2017年北京市海淀区高考数学一模试卷(文科)
2016-2017年北京市海淀区高三上学期期末数学试卷(文科)和答案

第 5 页(共 20 页)
2016-2017 学年北京市海淀区高三 (上) 期末数学试卷 (文 科)
参考答案与试题解析
一、选择题共 8 小题,每小题 5 分,共 40 分.在每小题列出的四个选项中,选 出符合题目要求的一项. 1. (5 分)复数 i(2﹣i)在复平面内对应的点的坐标为( A. (﹣2,1) B. (2,﹣1) C. (1,2) D. (﹣1,2) 【解答】解:复数 i(2﹣i)=2i+1 在复平面内对应的点的坐标为(1,2) , 故选:C. )
3. (5 分)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( A. B.y=﹣x2 C.y=log2x D.y=|x|+1 =0, ( )• =2,则| |=( )
4. (5 分)已知向量 , 满足 A. B.1 C. D.2
5. (5 分)如图程序框图所示的算法来自于《九章算术》 ,若输入 a 的值为 16,b 的值为 24,则执行该程序框图的结果为( )
三、解答题共 6 小题,共 80 分.解答应写出文字说明、演算步骤或证明过程. 15. (13 分)已知数列{an} 是各项均为正数的等比数列,且 a2=1,a3+a4=6 (Ⅰ)求数列{an} 的通项公式; (Ⅱ)设数列{an﹣n} 的前 n 项和为 Sn,比较 S4 和 S5 的大小,并说明理由. 16. (13 分)已知函数 (Ⅰ)求 f(x) 的定义域及 (Ⅱ)求 f(x) 在 的值; 上的单调递增区间.
19. (13 分)已知椭圆 的右顶点 A(2,0) ,且交椭圆 G 于另一点 C (Ⅰ)求椭圆 G 的标准方程;
的离心率为
,直线 l 过椭圆 G
第 4 页(共 20 页)
(Ⅱ)若以 AC 为直径的圆经过椭圆 G 的上顶点 B,求直线 l 的方程. 20. (14 分)已知函数 .
2017届北京市海淀区高三上学期期末考试数学文试题(word版)

2017届北京市海淀区高三上学期期末考试数学文试题(word 版)2017.1本试卷共4页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.复数i(2i)-在复平面内对应的点的坐标为A .(2,1)-B .(2,1)-C .(1,2)D .(1,2)-2.抛物线22y x =的焦点到准线的距离为A .12B .1C .2D .33.下列函数中,既是偶函数又在区间(0+)∞,上单调递增的是 A .1()2x y = B .2y x =- C .2log y x =D .||1y x =+4.已知向量a,b 满足2-0a b =,()2-⋅=a b b ,则=|b |A .12B .1CD .25.右侧程序框图所示的算法来自于《九章算术》.若输入a 的值为16,b 的值为24,则执行该程序框图输出的结果为A .6B .7C .8D .96.在ABC ∆中,“30A <︒”是“1sin 2A <”的 A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.已知某四棱锥的三视图如右图所示,则该几何体的体积为A主视图BC .2D8.如图,已知正方体1111ABCD A B C D -的棱长为1,,E F 分别是棱11,AD B C 上的动点,设1,AE x B F y ==. 若棱.1DD 与平面BEF 有公共点,则x y +的取值范围是 A .[0,1] B .13[,]22 C .[1,2]D .3[,2]2二、填空题共6小题,每小题5分,共30分. 9.已知双曲线C :2214yx -=,则双曲线C 的一条渐近线的方程为________.10.已知数列{}n a 满足12,,n n a a n +-=∈*N 且33a =,则1a =____,其前n 项和n S =____. 11.已知圆C :2220x y x +-=,则圆心C 的坐标为_____,圆C 截直线y x =的弦长为____. 12.已知,x y 满足04,03,28,x y x y ≤≤⎧⎪≤≤⎨⎪+≤⎩则目标函数2z x y =+的最大值为________.13.如图所示,点D 在线段AB 上,30CAD ∠=,50CDB ∠=.给出下列三组条件(给出线段的长度): ①,AD DB ; ②,AC DB ; ③,CD DB .其中,能使ABC ∆唯一确定的条件的序号为____.(写出所有所和要求的条件的序号)14.已知A 、B 两所大学的专业设置都相同(专业数均不小于2),数据显示,A 大学的各专业的男女生比例均高于B 大学的相应专业的男女生比例(男女生比例是指男生人数与女生人数的比). 据此, 甲同学说:“A 大学的男女生比例一定高于B 大学的男女生比例”; 乙同学说:“A 大学的男女生比例不一定高于B 大学的男女生比例”;丙同学说:“两所大学的全体学生的男女生比例一定高于B 大学的男女生比例”. 其中,说法正确的同学是________.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程. 15.(本小题满分13分)已知数列{}n a 是各项均为正数的等比数列,且21a =,346a a +=.AD BCABCD1D 1A 1B 1C E F(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n a n -的前n 项和为n S ,比较4S 和5S 的大小,并说明理由.16.(本小题满分13分)已知函数2sin 22cos ()cos x xf x x +=.(Ⅰ)求()f x 的定义域及π()4f 的值;(Ⅱ)求()f x 在π(0,)2上的单调递增区间.17.(本小题满分13分)诚信是立身之本,道德之基.某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“周实际回收水费周投入成本”表示每周“水站诚信度”.为了便于数据分析,以四周为一个周期,下表为该水站连续八周(共两个周期)的诚信度数据统计,如表1:表1第一周 第二周 第三周 第四周第一个周期95% 98% 92% 88% 第二个周期94% 94% 83% 80% (Ⅰ)计算表1中八周水站诚信度的平均数x ;(Ⅱ)从表1诚信度超过91%的数据中,随机抽取2个,求至少有1个数据出现在第二个周期的概率; (Ⅲ)学生会认为水站诚信度在第二个周期中的后两周出现了滑落,为此学生会举行了“以诚信为本”主题教育活动,并得到活动之后一个周期的水站诚信度数据,如表2:表2第一周 第二周 第三周 第四周第三个周期85% 92% 95% 96% 请根据提供的数据,判断该主题教育活动是否有效,并根据已有数据说明理由.18.(本小题满分14分)如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,AB //DC , CD =2AB , AD ⊥CD ,E 为棱PD 的中点. (Ⅰ)求证:CD ⊥AE ;(Ⅱ)求证:平面PAB ⊥平面PAD ;(Ⅲ)试判断PB 与平面AEC 是否平行?并说明理由.PABCD E19.(本小题满分13分)已知椭圆2222:1(0)x y G a b a b+=>>,直线l 过椭圆G 的右顶点(2,0)A ,且交椭圆G 于另一点C .(Ⅰ)求椭圆G 的标准方程;(Ⅱ)若以AC 为直径的圆经过椭圆G 的上顶点B ,求直线l 的方程.20.(本小题满分14分)已知函数ln 1()x f x x+=. (Ⅰ)求曲线()y f x =在函数()f x 零点处的切线方程; (Ⅱ)求函数()y f x =的单调区间;(Ⅲ)若关于x 的方程()f x a =恰有两个不同的实根12,x x ,且12x x <,求证:2111x x a->-.海淀区高三年级第一学期期末练习数学(文科)答案及评分标准2017.1一、选择题共8小题,每小题5分,共40分。
2017年北京市海淀区高三文科上学期数学期末试卷

2017年北京市海淀区高三文科上学期数学期末试卷一、选择题(共8小题;共40分)1. 已知是虚数单位,若,则实数的值为A. B. C. D.2. 已知,若,则A. B. C. D.3. 执行如图所示的程序框图,输出的值为A. B. C. D.4. 下面的茎叶图记录的是甲、乙两个班级各名同学在一次数学测试中的选择题的成绩(单位:分,每道题分,共道题):已知两组数据的平均数相等,则,的值分别为A. ,B. ,C. ,D. ,5. 已知直线与圆相交于,两点,且为正三角形,则实数的值为A. B. C. 或 D. 或6. 设,则“”是“直线与直线平行”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 在中,,是边的中点,则的取值范围是A. B. C. D.8. 已知正方体的棱长为,,分别是棱,的中点,点在平面内,点在线段上.若,则长度的最小值为A. B. C. D.二、填空题(共6小题;共30分)9. 已知双曲线的一条渐近线方程为,则实数的值为.10. 若实数,满足约束条件则的最大值为.11. 在中,,,且的面积为,则.12. 某三棱锥的三视图如图所示,该三棱锥四个面的面积中最大的值是.13. 函数的最大值为;若函数的图象与直线有且只有一个公共点,则实数的取值范围是.14. 某次高三英语听力考试中有道选择题,每题分,每道题在A,B,C三个选项中只有一个是正确的.下表是甲、乙、丙三名同学每道题填涂的答案和这道题的得分:得分甲乙丙则甲同学答错的题目的题号是;此题正确的选项是.三、解答题(共6小题;共78分)15. 已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)若,求数列的前项和.16. 已知函数.(1)求函数的定义域;(2)求函数的值域.17. 据中国日报网报道,年月日,发布了最新一期全球超级计算机强榜单,中国超算在前五名中占据两席.其中,超算全球第一“神威太湖之光”完全使用了国产处理器.为了了解国产品牌处理器打开文件的速度,某调查公司对两种国产品牌处理器进行了次测试,结果如下:(数值越小,速度越快,单位是)测试测试测试测试测试测试测试测试测试测试测试测试品牌品牌设,分别表示第次测试中品牌A和品牌B的测试结果,记.(1)求数据,,,,的众数;(2)从满足的测试中随机抽取两次,求品牌A的测试结果恰有一次大于品牌B的测试结果的概率;(3)经过了解,前次测试是打开含有文字与表格的文件,后次测试是打开含有文字与图片的文件.请你根据表中数据,运用所学的统计知识,对这两种国产品牌处理器打开文件的速度进行评价.18. 如图,在三棱柱中,侧面底面,,,,,分别为棱,的中点.(1)求证:;(2)求三棱柱的体积;(3)在直线上是否存在一点,使得 平面.若存在,求出的长;若不存在,说明理由.19. 已知椭圆:,直线:与椭圆相交于,两点,与轴交于点,点,与点不重合.(1)求椭圆的离心率;(2)当时,求椭圆的方程;(3)过原点作直线的垂线,垂足为.若,求的值.20. 已知函数.(1)求曲线在点处的切线方程;(2)求证:“”是“函数有且只有一个零点”的充分不必要条件.答案第一部分1. A2. D3. D 【解析】,当时,,当时,,则,输出.4. B5. D6. C7. A8. C第二部分9.10.11. 或12.13. ,14. ,A第三部分15. (1)设等差数列的首项为,公差为.解得,,由,则,因此,通项公式为.(2)由(Ⅰ)可知:,则,,因为,所以是首项为,公比为的等比数列.记的前项和为,则16. (1),,解得:,,所以,函数的定义域为.(2)因为,,所以,,所以,所以,函数的值域为.17. (1)所以有次,有次,有次,有次,有次,则数据,,,,的众数为.(2)设事件“品牌A的测试结果恰有一次大于品牌B的测试结果”,满足的测试共有次,其中品牌A的测试结果大于品牌B的测试结果有次即测试和测试,不妨用,表示.品牌A的测试结果小于品牌B的测试结果有次即测试和测试,不妨用,表示.从中随机抽取两次,共有,,,,,六种情况,其中事件发生,指的是,,,四种情况.故.(3)标准:分别比较两种不同测试的结果,根据数据进行阐述.标准:会用测试结果的平均数进行阐述.【解析】标准:会用前次测试品牌A、品牌B的测试结果的平均值与后次测试品牌A、品牌B的测试结果的平均值进行阐述(这两种品牌的处理器打开含有文字与表格的文件的测试结果的平均值均小于打开含有文字和图片的文件的测试结果的平均值;这两种品牌的处理器打开含有文字与表格的文件的平均速度均快于打开含有文字和图片的文件的平均速度).标准:会用前次测试品牌A、品牌B的测试结果的方差与后次测试品牌A、品牌B的测试结果的方差进行阐述(这两种品牌的处理器打开含有文字与表格的文件的测试结果的方差均小于打开含有文字和图片的文件的测试结果的方差;这两种品牌的处理器打开含有文字与表格的文件的速度的波动均小于打开含有文字和图片的文件的速度的波动).标准:会用品牌A前次测试结果的平均值、后次测试结果的平均值与品牌B前次测试结果的平均值、后次测试结果的平均值进行阐述(品牌A前次测试结果的平均值大于品牌B前次测试结果的平均值,品牌A后次测试结果的平均值小于品牌B后次测试结果的平均值,品牌A打开含有文字和表格的文件的速度慢于品牌B,品牌A打开含有文字和图形的文件的速度快于品牌B).标准:会用品牌A前次测试结果的方差、后次测试结果的方差与品牌B前次测试结果的方差、后次测试结果的方差进行阐述(品牌A前次测试结果的方差大于品牌B前次测试结果的方差,品牌A后次测试结果的方差小于品牌B后次测试结果的方差,品牌A打开含有文字和表格的文件的速度的波动大于品牌B,品牌A打开含有文字和图形的文件的速度的波动小于品牌B).标准:会用品牌A这次测试结果的平均值与品牌B这次测试结果的平均值进行阐述(品牌A 这次测试结果的平均值小于品牌B这次测试结果的平均值,品牌A打开文件的平均速度快于品牌B).标准:会用品牌A这次测试结果的方差与品牌B这次测试结果的方差进行阐述(品牌A这次测试结果的方差小于品牌B这次测试结果的方差,品牌A打开文件的速度的波动小于品牌B).标准:会用前次测试中,品牌A测试结果大于(小于)品牌B测试结果的次数、后次测试中,品牌A测试结果大于(小于)品牌 B测试结果的次数进行阐述(前次测试结果中,品牌A小于品牌B的有次,占.后次测试中,品牌A小于品牌B的有次,占.故品牌A打开含有文字和表格的文件的速度慢于品牌B,品牌A打开含有文字和图片的文件的速度快于品牌B).标准:会用这次测试中,品牌A测试结果大于(小于)品牌B测试结果的次数进行阐述(这次测试结果中,品牌A小于品牌B的有次,占.故品牌A和品牌B打开文件的速度相当).参考数据:期望前次后次次品牌品牌品牌与品牌方差前次后次次品牌品牌品牌与品牌18. (1)在三棱柱中,侧面底面,,因为侧面底面,底面,所以平面,又因为平面,所以;(2)连接,在三棱柱中,.因为,所以.又因为,所以是边长为的正三角形.因为是棱的中点,所以,.又因为,,所以.因为,底面,所以底面.所以三棱柱的体积为;(3)在直线上存在点,使得 平面.证明如下:连接并延长,与的延长线相交,设交点为,连接.因为,故,由于为棱的中点,所以,故有,又为棱的中点,连接,故为的中位线,所以.又平面,平面,所以 平面.故在直线上存在点,使得 平面.此时,.19. (1),,,,故.(2)设,,得到,依题意,由得,且有原点到直线的距离,所以,解得,故椭圆方程为.(3)直线的垂线为:,由解得交点,因为,又,所以,故的值为.20. (1)依题意,,,所以切线的斜率,又因为,所以切线方程为.(2)先证不必要性.当时,,令,解得.此时,有且只有一个零点,故“有且只有一个零点则”不成立.再证充分性.方法一:当时,.令,解得,.(i)当,即时,,所以在上单调递增.又因为,,所以有且只有一个零点.(ii)当,即时,,随的变化情况如下:极大值极小值当时,,,所以,又,所以有且只有一个零点.(iii)当,即时,,随的变化情况如下:极大值极小值因为,所以时,,令,则.下面证明当时,.设,则.当时,,在上单调递增;当时,,在上单调递减.所以当时,取得极大值.所以当时,,即.所以.由零点存在定理,有且只有一个零点.综上,是函数有且只有一个零点的充分不必要条件.方法二:当时,注意到时,,,所以,因此只需要考察上的函数零点.(i)当,即时,时,,所以单调递增.又,,所以有且只有一个零点.(ii)当,即时,以下同方法一.方法三:令,显然不是该方程的根,所以.设,则.当时,,在上单调递减;当时,,在上单调递增.又,时,,时,.令,则.下面证明当时,.设,则.当时,,在上单调递增;当时,,在上单调递减.所以当时,取得极大值.所以当时,,即.所以.所以当时,直线与函数的图象有且只有一个交点,即当时,函数有且只有一个零点.第11页(共11 页)。
2017海淀高三一模试题及答案(word版可编辑修改)

的实验后,发现不同组的电池组的电动势基本相同,只是内电阻差异较大。同学们选择了 内电阻差异较大的甲、乙两个电池组进一步探究,对电池组的输出功率 P 随外电阻 R 变化 的关系,以及电池组的输出功率 P 随路端电压 U 变化的关系进行了猜想,并分别画出了如 图 8 所示的 P-R 和 P—U 图象.若已知甲电池组的内电阻较大,则下列各图中可能正确的是
13.D
14.C
2017 北京市海淀区高三年级第一次综合练习
物理试卷答案及评分参考
15.A 16.C 17.D 18.B 19.C 20.D
21.(18 分)(1)① 11。86~11.89 (3 分) ② 1。036~1。039(3 分) 电阻箱 R
U/ V
3.00 2.50 2.00
2017 海淀高三一模试题及答案(word 版可编辑修改)
④ 实验测量都存在误差,关于本实验的误差,下列说法中正确的是
(选填选项前的
字母).
A.由于读数所引起的误差属于偶然误差
B.利用图象法处理本实验数据可以减小系统误差
C.由于电压表内阻引起的误差属于系统误差
D.电压表的内阻越大,其引起的误差越大
⑤ 不同小组的同学分别用不同的电池组(均由同一规格的两节干电池串联而成)完成了上述
请将图 6 丙、丁中电阻箱和电压表所示的数据转化为坐标点描绘在图 7 所示的坐标系中(用
“+"表示),并画出 U—U/R 图线;
U/ V
100
10
1
0.1
丙
V
- 3 15
丁
图6
3.00
2.50
2.00
1.50
1.00 0
0.25
0.50
2017年北京市海淀区高三一模数学(文)试题及答案

海淀区高三年级第二学期期中练习数学(文科) 2017. 4本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 设集合{}|13A x x =<<,集合{}2|4B x x =>,则集合A B 等于 A. {}|23x x <<B. {}1x x >C. {}12x x << D . {}|2x x >2. 圆心为(0,1)且与直线2y =相切的圆的方程为 A. 22(1)1x y -+= B. 22(1)1x y ++= C. 22(1)1x y +-= D . 22(1)1x y ++= 3. 执行如右图所示的程序框图,输出的x 值为 A .4 B .3 C .2D .14. 若实数,a b 满足0,0a b >>,则“a b >”是“ln ln a a b b +>+”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5. 某三棱锥的三视图如图所示,则该三棱锥中最长棱的长度为ABC.D .36.在ABC ∆中,点D 满足2AD AB AC =-u u u r u u u r u u u r,则A .点D 不在直线BC 上B .点D 在BC 的延长线上 C .点D 在线段BC 上D .点D 在CB 的延长线上7. 若函数cos ,,()1,x x a f x x a x≤⎧⎪=⎨>⎪⎩的值域为[1,1]-,则实数a 的取值范围是A. [1,)+∞B. (,1]-∞-C. (0,1]D. ()1,0-主视图俯视图左视图8. 如图,在公路MN 两侧分别有127,,...,A A A 七个工厂,各工厂与公路MN (图中粗线)之间有小公路连接. 现在需要在公路MN 上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”. 则下面结论中正确的是①车站的位置设在C 点好于B 点;②车站的位置设在B 点与C 点之间任何一点效果一样; ③ 车站位置的设置与各段小公路的长短无关.A. ①B.②C. ①③D.②③ 二、填空题共6小题,每小题5分,共30分。
北京市海淀区2017届高三上学期期末数学试卷(文科)

2016-2017学年北京市海淀区高三(上)期末数学试卷(文科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.复数i(2﹣i)在复平面内对应的点的坐标为()A.(﹣2,1)B.(2,﹣1)C.(1,2) D.(﹣1,2)2.抛物线y2=2x的焦点到准线的距离为()A.B.1 C.2 D.33.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是()A.B.y=﹣x2C.y=log2x D.y=|x|+14.已知向量,满足=0,()•=2,则||=()A.B.1 C.D.25.如图程序框图所示的算法来自于《九章算术》,若输入a的值为16,b的值为24,则执行该程序框图的结果为()A.6 B.7 C.8 D.96.在△ABC中,“A<30°”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件7.已知某四棱锥的三视图如右图所示,则该几何体的体积为()A.B.C.2 D.8.如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,E,F分别是棱AD,B1C1上的动点,设AE=x,B1F=y,若棱DD1与平面BEF有公共点,则x+y的取值范围是()A. B.[,] C. D.[,2]二、填空题共6小题,每小题5分,共30分.9.已知双曲线C:,则双曲线C 的一条渐近线的方程为.10.已知数列{a n} 满足a n+1﹣a n=2,n∈N*,且a3=3,则a1= ,其前n 项和S n= .11.已知圆C:x2+y2﹣2x=0,则圆心C 的坐标为,圆C截直线y=x 的弦长为.12.已知x,y满足,则2x+y的最大值为.13.如图所示,点D 在线段AB 上,∠CAD=30°,∠CDB=50°.给出下列三组条件(给出线段的长度):①AD,DB②AC,DB③CD,DB其中,能使△ABC 唯一确定的条件的序号为.(写出所有所和要求的条件的序号)14.已知A、B两所大学的专业设置都相同(专业数均不小于2),数据显示,A大学的各专业的男女生比例均高于B大学的相应专业的男女生比例(男女生比例是指男生人数与女生人数的比).据此,甲同学说:“A大学的男女生比例一定高于B大学的男女生比例”;乙同学说:“A大学的男女生比例不一定高于B大学的男女生比例”;丙同学说:“两所大学的全体学生的男女生比例一定高于B大学的男女生比例”.其中,说法正确的同学是.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(13分)已知数列{a n} 是各项均为正数的等比数列,且a2=1,a3+a4=6(Ⅰ)求数列{a n} 的通项公式;(Ⅱ)设数列{a n﹣n} 的前n 项和为S n,比较S4和S5的大小,并说明理由.16.(13分)已知函数(Ⅰ)求f(x)的定义域及的值;(Ⅱ)求f(x)在上的单调递增区间.17.(13分)诚信是立身之本,道德之基.某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“”表示每周“水站诚信度”.为了便于数据分析,以四周为一个周期,下表为该水站连续八周(共两个周期)的诚信度数据统计,如表1:(Ⅰ)计算表1中八周水站诚信度的平均数(Ⅱ)从表1诚信度超过91% 的数据中,随机抽取2个,求至少有1个数据出现在第二个周期的概率;(Ⅲ)学生会认为水站诚信度在第二个周期中的后两周出现了滑落,为此学生会举行了“以诚信为本”主题教育活动,并得到活动之后一个周期的水站诚信度数据,如表2:请根据提供的数据,判断该主题教育活动是否有效,并根据已有数据说明理由.18.(14分)如图,在四棱锥P﹣ABCD 中,PD⊥底面ABCD,AB∥DC,CD=2AB,AD⊥CD,E为棱PD的中点.(Ⅰ)求证:CD⊥AE;(Ⅱ)求证:平面PAB⊥平面PAD;(Ⅲ)试判断PB与平面AEC是否平行?并说明理由.19.(13分)已知椭圆的离心率为,直线l 过椭圆G 的右顶点A(2,0),且交椭圆G于另一点C(Ⅰ)求椭圆G 的标准方程;(Ⅱ)若以AC 为直径的圆经过椭圆G 的上顶点B,求直线l 的方程.20.(14分)已知函数.(Ⅰ)求曲线y=f(x)在函数f(x)零点处的切线方程;(Ⅱ)求函数y=f(x)的单调区间;(Ⅲ)若关于x 的方程f(x)=a 恰有两个不同的实根x1,x2,且x1<x2,求证:.2016-2017学年北京市海淀区高三(上)期末数学试卷(文科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.复数i(2﹣i)在复平面内对应的点的坐标为()A.(﹣2,1)B.(2,﹣1)C.(1,2) D.(﹣1,2)【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、几何意义即可得出.【解答】解:复数i(2﹣i)=2i+1在复平面内对应的点的坐标为(1,2),故选:C.【点评】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.2.抛物线y2=2x的焦点到准线的距离为()A.B.1 C.2 D.3【考点】抛物线的简单性质.【分析】利用抛物线的方程求出p即可得到结果.【解答】解:抛物线y2=2x的焦点到准线的距离为:p=1.故选:B.【点评】本题考查抛物线的简单性质的应用,是基础题.3.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是()A.B.y=﹣x2C.y=log2x D.y=|x|+1【考点】函数奇偶性的判断;函数单调性的判断与证明.【分析】根据函数奇偶性和单调性的性质进行判断即可.【解答】解:A.是减函数,为非奇非偶函数,不满足条件.B.y=﹣x2是偶函数,在区间(0,+∞)上单调递减,不满足条件.C.y=log2x在区间(0,+∞)上单调递增,为非奇非偶函数,不满足条件.D.y=|x|+1是偶函数又在区间(0,+∞)上单调递增,满足条件.故选:D【点评】本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性的性质.4.已知向量,满足=0,()•=2,则||=()A.B.1 C.D.2【考点】平面向量数量积的运算.【分析】由条件利用两个向量的数量积的定义,求得=2,可得||的值.【解答】解:∵向量,满足=0,()•=﹣=2﹣==2,则||=,故选:C.【点评】本题主要考查两个向量的数量积的定义,求向量的模的方法,属于基础题.5.如图程序框图所示的算法来自于《九章算术》,若输入a的值为16,b的值为24,则执行该程序框图的结果为()A.6 B.7 C.8 D.9【考点】程序框图.【分析】模拟程序的运行,根据程序流程,依次判断写出a,b的值,可得当a=b=8时,不满足条件a≠b,输出a的值为8,即可得解.【解答】解:模拟程序的运行,可得a=16,b=24满足条件a≠b,不满足条件a>b,b=24﹣16=8,满足条件a≠b,满足条件a>b,a=16﹣8=8,不满足条件a≠b,输出a的值为8.故选:C.【点评】本题考查的知识点是循环结构,当循环次数不多时,多采用模拟循环的方法,本题属于基础题.6.在△ABC中,“A<30°”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义进行判断即可.【解答】解:由,则0°<A<30°或150°<A<180°,则A<30°”是“”的充分不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,根据三角函数值的关系是解决本题的关键.7.已知某四棱锥的三视图如右图所示,则该几何体的体积为()A.B.C.2 D.【考点】由三视图求面积、体积.【分析】由三视图可知,几何体是以俯视图为底面,高为2的四棱锥,即可求出体积.【解答】解:由三视图可知,几何体是以俯视图为底面,高为2的四棱锥,体积为=,故选B.【点评】本题考查几何体体积的计算,考查三视图与直观图的转化,确定直观图的形状是关键.8.如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,E,F分别是棱AD,B1C1上的动点,设AE=x,B1F=y,若棱DD1与平面BEF有公共点,则x+y的取值范围是()A. B.[,] C. D.[,2]【考点】空间中直线与平面之间的位置关系.【分析】由题意,若x=y=1,则棱DD1与平面BEF交于点D,若x=1,y=0,则棱DD1与平面BEF 交于线段DD1,即可得出结论.【解答】解:由题意,若x=y=1,则棱DD1与平面BEF交于点D,符合题意;若x=1,y=0,则棱DD1与平面BEF交于线段DD1,符合题意.故选C.【点评】本题考查线面位置关系,考查特殊法的运用,属于中档题.二、填空题共6小题,每小题5分,共30分.9.已知双曲线C:,则双曲线C 的一条渐近线的方程为y=2x或(y=﹣2x).【考点】双曲线的简单性质.【分析】求出a和b 的值,再根据焦点在x轴上,求出渐近线方程.【解答】解:由双曲线C:得到a=1,b=2,则双曲线C 的渐近线方程为y=±2x,故答案为:y=2x或(y=﹣2x).【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用.10.已知数列{a n} 满足a n+1﹣a n=2,n∈N*,且a3=3,则a1= ﹣1 ,其前n 项和S n= n2﹣2n .【考点】等差数列的通项公式;等差数列的前n项和.【分析】推导出数列{a n} 是公差d=2的等差数列,由此能求出首项和前n项和.【解答】解:∵数列{a n} 满足a n+1﹣a n=2,n∈N*,且a3=3,∴数列{a n} 是公差d=2的等差数列,∴a3=a1+2d=a1+4=3,解得a1=﹣1,∴S n==﹣1+=n2﹣2n.故答案为:﹣1,n2﹣2n.【点评】本题考查数列的首项和前n项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.已知圆C:x2+y2﹣2x=0,则圆心C 的坐标为(1,0),圆C截直线y=x 的弦长为.【考点】直线与圆的位置关系.【分析】将圆C方程化为标准形式,找出圆C的半径及圆心坐标即可;利用点到直线的距离公式,求直线l与圆心C的距离,即可求出圆C截直线y=x 的弦长.【解答】解:圆C方程x2+y2﹣2x=0化为标准方程得:(x﹣1)2+y2=1,则圆C的半径为1,圆心C坐标为(1,0);圆心C(1,0)到直线l:x﹣y=0的距离d=,∴圆C截直线y=x 的弦长为2=,故答案为(1,0),.【点评】本题考查直线与圆的位置关系,圆的标准方程与一般方程的转化,考查计算能力.12.已知x,y满足,则2x+y的最大值为10 .【考点】简单线性规划.【分析】根据目标函数的解析式形式,分析目标函数的几何意义,然后判断目标函数取得最优解的点的坐标,即可求解【解答】解:令z=2x+y,则y=﹣2x+z,则z表示直线y=﹣2x+z在y轴上的截距,截距越大,z越大作出不等式组表示的平面区域,如图所示的阴影部分做直线2x+y=0,然后把直线2x+y=0向上平移,结合图形可知,当直线平移到B时,z最大由可得B(4,2),此时z=10故答案为:10【点评】本题考查线性规划知识的运用,考查学生的计算能力,考查数形结合的数学思想13.如图所示,点D 在线段AB 上,∠CAD=30°,∠CDB=50°.给出下列三组条件(给出线段的长度):①AD,DB②AC,DB③CD,DB其中,能使△ABC 唯一确定的条件的序号为①②③.(写出所有所和要求的条件的序号)【考点】正弦定理.【分析】由已知及正弦定理可得,结合余弦定理即可得解.【解答】解:∵∠CAD=30°,∠CDB=50°.∴可得:∠ACD=20°,∴在△ACD中,可得,即给一边,可求另外两边,进而利用正弦定理,余弦定理可求△ABC的各边及角.故答案为:①②③.【点评】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.14.已知A、B两所大学的专业设置都相同(专业数均不小于2),数据显示,A大学的各专业的男女生比例均高于B大学的相应专业的男女生比例(男女生比例是指男生人数与女生人数的比).据此,甲同学说:“A大学的男女生比例一定高于B大学的男女生比例”;乙同学说:“A大学的男女生比例不一定高于B大学的男女生比例”;丙同学说:“两所大学的全体学生的男女生比例一定高于B大学的男女生比例”.其中,说法正确的同学是乙.【考点】进行简单的合情推理.【分析】根据A大学的各专业的男女生比例均高于B大学的相应专业的男女生比例(男女生比例是指男生人数与女生人数的比),可知甲、丙不一定正确,即可得出结论.【解答】解:根据A大学的各专业的男女生比例均高于B大学的相应专业的男女生比例(男女生比例是指男生人数与女生人数的比),可知甲、丙不一定正确,A大学的男女生比例有可能等于B大学的男女生比例,即A大学的男女生比例不一定高于B大学的男女生比例故答案为乙【点评】本小题情境通俗易懂,主要考查逻辑思维和推理能力,难度不大.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(13分)(2016秋•海淀区期末)已知数列{a n} 是各项均为正数的等比数列,且a2=1,a3+a4=6(Ⅰ)求数列{a n} 的通项公式;(Ⅱ)设数列{a n﹣n} 的前n 项和为S n,比较S4和S5的大小,并说明理由.【考点】数列的求和;数列递推式.【分析】(I)利用等比数列的通项公式即可得出.(Ⅱ)由数列{a n﹣n} 的前n 项和S n的意义可得S5﹣S4=a5﹣5,进而得出.【解答】解:(Ⅰ)设数列{a n} 的公比为q,由a3+a4=6,可得又a2=1,所以q+q2=6,解得q=2 或q=﹣3,因为a n>0 (n=1,2,3,…),所以.所以q=2,解得,所以,数列{a n} 的通项..(Ⅱ)由数列{a n﹣n} 的前n 项和S n的意义可得S5﹣S4=a5﹣5,所以,所以S5>S4.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.16.(13分)(2016秋•海淀区期末)已知函数(Ⅰ)求f(x)的定义域及的值;(Ⅱ)求f(x)在上的单调递增区间.【考点】三角函数中的恒等变换应用.【分析】(Ⅰ)根据函数成立的条件,结合三角函数的性质进行求解即可.(Ⅱ)将函数进行化简,利用三角函数的单调性进行求解即可.【解答】解:(Ⅰ)由cosx≠0,可得x≠kπ+,k∈Z,所以f(x)的定义域为,..(Ⅱ)==2sinx+2cosx=,因为,所以.因为函数y=sinx 在上单调递增,所以时,单调递增,此时,所以,函数f(x)在上的单调递增区间为.【点评】本题主要考查三角函数的图象和性质,利用条件将函数进行化简是解决本题的关键.17.(13分)(2016秋•海淀区期末)诚信是立身之本,道德之基.某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“”表示每周“水站诚信度”.为了便于数据分析,以四周为一个周期,下表为该水站连续八周(共两个周期)的诚信度数据统计,如表1:(Ⅰ)计算表1中八周水站诚信度的平均数(Ⅱ)从表1诚信度超过91% 的数据中,随机抽取2个,求至少有1个数据出现在第二个周期的概率;(Ⅲ)学生会认为水站诚信度在第二个周期中的后两周出现了滑落,为此学生会举行了“以诚信为本”主题教育活动,并得到活动之后一个周期的水站诚信度数据,如表2:请根据提供的数据,判断该主题教育活动是否有效,并根据已有数据说明理由.【考点】列举法计算基本事件数及事件发生的概率.【分析】(Ⅰ)由数据统计表能求出八周诚信水站诚信度的平均数.(Ⅱ)表1中超过91% 的数据共有5个,其中第一个周期有3个,分别记为a1、a2、a3,第二个周期有2个,分别记为b1、b2,由此利用列举法能求出设至少有1个数据出现在第二个周期的概率.(Ⅲ)根据提供的数据,判断该主题教育活动有效.【解答】(本小题满分13分)解:(Ⅰ)八周诚信水站诚信度的平均数为=.(Ⅱ)表1中超过91% 的数据共有5个,其中第一个周期有3个,分别记为a1、a2、a3,第二个周期有2个,分别记为b1、b2,从这5个数据中任取2个共有10种情况:a1a2,a1a3,a1b1,a1b2,a2a3,a2b1,a2b2,a3b1,a3b2,b1b2.其中至少有1个数据出现在第二个周期有7种情况.设至少有1个数据出现在第二个周期为事件A 则.(Ⅲ)有效阐述理由含如下之一理由陈述的可能情况:①第三个周期水站诚信度的平均数92% 高于第二个周期的诚信度平均数87.75%;②第三个周期的四周的水站诚信度相对于第二个周期的第四周诚信度而言,呈逐步上升趋势;③第三个周期水站诚信度的平均数92% 高于第一、二个周期的诚信度平均数90.5%;④12周的整体诚信度平均数为91%,高于前两个周期的诚信度的平均数90.5%;【点评】本题考查数据统计表的应用,考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.18.(14分)(2016秋•海淀区期末)如图,在四棱锥P﹣ABCD 中,PD⊥底面ABCD,AB∥DC,CD=2AB,AD⊥CD,E为棱PD的中点.(Ⅰ)求证:CD⊥AE;(Ⅱ)求证:平面PAB⊥平面PAD;(Ⅲ)试判断PB与平面AEC是否平行?并说明理由.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(Ⅰ)PD⊥底面ABCD,DC⊂底面ABCD⇒PD⊥DC.又AD⊥DC,AD∩PD=D故CD⊥平面PAD.又AE⊂平面PAD,得CD⊥AE.(Ⅱ)由AB∥DC,CD⊥平面PAD,⇒AB⊥平面PAD.又由AB⊂平面PAB,得平面PAB⊥平面PAD.(Ⅲ)PB与平面AEC不平行.假设PB∥平面AEC,由已知得到,这与OB=OD 矛盾.【解答】解:(Ⅰ)因为PD⊥底面ABCD,DC⊂底面ABCD,所以PD⊥DC.又AD⊥DC,AD∩PD=D故CD⊥平面PAD.又AE⊂平面PAD,所以CD⊥AE.(Ⅱ)因为AB∥DC,CD⊥平面PAD,所以AB⊥平面PAD.又因为AB⊂平面PAB,所以平面PAB⊥平面PAD.(Ⅲ)PB与平面AEC不平行.假设PB∥平面AEC,设BD∩AC=O,连结OE,则平面EAC∩平面PDB=OE,又PB⊂平面PDB﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)所以PB∥OE.所以,在△PDB 中有=,由E是PD中点可得,即OB=OD.因为AB∥DC,所以,这与OB=OD 矛盾,所以假设错误,PB与平面AEC不平行.(注:答案中标灰部分,实际上在前面表达的符号中已经显现出该条件,故没写不扣分)【点评】本题考查了线线垂直、线面垂直、线面平行的判定,属于基础题.19.(13分)(2016秋•海淀区期末)已知椭圆的离心率为,直线l 过椭圆G 的右顶点A(2,0),且交椭圆G于另一点C(Ⅰ)求椭圆G 的标准方程;(Ⅱ)若以AC 为直径的圆经过椭圆G 的上顶点B,求直线l 的方程.【考点】椭圆的简单性质.【分析】(Ⅰ)由题设可得,及其a2=b2+c2,解出即可得出.(Ⅱ)法1:以AC为直径的圆经过点B等价于.由题设可得B(0,1),利用数量积运算性质可得:.又C(x C,y C)在椭圆G 上,可得,解出即可得出.法2:由题意,直线l 的斜率一定存在,故设直线l 为y=k(x﹣2),与椭圆方程联立可得(1+4k2)x2﹣16k2x+16k2﹣4=0.利用根与系数的关系可得:由题设可得以AC为直径的圆经过点B(0,1)等价于.解出即可得出.【解答】解:(Ⅰ)由题设可得,解得,因为a2=b2+c2,所以,所以椭圆G 的标准方程为..(Ⅱ)法1:以AC为直径的圆经过点B等价于.由题设可得B(0,1),所以,,所以.又C(x C,y C)在椭圆G 上,所以,由,可得,解得x C=0 或,所以C(0,1)或,所以,直线l 方程为x+2y﹣2=0或3x﹣10y﹣6=0.法2:由题意,直线l 的斜率一定存在,故设直线l 为y=k(x﹣2),由,可得(1+4k2)x2﹣16k2x+16k2﹣4=0.△>0,,又因为x A=2,所以.由题设可得以AC为直径的圆经过点B(0,1)等价于.所以,即.解得或.所以,直线l 方程为x+2y﹣2=0 或3x﹣10y﹣6=0.【点评】本题考查了椭圆的标准方程及其性质、一元二次方程的根与系数的关系、数量积运算性质,考查了推理能力与计算能力,属于难题.20.(14分)(2016秋•海淀区期末)已知函数.(Ⅰ)求曲线y=f(x)在函数f(x)零点处的切线方程;(Ⅱ)求函数y=f(x)的单调区间;(Ⅲ)若关于x 的方程f(x)=a 恰有两个不同的实根x1,x2,且x1<x2,求证:.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算切线的斜率,从而求出切线方程即可;(Ⅱ)求出函数的导数,解关于导函数的方程,求出函数的单调区间即可;(Ⅲ)根据函数的单调性得到方程f(x)=a 有两个不同的实根x1,x2时,必有0<a<1,且e﹣1<x1<1<x2,从而证出结论.【解答】解:(Ⅰ)令f(x)=0,得,所以,函数f(x)零点为,由得,所以,所以曲线y=f(x)在零点处的切线方程为,即y=e2x﹣e.(Ⅱ)由函数得定义域为(0,+∞).令f'(x)=0,得x=1.所以,在区间(0,1)上,f'(x)>0;在区间(1,+∞)上,f'(x)<0.故函数f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞);(Ⅲ)由(Ⅰ)可知f(x)在(0,e﹣1)上f(x)<0,在(e﹣1,+∞)上f(x)>0.由(Ⅱ)结论可知,函数f(x)在x=1 处取得极大值f(1)=1,所以,方程f(x)=a 有两个不同的实根x1,x2时,必有0<a<1,且e﹣1<x1<1<x2,法1:所以,由f(x)在(1,+∞)上单调递减可知,所以;法2:由f(x)=a,可得lnx+1=ax,两个方程同解.设g(x)=lnx+1﹣ax,则,当0<a<1 时,由g'(x)=0,得,所以g(x),g'(x)在区间(0,+∞)上的情况如下:所以,,所以.【点评】本题考查了切线方程问题,考查导数的应用以及分类讨论思想,是一道综合题.- 21 -。
北京市海淀区2017年高三年级第二学期期末练习数学文科试题含答案

海淀区高三年级第二学期期末练习数学(文科)2017.5本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.若集合{2,0,1}A =-,{|1B x x =<-或0}x >,则A B =A. {2}-B. {1}C.{2,1}-D. {2,0,1}- 2. 在复平面内,复数2i1iz =-对应的点的坐标为 A. (1,1)- B. (1,1)C.(1,1)- D.(1,1)--3. 已知向量(,1),(3,2)x ==-a b ,若//a b ,则x = A. 3- B.32-C.23D.324. 执行如图所示的程序框图,若输入7,3a d =-=,则输出的S 为 A. 12S =- B .11S =- C. 10S =- D. 6S =-5.已知数列{}n a 是等比数列,则“21a a >”是“数列{}n a 为递增数列”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件6.北京市2016年12个月的PM2.5平均浓度指数如右图所示.由图判断,四个季度中PM2.5的平均浓度指数方差最小的是 A.第一季度B.第二季度 C.第三季度D.第四季度7.函数()y f x =的图象如图所示,则()f x 的解析式可以为 A.21()f x x x =- B.31()f x x x =- C.1()e x f x x =- D. 1()ln f x x x=- 第一季度 第二季度第三季度 第四季度 yOx8.一位手机用户前四次输入四位数字手机密码均不正确,第五次输入密码正确,手机解锁.事后发现前四次输入的密码中,每次都有两个数字正确,但它们各自的位置均不正确.已知前四次输入密码分别为3406,1630,7364,6173,则正确的密码中一定含有数字 A. 4,6 B. 3,6 C. 3,7 D.1,7 二、填空题共6小题,每小题5分,共30分。
北京海淀区2017~2018学年上学期高三数学文科期末试题卷附答案解析

北京海淀区2017~2018学年上学期高三期末数学文科试卷第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知i 是虚数单位,若()1+i a i i +=,则实数a 的值为 A. 1 B. 0 C. 1- D. 2- (2)已知,a b R ∈,若a b ,则A. 2ab B. 2ab b C. 1122ab D. 33a b(3)执行如图所示的程序框图,输出的k 值为 A.4 B.5 C.6 D.7(4)下面的茎叶图记录的是甲、乙两个班级各5各同学在一次数学测试中的选择题的成绩(单位:分,每道题5分,共8道题):已知两组数据的平均数相等,则,x y 的值分别为 A. 0,0 B. 0,5 C. 5,0 D. 5,5(5)已知直线0x y m -+=与圆22:1O x y +=相交于,A B 两点,且AOB ∆为正三角形,则实数m 的值为 A. 32 B. 62 C. 32或32- D. 62或62-(6)设,则“1a =”是“直线10ax y +-=与直线++10x ay =平行”的 A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件,(7)在ABC ∆中,=1,AB AC D =是AC 的中点,则BD CD ⋅的取值范围是 A. 31(,)44- B. 1(,)4-∞ C. 3(,)4-+∞ D. 13(,)44(8)已知正方体的1111ABCD A B C D -棱长为2,点,M N 分别是棱11,BC C D 的中点,点P 在平面1111A B C D 内,点Q 在线段1A N 上,若5PM =,则PQ 长度的最小值为 A.21- B. 2 C. 3515- D.355第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
(9)已知双曲线221ax y -=的一条渐近线方程为y x =,则实数k 的值为 .(10)若变量,x y 满足约束条件010220y x y x y ≥⎧⎪-+≥⎨⎪+-≤⎩,则z x y =+的最大值是 .(11)ABC ∆中, 1,7,a b ==且ABC ∆的面积为32,则c = .(12)某三棱锥的三视图如图所示,该三棱锥的四个面的面积中最大的值是 .(13)函数2,0()(2),0x x f x x x x ⎧≤=⎨-⎩的最大值为 ;若函数()f x 的图像与直线(1)y k x =-有且只有一个公共点,则实数k 的取值范围是 .(14)某次高三英语听力考试中有5道选择题,每题1分,每道题在三个选项中只有一个是正确的.下表是甲、乙、丙三名同学每道题填涂的答案和这5道题的得分: 1 2 3 4 5 得分 甲 C C A B B 4 乙 C C B B C 3 丙BCCBB2则甲同学答错的题目的题号是 ,其正确的选项是 .三、解答题共6小题,共80分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年北京市海淀区高考数学一模试卷(文科)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|1<x<3},集合B={x|x2>4},则集合A∩B等于()A.{x|2<x<3}B.{x|x>1}C.{x|1<x<2}D.{x|x>2}2.(5分)圆心为(0,1)且与直线y=2相切的圆的方程为()A.(x﹣1)2+y2=1 B.(x+1)2+y2=1 C.x2+(y﹣1)2=1 D.x2+(y+1)2=1 3.(5分)执行如图所示的程序框图,输出的x的值为()A.4 B.3 C.2 D.14.(5分)若实数a,b满足a>0,b>0,则“a>b”是“a+lna>b+lnb”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)某三棱锥的三视图如图所示,则该三棱锥中最长棱的长度为()A.B.C.D.36.(5分)在△ABC上,点D满足,则()A.点D不在直线BC上 B.点D在BC的延长线上C.点D在线段BC上D.点D在CB的延长线上7.(5分)若函数的值域为[﹣1,1],则实数a的取值范围是()A.[1,+∞)B.(﹣∞,﹣1]C.(0,1]D.(﹣1,0)8.(5分)如图,在公路MN两侧分别有A1,A2,…,A7七个工厂,各工厂与公路MN(图中粗线)之间有小公路连接.现在需要在公路MN上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是()①车站的位置设在C点好于B点;②车站的位置设在B点与C点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A.①B.②C.①③D.②③二、填空题(每题5分,满分30分,将答案填在答题纸上)9.(5分)已知复数z=a(1+i)﹣2为纯虚数,则实数a=.10.(5分)已知等比数列{a n}中,a2a4=a5,a4=8,则公比q=,其前4项和S4=.11.(5分)若抛物线y2=2px的准线经过双曲线的左焦点,则实数p=.12.(5分)若x,y满足则的最大值是.13.(5分)已知函数f(x)=sinωx(ω>0),若函数y=f(x+a)(a>0)的部分图象如图所示,则ω=,a的最小值是.14.(5分)阅读下列材料,回答后面问题:在2014年12月30日CCTV13播出的“新闻直播间”节目中,主持人说:“…加入此次亚航失联航班QZ8501被证实失事的话,2014年航空事故死亡人数将达到1320人.尽管如此,航空安全专家还是提醒:飞机仍是相对安全的交通工具.①世界卫生组织去年公布的数据显示,每年大约有124万人死于车祸,而即使在航空事故死亡人数最多的一年,也就是1972年,其死亡数字也仅为3346人;②截至2014年9月,每百万架次中有2.1次(指飞机失事),乘坐汽车的百万人中其死亡人数在100人左右.”对上述航空专家给出的①、②两段表述(划线部分),你认为不能够支持“飞机仍是相对安全的交通工具”的所有表述序号为,你的理由是.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.已知等差数列{a n}满足a1+a2=6,a2+a3=10.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n+a n}的前n项和.+116.某地区以“绿色出行”为宗旨开展“共享单车”业务.该地有a,b两种“共享单车”(以下简称a型车,b型车).某学习小组7名同学调查了该地区共享单车的使用情况.(Ⅰ)某日该学习小组进行一次市场体验,其中4人租到a型车,3人租到b型车.如果从组内随机抽取2人,求抽取的2人中至少有一人在市场体验过程中租到a型车的概率;(Ⅱ)根据已公布的2016年该地区全年市场调查报告,小组同学发现3月,4月的用户租车情况城现如表使用规律.例如,第3个月租a型车的用户中,在第4个月有60%的用户仍租a型车.若认为2017年该地区租用单车情况与2016年大致相同.已知2017年3月该地区租用a,b两种车型的用户比例为1:1,根据表格提供的信息,估计2017年4月该地区租用两种车型的用户比例.17.在△ABC中,A=2B.(Ⅰ)求证:a=2bcosB;(Ⅱ)若b=2,c=4,求B的值.18.在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,E,F分别是PB,PD的中点.(Ⅰ)求证:PB∥平面FAC;(Ⅱ)求三棱锥P﹣EAD的体积;(Ⅲ)求证:平面EAD⊥平面FAC.19.已知椭圆C:=1(a>b>0)的左、右顶点分别为A,B,且|AB|=4,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)设点Q(4,0),若点P在直线x=4上,直线BP与椭圆交于另一点M.判断是否存在点P,使得四边形APQM为梯形?若存在,求出点P的坐标;若不存在,说明理由.20.已知函数f(x)=e x﹣x2+ax,曲线y=f(x)在点(0,f(0))处的切线与x 轴平行.(Ⅰ)求a的值;(Ⅱ)若g(x)=e x﹣2x﹣1,求函数g(x)的最小值;(Ⅲ)求证:存在c<0,当x>c时,f(x)>0.2017年北京市海淀区高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017•海淀区一模)设集合A={x|1<x<3},集合B={x|x2>4},则集合A∩B等于()A.{x|2<x<3}B.{x|x>1}C.{x|1<x<2}D.{x|x>2}【解答】解:集合A={x|1<x<3},集合B={x|x2>4}={x|x<﹣2或x>2},则集合A∩B={x|2<x<3}.故选:A.2.(5分)(2017•海淀区一模)圆心为(0,1)且与直线y=2相切的圆的方程为()A.(x﹣1)2+y2=1 B.(x+1)2+y2=1 C.x2+(y﹣1)2=1 D.x2+(y+1)2=1【解答】解:设圆方程为x2+(y﹣1)2=r2,∵直线y=2与圆相切,∴圆心到直线的距离等于半径r,∴r=1故圆的方程为:x2+(y﹣1)2=1,故选:C3.(5分)(2017•海淀区一模)执行如图所示的程序框图,输出的x的值为()A.4 B.3 C.2 D.1【解答】解:模拟程序的运行,可得x=0,y=5不满足条件=,执行循环体,x=1,y=4不满足条件=,执行循环体,x=2,y=2满足条件=,退出循环,输出x的值为2.故选:C.4.(5分)(2017•海淀区一模)若实数a,b满足a>0,b>0,则“a>b”是“a+lna >b+lnb”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:设f(x)=x+lnx,显然f(x)在(0,+∞)上单调递增,∵a>b,∴f(a)>f(b),∴a+lna>b+lnb,故充分性成立,∵a+lna>b+lnb”,∴f(a)>f(b),∴a>b,故必要性成立,故“a>b”是“a+lna>b+lnb”的充要条件,故选:C5.(5分)(2017•海淀区一模)某三棱锥的三视图如图所示,则该三棱锥中最长棱的长度为()A.B.C.D.3【解答】解:将该几何体放入在长方体中,且长、宽、高为2、1、1,该三棱锥中最长棱为长方体的一条对角线,长度为=,故选B.6.(5分)(2017•海淀区一模)在△ABC上,点D满足,则()A.点D不在直线BC上 B.点D在BC的延长线上C.点D在线段BC上D.点D在CB的延长线上【解答】解:==;如图,作,连接AD′,则:=;∴D′和D重合;∴点D在CB的延长线上.故选D.7.(5分)(2017•海淀区一模)若函数的值域为[﹣1,1],则实数a的取值范围是()A.[1,+∞)B.(﹣∞,﹣1]C.(0,1]D.(﹣1,0)【解答】解:函数的值域为[﹣1,1],当x≤a时,f(x)=cosx∈[﹣1,1],满足题意;当x>a时,f(x)=∈[﹣1,1],应满足0<≤1,解得x≥1;∴a的取值范围是[1,+∞).故选:A.8.(5分)(2017•海淀区一模)如图,在公路MN两侧分别有A1,A2,…,A7七个工厂,各工厂与公路MN(图中粗线)之间有小公路连接.现在需要在公路MN上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是()①车站的位置设在C点好于B点;②车站的位置设在B点与C点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A.①B.②C.①③D.②③【解答】解:因为A、D、E点各有一个工厂相连,B,C,各有两个工厂相连,把工厂看作“人”.可简化为“A,B,C,D,E处分别站着1,2,2,1,1个人(如图),求一点,使所有人走到这一点的距离和最小”.把人尽量靠拢,显然把人聚到B、C最合适,靠拢完的结果变成了B=4,C=3,最好是移动3个人而不要移动4个人.所以车站设在C点,且与各段小公路的长度无关故选C.二、填空题(每题5分,满分30分,将答案填在答题纸上)9.(5分)(2017•海淀区一模)已知复数z=a(1+i)﹣2为纯虚数,则实数a=2.【解答】解:复数z=a(1+i)﹣2=a﹣2+ai为纯虚数,∴a﹣2=0,a≠0,则实数a=2故答案为:2.10.(5分)(2017•海淀区一模)已知等比数列{a n}中,a2a4=a5,a4=8,则公比q=2,其前4项和S4=15.【解答】解:设等比数列{a n}的公比为q,∵a2a4=a5,a4=8,∴q2=a2q3,=8,解得a2=q=2.∴a1=1.其前4项和S4==15.故答案为:2,15.11.(5分)(2017•海淀区一模)若抛物线y2=2px的准线经过双曲线的左焦点,则实数p=4.【解答】解:因为抛物线y2=2px的准线经过双曲线的左焦点,∴p>0,所以抛物线的准线为x=﹣,依题意,直线x=﹣经过双曲线的右焦点(﹣2,0),所以p=4故答案为:4.12.(5分)(2017•海淀区一模)若x,y满足则的最大值是.【解答】解:满足约束条件的可行域如下图中阴影部分所示:则的几何意义表示平面区域内的点与点(0,0)的斜率的最大值,由解得A(1,)显然过A时,斜率最大,最大值是,故答案为:.13.(5分)(2017•海淀区一模)已知函数f(x)=sinωx(ω>0),若函数y=f(x+a)(a>0)的部分图象如图所示,则ω=2,a的最小值是.【解答】解:由已知函数图象得到π,所以T=π,所以=2,又y=f(x+a))=sinω(x+a)且(,1)在图象上,所以sin2(+a)=1,所以+2a=2kπ,k∈Z,所以k取0时a的最小值为;故答案为:2;.14.(5分)(2017•海淀区一模)阅读下列材料,回答后面问题:在2014年12月30日CCTV13播出的“新闻直播间”节目中,主持人说:“…加入此次亚航失联航班QZ8501被证实失事的话,2014年航空事故死亡人数将达到1320人.尽管如此,航空安全专家还是提醒:飞机仍是相对安全的交通工具.①世界卫生组织去年公布的数据显示,每年大约有124万人死于车祸,而即使在航空事故死亡人数最多的一年,也就是1972年,其死亡数字也仅为3346人;②截至2014年9月,每百万架次中有2.1次(指飞机失事),乘坐汽车的百万人中其死亡人数在100人左右.”对上述航空专家给出的①、②两段表述(划线部分),你认为不能够支持“飞机仍是相对安全的交通工具”的所有表述序号为①,你的理由是数据①虽是同类数据,但反映不出乘车出行和乘飞机出行的总人数的关系;数据②两个数据不是同一类数据,这与每架次飞机的乘机人数有关;但是可以做如下大致估算,考虑平均每架次飞机的乘机人数为x,这样每百万人乘机死亡人数2.1人,要远远少于乘车每百万人中死亡人数.【解答】解:选①,理由为:数据①虽是同类数据,但反映不出乘车出行和乘飞机出行的总人数的关系;数据②两个数据不是同一类数据,这与每架次飞机的乘机人数有关;但是可以做如下大致估算,考虑平均每架次飞机的乘机人数为x,这样每百万人乘机死亡人数2.1人,要远远少于乘车每百万人中死亡人数.故答案为:①;数据①虽是同类数据,但反映不出乘车出行和乘飞机出行的总人数的关系;数据②两个数据不是同一类数据,这与每架次飞机的乘机人数有关;但是可以做如下大致估算,考虑平均每架次飞机的乘机人数为x,这样每百万人乘机死亡人数2.1人,要远远少于乘车每百万人中死亡人数三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.(2017•海淀区一模)已知等差数列{a n}满足a1+a2=6,a2+a3=10.(Ⅰ)求数列{a n}的通项公式;}的前n项和.(Ⅱ)求数列{a n+a n+1【解答】解:(Ⅰ)设数列{a n}的公差为d,因为a1+a2=6,a2+a3=10,所以a3﹣a1=4,所以2d=4,d=2.又a1+a1+d=6,所以a1=2,所以a n=a1+(n﹣1)d=2n.(Ⅱ)记b n=a n+a n+1,所以b n=2n+2(n+1)=4n+2,又b n﹣b n=4(n+1)+2﹣4n﹣2=4,+1所以{b n}是首项为6,公差为4的等差数列,其前n 项和.16.(2017•海淀区一模)某地区以“绿色出行”为宗旨开展“共享单车”业务.该地有a,b两种“共享单车”(以下简称a型车,b型车).某学习小组7名同学调查了该地区共享单车的使用情况.(Ⅰ)某日该学习小组进行一次市场体验,其中4人租到a型车,3人租到b型车.如果从组内随机抽取2人,求抽取的2人中至少有一人在市场体验过程中租到a型车的概率;(Ⅱ)根据已公布的2016年该地区全年市场调查报告,小组同学发现3月,4月的用户租车情况城现如表使用规律.例如,第3个月租a型车的用户中,在第4个月有60%的用户仍租a型车.若认为2017年该地区租用单车情况与2016年大致相同.已知2017年3月该地区租用a,b两种车型的用户比例为1:1,根据表格提供的信息,估计2017年4月该地区租用两种车型的用户比例.【解答】解:(Ⅰ)依题意租到a型车的4人为A1,A2,A3,A4;租到b型车的3人为B1,B2,B3;设事件A为“7人中抽到2人,至少有一人租到a型车”,则事件为“7人中抽到2人都租到b型车”.如下列表格所示:从7人中抽出2人共有21种情况,事件发生共有3种情况,所以事件A概率.(Ⅱ)依题意,市场4月份租用a型车的比例为50%60%+50%50%=55%,租用b型车的比例为50%40%+50%50%=45%,所以市场4月租用a,b型车的用户比例为.17.(2017•海淀区一模)在△ABC中,A=2B.(Ⅰ)求证:a=2bcosB;(Ⅱ)若b=2,c=4,求B的值.【解答】(Ⅰ)证明:因为A=2B,所以由正弦定理,得,得,所以a=2bcosB.(Ⅱ)解:由余弦定理,a2=b2+c2﹣2bccosA,因为b=2,c=4,A=2B,所以16cos2B=4+16﹣16cos2B,所以,因为A+B=2B+B<π,所以,所以,所以.18.(2017•海淀区一模)在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,E,F分别是PB,PD的中点.(Ⅰ)求证:PB∥平面FAC;(Ⅱ)求三棱锥P﹣EAD的体积;(Ⅲ)求证:平面EAD⊥平面FAC.【解答】证明:(Ⅰ)连接BD,与AC交于点O,连接OF,在△PBD中,O,F分别是BD,PD的中点,所以OF∥PB,又因为OF⊂平面FAC,PB⊄平面FAC,所以PB∥平面FAC.解:(Ⅱ)因为PA⊥平面ABCD,所以PA为棱锥P﹣ABD的高.因为PA=AB=2,底面ABCD是正方形,所以=,因为E为PB中点,所以S=S△ABE,△PAE所以.证明:(Ⅲ)因为AD⊥平面PAB,PB⊂平面PAB,所以AD⊥PB,在等腰直角△PAB中,AE⊥PB,又AE∩AD=A,AE⊂平面EAD,AD⊂平面EAD,所以PB⊥平面EAD,又OF∥PB,所以OF⊥平面EAD,又OF⊂平面FAC,所以平面EAD⊥平面FAC.19.(2017•海淀区一模)已知椭圆C:=1(a>b>0)的左、右顶点分别为A,B,且|AB|=4,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)设点Q(4,0),若点P在直线x=4上,直线BP与椭圆交于另一点M.判断是否存在点P,使得四边形APQM为梯形?若存在,求出点P的坐标;若不存在,说明理由.【解答】解:(Ⅰ)由|AB|=4,得a=2.又因为,所以c=1,所以b2=a2﹣c2=3,所以椭圆C的方程为.(Ⅱ)假设存在点P,使得四边形APQM为梯形.由题意知,显然AM,PQ不平行,所以AP∥MQ,所以,所以.设点M(x1,y1),P(4,t),过点M作MH⊥AB于H,则有,所以|BH|=1,所以H(1,0),所以x1=1,代入椭圆方程,求得,所以P(4,±3).20.(2017•海淀区一模)已知函数f(x)=e x﹣x2+ax,曲线y=f(x)在点(0,f (0))处的切线与x轴平行.(Ⅰ)求a的值;(Ⅱ)若g(x)=e x﹣2x﹣1,求函数g(x)的最小值;(Ⅲ)求证:存在c<0,当x>c时,f(x)>0.【解答】解:(Ⅰ)函数f(x)=e x﹣x2+ax的导数为:f′(x)=e x﹣2x+a,由已知可得f′(0)=0,所以1+a=0,得a=﹣1.(Ⅱ)g'(x)=e x﹣2,令g'(x)=0,得x=ln2,所以x,g'(x),g(x)的变化情况如表所示:所以g(x)的极小值,且为最小值为g(ln2)=e ln2﹣2ln2﹣1=1﹣2ln2.(Ⅲ)证明:显然g(x)=f'(x),且g(0)=0,由(Ⅱ)知,g(x)在(﹣∞,ln2)上单调递减,在(ln2,+∞)上单调递增.又g(ln2)<0,g(2)=e2﹣5>0,由零点存在性定理,存在唯一实数x0∈(ln2,2),满足g(x0)=0,即,,综上,g(x)=f'(x)存在两个零点,分别为0,x0.所以x<0时,g(x)>0,即f'(x)>0,f(x)在(﹣∞,0)上单调递增;0<x<x0时,g(x)<0,即f'(x)<0,f(x)在(0,x0)上单调递减;x>x0时,g(x)>0,即f'(x)>0,f(x)在(x0,+∞)上单调递增,所以f(0)是极大值,f(x0)是极小值,,因为g(1)=e﹣3<0,,所以,所以f(x0)>0,因此x≥0时,f(x)>0.因为f(0)=1且f(x)在(﹣∞,0)上单调递增,所以一定存在c<0满足f(c)>0,所以存在c<0,当x>c时,f(x)>0.参与本试卷答题和审题的老师有:742048;陈远才;w3239003;whgcn;lcb001;wkl197822;沂蒙松;qiss;changq;zlzhan;双曲线(排名不分先后)胡雯2017年4月25日。