了(25﹣y)道题,依题意得:4y﹣(25﹣y)≥90,解得:y≥23.答:参赛者至少需答对23道题才能被评为“学党史小达人”.21.(2021•黑龙江)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的资金最少,最少资金是多少?【答案】(1)1件甲种农机具需要1.5万元,1件乙种农机具需要0.5万元(2)m可以取5,6,7 (3)最少资金是10万元【解答】解:(1)设购进1件甲种农机具需要x万元,1件乙种农机具需要y万元,依题意得:,解得:.答:购进1件甲种农机具需要1.5万元,1件乙种农机具需要0.5万元.(2)设购进甲种农机具m件,则购进乙种农机具(10﹣m)件,依题意得:,解得:4.8≤m≤7,又∵m为整数,∴m可以取5,6,7,∴共有3种购买方案,方案1:购进甲种农机具5件,乙种农机具5件;方案2:购进甲种农机具6件,乙种农机具4件;方案3:购进甲种农机具7件,乙种农机具3件.(3)方案1所需资金为1.5×5+0.5×5=10(万元);方案2所需资金为1.5×6+0.5×4=11(万元);方案3所需资金为1.5×7+0.5×3=12(万元).∵10<11<12,∴购买方案1所需资金最少,最少资金是10万元.。

高考数学压轴专题新备战高考《不等式》知识点总复习含解析

数学《不等式》知识点一、选择题1.已知函数()2222,2{log ,2x x x f x x x -+≤=> ,若0R x ∃∈,使得()2054f x m m ≤- 成立,则实数m 的取值范围为 ( ) A .11,4⎡⎤-⎢⎥⎣⎦B .1,14⎡⎤⎢⎥⎣⎦C .12,4⎡⎤-⎢⎥⎣⎦D .1,13⎡⎤⎢⎥⎣⎦【答案】B 【解析】由函数的解析式可得函数的最小值为:()11f =,则要考查的不等式转化为:2154m m ≤-,解得:114m ≤≤,即实数m 的取值范围为 1,14⎡⎤⎢⎥⎣⎦. 本题选择B 选项.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.2.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .2 B .52C .3D .32【答案】A 【解析】()220{,440a f x acb b ac >≥∴∴≥∆=-≤Q 恒成立,,且0,0c a >> 又()()()2,00,1f x ax b f b f a b c =+∴'='=>++,()()11111120f a c f b b +∴=+≥+≥=+=' 当且仅当()()120f a c f ='时,不等式取等号,故的最小值为3.在下列函数中,最小值是2的函数是( )A .()1f x x x=+ B .1cos 0cos 2y x x x π⎛⎫=+<< ⎪⎝⎭C .()2f x =D .()42xxf x e e =+- 【答案】D 【解析】 【分析】根据均值不等式和双勾函数依次计算每个选项的最小值得到答案. 【详解】 A. ()1f x x x=+,()122f -=-<,A 错误; B. 1cos 0cos 2y x x x π⎛⎫=+<< ⎪⎝⎭,故()cos 0,1x ∈,2y >,B 错误; C. ()2f x ==,故()f x ≥,C 错误; D. ()4222xx f x e e =+-≥=,当4xx e e=,即ln 2x =时等号成立,D 正确. 故选:D . 【点睛】本题考查了均值不等式,双勾函数求最值,意在考查学生的计算能力和应用能力.4.已知实数x ,y满足不等式||x y +≥,则22x y +最小值为( )A .2B .4C.D .8【答案】B 【解析】 【分析】先去掉绝对值,画出不等式所表示的范围,再根据22x y +表示圆心在原点的圆求解其最小圆的半径的平方,即可求解. 【详解】 由题意,可得当0y ≥时,x y +≥ (2)当0y <时,x y -≥如图所示,画出的图形,可得不等式表示的就是阴影部分的图形, 又由22xy +最小值即为原点到直线的垂线段的长度的平方,又由2d ==,所以24d =,即22xy +最小值为4.故选:B .【点睛】本题主要考查了线性规划的知识,以及点到直线的距离公式的应用,着重考查了数形结合思想,以及计算能力.5.已知点()4,3A ,点B 为不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示平面区域上的任意一点,则AB 的最小值为( )A .5B .455C 5D 25【答案】C 【解析】 【分析】作出不等式组所表示的平面区域,标出点A 的位置,利用图形可观察出使得AB 最小时点B 的位置,利用两点间的距离公式可求得AB 的最小值.【详解】作出不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域如下图所示:联立0260x y x y -=⎧⎨+-=⎩,解得22x y =⎧⎨=⎩,由图知AB 的最小值即为()4,3A 、()2,2B 两点间的距离, 所以AB ()()2242325-+-=故选:C . 【点睛】本题考查目标函数为两点之间的距离的线性规划问题,考查数形结合思想的应用,属中等题.6.已知x 、y 满足约束条件122326x y x y x y +≥⎧⎪-≥-⎨⎪+≤⎩,若22z x y =+,则实数z 的最小值为( )A 2B .25C .12D .2【答案】C 【解析】 【分析】作出不等式组所表示的可行域,利用目标函数的几何意义求出22x y +的最小值,进而可得出实数z 的最小值. 【详解】作出不等式组122326x y x y x y +≥⎧⎪-≥-⎨⎪+≤⎩所表示的可行域如下图所示,22z x y =+表示原点到可行域内的点(),x y 的距离的平方,原点到直线10x y +-=的距离的平方最小,()222min212x y+==⎝⎭. 由于22z x y =+,所以,min 12z =. 因此,实数z 的最小值为12. 故选:C. 【点睛】本题考查线性规划中非线性目标函数最值的求解,考查数形结合思想的应用,属于中等题.7.已知变量,x y 满足2402400x y x y x +-≥⎧⎪+-≤⎨⎪≥⎩,则24x y --的最小值为( )A .855B .8C .515D .163【答案】D 【解析】 【分析】222424512x y x y ----=+222412x y --+表示点(,)x y 到直线240x y --=的距离,作出可行域,数形结合即可得到答案. 【详解】因为222424512x y x y ----=+,所以24x y --可看作为可行域内的动点到直线240x y --=的距离的5倍,如图所示,点44(,)33A 到直线240x y --=的距离d 最小,此时224424333512d -⨯-==+ 所以24x y --的最小值为1653d =. 故选:D. 【点睛】本题考查目标函数的含绝对值的线性规划问题,考查学生数形结合与转化与化归的思想,是一道中档题.8.若,,则( )A .B .C .D .【答案】C【解析】 【分析】 【详解】试题分析:用特殊值法,令,,得,选项A 错误,,选项B 错误,,选项D 错误,因为选项C 正确,故选C . 【考点】指数函数与对数函数的性质 【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.9.设a b c ,,为非零实数,且a c b c >>,,则( ) A .a b c +> B .2ab c >C .a b2c +> D .112a b c+> 【答案】C 【解析】 【分析】取1,1,2a b c =-=-=-,计算知ABD 错误,根据不等式性质知C 正确,得到答案. 【详解】,a c b c >>,故2a b c +>,2a bc +>,故C 正确; 取1,1,2a b c =-=-=-,计算知ABD 错误; 故选:C . 【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.10.已知实数x ,y 满足20x y >>,且11122x y x y+=-+,则x y +的最小值为( ).A.35+ B.45+ C.25+ D【答案】B 【解析】 【分析】令22x y m x y n-=⎧⎨+=⎩,用,m n 表示出x y +,根据题意知111m n +=,利用1的代换后根据基本不等式即可得x y +的最小值.【详解】20,20,20x y x y x y >>∴->+>Q ,令22x y m x y n -=⎧⎨+=⎩,解得2525m n x n my +⎧=⎪⎪⎨-⎪=⎪⎩,则0,0m n >>,111m n +=,223111555m n n m n m x y m n +-+⎛⎫⎛⎫∴+=+⨯=⨯+ ⎪⎪⎝⎭⎝⎭13113(455n m m n ⎛⎫=⨯+++≥⨯+ ⎪⎝⎭45+=当且仅当3n mm n=,即m =,即22)x y x y -=+即x y ==. 故选:B . 【点睛】本题主要考查的是利用基本不等式求最值的问题,换元后根据1的代换是解题的关键,考查学生的计算能力,是中档题.11.已知x>0,y>0,x+2y+2xy=8,则x+2y 的最小值是 A .3 B .4 C .92D .112【答案】B 【解析】 【详解】解析:考察均值不等式2228(2)82x y x y x y +⎛⎫+=-⋅≥- ⎪⎝⎭,整理得2(2)4(2)320x y x y +++-≥即(24)(28)0x y x y +-++≥,又x+2 y>0,24x y ∴+≥12.在区间[]0,1内随机取两个数m 、n ,则关于x的方程20x m +=有实数根的概率为( ) A .18B .17C .16D .15【答案】A 【解析】 【分析】根据方程有实根可得到约束条件,根据不等式组表示的平面区域和几何概型概率公式可求得结果. 【详解】若方程20x m +=有实数根,则40n m ∆=-≥.如图,400101n m m n -≥⎧⎪≤≤⎨⎪≤≤⎩表示的平面区域与正方形0101m n ≤≤⎧⎨≤≤⎩的面积之比即为所求的概率,即111124118S P S ⨯⨯===⨯阴影正方形.故选:A . 【点睛】本题考查几何概型中面积型概率问题的求解,涉及到线性规划表示的平面区域面积的求解,关键是能够根据方程有实根确定约束条件.13.若、a b 均为实数,则“()0->ab a b ”是“0a b >>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】通过列举,和推理证明可以推出充要性. 【详解】若()0ab a b ->中,取12a b --=,=,则推不出0a b >>; 若0a b >>,则0a b ->,则可得出()0ab a b ->; 故“()0ab a b ->”是“0a b >>”的必要不充分条件, 故选:B. 【点睛】本题考查充分必要不条件的定义以及不等式的性质,可通过代入特殊值解决.14.在ABC ∆中,22223sin a b c ab C ++=,则ABC ∆的形状是 ( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等边三角形【答案】D 【解析】 【分析】由余弦定理可知2222cos a b c ab C +-=,与已知条件相加,得到cos 3C π⎛⎫-⎪⎝⎭的表达式,利用基本不等式得到范围,结合其本身范围,得到cos 13C π⎛⎫-= ⎪⎝⎭,从而得到C 的大小,判断出ABC ∆的形状,得到答案. 【详解】由余弦定理可知2222cos a b c ab C +-=,222sin a b c C ++=两式相加,得到()22cos 2cos 3a b ab C C ab C π⎛⎫+=+=- ⎪⎝⎭所以222cos 1322a b ab C ab ab π+⎛⎫-== ⎪⎝⎭≥,当且仅当a b =时,等号成立, 而[]cos 1,13C π⎛⎫-∈- ⎪⎝⎭所以cos 13C π⎛⎫-= ⎪⎝⎭, 因为()0,C π∈,所以2,333C πππ⎛⎫-∈- ⎪⎝⎭所以03C π-=,即3C π=,又a b =,所以ABC ∆是等边三角形, 故选D 项. 【点睛】本题考查余弦定理解三角形,基本不等式,余弦型函数的性质,判断三角形的形状,属于中档题.15.已知M 、N 是不等式组1,1,10,6x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所表示的平面区域内的两个不同的点,则||MN 的最大值是( )AB.2C.D .172【答案】A 【解析】 【分析】先作可行域,再根据图象确定MN 的最大值取法,并求结果. 【详解】作可行域,为图中四边形ABCD 及其内部,由图象得A(1,1),B(2,1),C(3.5,2.5),D(1,5)四点共圆,BD 为直径,所以MN 的最大值为选A.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.16.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( ) A .12k > B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D【解析】【分析】 联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】 解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限,∴240 216121kkkk-⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k-<<.故选:D.【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.17.实数,x y满足20360x yx yx y-≤⎧⎪+-≥⎨⎪-+≥⎩,则2x y-的最大值为()A.1 B.2 C.3 D.4【答案】C【解析】【分析】画出可行域和目标函数,根据平移得到答案.【详解】如图所示,画出可行域和目标函数,2z x y=-,则2y x z=-,z表示直线与y轴截距的相反数,根据平移知:当3,3x y==时,2z x y=-有最大值为3.故选:C.【点睛】本题考查了线性规划问题,画出图像是解题的关键.18.设集合{}20,201xM x N x x xx⎧⎫=≤=-<⎨⎬-⎩⎭,则M N⋂为()A.{}01x x≤<B.{}01x x<<C.{}02x x≤<D.{}02x x<<【答案】B【解析】【分析】 根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】 由题意,集合{}20{01},20{|02}1x M x x x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭, 所以{}01M N x x ⋂=<<.故选:B .【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.19.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .0B .3-C .32D .3 【答案】B【解析】可行域为一个三角形ABC 及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.20.已知不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则实数a 的取值范围是( ) A .(,5]-∞B .[5,)+∞C .(,4]-∞D .[4,)+∞ 【答案】C【解析】若不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则4a x x ≤+对于任意的[1,3]x ∈恒成立,∵当[1,3]x ∈时,4[4,5]x x+∈,∴4a ≤,即实数a 的取值范围是(,4]-∞,故选C .【方法点晴】本题主要考查利用导数求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数. 本题是利用方法 ① 求得a 的取值范围的.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

板块命题点专练(二) 不等式
命题点一 不等关系与一元二次不等式
1.(2018·北京高考)设集合A ={(x ,y )|x -y ≥1,ax +y >4,x -ay ≤2},则( )
A .对任意实数a ,(2,1)∈A
B .对任意实数a ,(2,1)∉A
C .当且仅当a <0时,(2,1)∉A
D .当且仅当a ≤32
时,(2,1)∉A 解析:选D 若点(2,1)∈A ,则不等式x -y ≥1显然成立,且同
时要满足⎩⎨⎧ 2a +1>4,2-a ≤2,即⎩⎨⎧ a >32,a ≥0,解得a >32
.即点(2,1)∈A ⇒a >32,其等价命题为a ≤32
⇒点(2,1)∉A 成立.故选D. 2.(2014·浙江高考)已知函数f (x )=x 3+ax 2+bx +c ,且0<
f(-1)=f(-2)=f(-3)≤3,则( )
A.c≤3 B.3<c≤6
C.6<c≤9 D.c>9
解析:选C 由题意,不妨设g(x)=x3+ax2+bx+c-m,m ∈(0,3],则g(x)的三个零点分别为x1=-3,x2=-2,x3=-1,因此有(x+1)(x+2)(x+3)=x3+ax2+bx+c-m,则c-m=6,因此c=m+6∈(6,9].
3.(2016·浙江高考)已知实数a,b,c,( )
A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100
B.若|a2+b+c|+|a2+b-c|≤1,则a2+b2+c2<100
C.若|a+b+c2|+|a+b-c2|≤1,则a2+b2+c2<100
D.若|a2+b+c|+|a+b2-c|≤1,则a2+b2+c2<100
解析:选D 对于A,取a=b=10,c=-110,
显然|a2+b+c|+|a+b2+c|≤1成立,
但a2+b2+c2>100,
即a2+b2+c2<100不成立.
对于B,取a2=10,b=-10,c=0,显然|a2+b+c|+|a2+b-c|≤1成立,但a2+b2+c2=110,
即a2+b2+c2<100不成立.
对于C,取a=10,b=-10,c=0,显然|a+b+c2|+|a+b-c2|≤1成立,但a2+b2+c2=200,
即a2+b2+c2<100不成立.
综上知,A、B、C均不成立,所以选D. 命题点二简单的线性规划问题。

相关文档
最新文档