2017-2018学年安徽省蚌埠市第二中学高二下学期期中考试数学(理)试题 Word版

合集下载

2017-2018学年高二数学下学期期末考试试题理(2)

2017-2018学年高二数学下学期期末考试试题理(2)

数学试卷(理数)时间:120分钟总分:150分一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知为实数,,则的值为A.1B.C.D.2.“”是“直线和直线平行”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件3.下列说法正确的是A.一个命题的逆命题为真,则它的逆否命题一定为真B.“”与“”不等价C.“若,则全为”的逆否命题是“若全不为0,则”D.一个命题的否命题为假,则它的逆命题一定为假4.若,,,,则与的大小关系为A. B. C. D.5.已知命题及其证明:(1)当时,左边,右边,所以等式成立;(2)假设时等式成立,即成立,则当时,,所以时等式也成立.由(1)(2)知,对任意的正整数等式都成立.经判断以上评述A.命题,推理都正确B.命题正确,推理不正确C.命题不正确,推理正确D.命题,推理都不正确6.椭圆的一个焦点是,那么等于A.B.C.D.7.设函数(其中为自然对数的底数),则的值为A. B. C. D.8.直线(为参数)被曲线截得的弦长是A. B. C. D.9.已知函数在上为减函数,则的取值范围是A. B. C. D.10.一机器狗每秒前进或后退一步,程序设计师让机器狗以前进步,然后再后退步的规律移动,如果将此机器狗放在数轴的原点,面向数轴的正方向,以步的距离为个单位长,令表示第秒时机器狗所在位置的坐标.且,那么下列结论中错误的是A. B.C. D.11.已知A、B、C、D四点分别是圆与坐标轴的四个交点,其相对位置如图所示.现将沿轴折起至的位置,使二面角为直二面角,则与所成角的余弦值为A.B.C.D.12.点在双曲线上,、是这条双曲线的两个焦点,,且的三条边长成等差数列,则此双曲线中等于A.3B.4C.5D.6二、填空题(每小5分,满分20分)13.若,则__________.14.在三角形ABC中,若三个顶点坐标分别为,则AB边上的中线CD的长是__________.15.已知F1、F2分别是椭圆的左右焦点,A为椭圆上一点,M为AF1中点,N为AF2中点,O为坐标原点,则的最大值为__________.16.已知函数,过点作函数图象的切线,则切线的方程为。

2017—2018学年第二学期高二年级期中考试数学(理)试卷解析版

2017—2018学年第二学期高二年级期中考试数学(理)试卷解析版

2017~2018学年第二学期高二年级期中考试数学(理)试卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数ii+310对应的点的坐标为( A )A .)3,1(B .)1,3(C .)3,1(-D .)1,3(-2.已知随机变量ξ服从正态分布),(2σμN ,若15.0)6()2(=>=<ξξP P ,则=<≤)42(ξP ( B )A .0.3B .0.35C .0.5D .0.7 3.设)(x f 在定义域内可导,其图象如图所示,则导函数)('x f 的图象可能是( B )4.用反证法证明命题:“若0)1)(1)(1(>---c b a ,则c b a ,,中至少有一个大于1”时,下列假设中正确的是( B )A .假设c b a ,,都大于1B .假设c b a ,,都不大于1C .假设c b a ,,至多有一个大于1D .假设c b a ,,至多有两个大于15.用数学归纳法证明3)12(12)1()1(2122222222+=+++-++-+++n n n n n 时,从)(*N k k n ∈=到1+=k n 时,等式左边应添加的式子是( B )A .222)1(k k +- B .22)1(k k ++ C .2)1(+k D.]1)1(2)[1(312+++k k6.3名志愿者完成4项工作,每人至少1项,每项由1人完成,则不同的安排方式共有( D )A .12种B .18种C .24种D .36种 7.在62)12(xx -的展开式中,含7x 的项的系数是( D ) A .60 B .160 C .180 D .2408.函数xe xf x2)(=的导函数是( C )A .xe xf 2'2)(= B .x e x f x 2'2)(= C .22')12()(x e x x f x -= D .22')1()(x e x x f x -=9.已知函数223)(a bx ax x x f +++=在1=x 处的极值为10,则数对),(b a 为( C )A .)3,3(-B .)4,11(-C .)11,4(-D .)3,3(-或)11,4(-10.若等差数列}{n a 公差为d ,前n 项和为n S ,则数列}{n S n 为等差数列,公差为2d.类似,若各项均为正数的等比数列}{n b 公比为q ,前n 项积为n T ,则等比数列}{n n T 公比为( C )A.2q B .2q C.q D.n q 11.将3颗骰子各掷一次,记事件A 表示“三个点数都不相同”,事件B 表示“至少出现一个3点”,则概率=)|(B A P ( C )A.21691 B.185 C.9160 D.2112.定义在R 上的偶函数)(x f 的导函数为)('x f ,若对任意实数x ,都有2)()(2'<+x xf x f 恒成立,则使1)1()(22-<-x f x f x 成立的实数x 的取值范围为( B )A .}1|{±≠x xB .),1()1,(+∞--∞C .)1,1(-D .)1,0()0,1( - 二、填空题(本大题共4小题,每小题5分,共20分)13.设),(~p n B ξ,若有4)(,12)(==ξξD E ,则=p 2/3 14.若函数32)1(21)(2'+--=x x f x f ,则=-)1('f -1 15.如图所示,阴影部分的面积是 32/316.已知函数)(x f 的定义域为]5,1[-,部分对应值如下表,)(x f 的导函数)('x f y =的图象如图所示,给出关于)(x f 的下列命题:②函数)(x f 在]1,0[是减函数,在]2,1[是增函数; ③当21<<a 时,函数a x f y -=)(有4个零点;④如果当],1[t x -∈时,)(x f 的最大值是2,那么t 的最小值为0. 其中所有正确命题是 ①③④ (写出正确命题的序号).三、解答题(本大题共6小题,共70分) 17.(本小题满分10分)设复数i m m m m z )23()32(22+++--=,试求实数m 的取值,使得 (1)z 是纯虚数; (2)z 对应的点位于复平面的第二象限. 解:(1)复数是一个纯虚数,实部等于零而虚部不等于0分5302303222 =∴⎪⎩⎪⎨⎧≠++=--m m m m m (2)当复数对应的点在第二象限时,分103102303222<<-∴⎪⎩⎪⎨⎧>++<--m m m m m 18.(本小题满分12分) 在数列}{n a 中,已知)(13,2*11N n a a a a n nn ∈+==+(1)计算432,,a a a 的值,并猜想出}{n a 的通项公式; (2)请用数学归纳法证明你的猜想. 解:(1)72123213112=+⨯=+=a a a ,19213,132********=+==+=a a a a a a于是猜想出分5562-=n a n (2)①当1=n 时,显然成立;②假设当)(*N k k n ∈=时,猜想成立,即562-=k a k 则当1+=k n 时,5)1(6216215623562131-+=+=+-⨯-=+=+k k k k a a a k k k , 即当1+=k n 时猜想也成立. 综合①②可知对于一切分12562,*-=∈n a N n n 19.(本小题满分12分)“莞马”活动中的α机器人一度成为新闻热点,为检测其质量,从一生产流水线上抽取20件该产品,其中合格产品有15件,不合格的产品有5件.(1)现从这20件产品中任意抽取2件,记不合格的产品数为X ,求X 的分布列及数学期望; (2)用频率估计概率,现从流水线中任意抽取三个机器人,记ξ为合格机器人与不合格机器人的件数差的绝对值,求ξ的分布列及数学期望. 解:(1)随机变量X 的可能取值为0,1,23821)0(22021505===C C C X P ,3815)1(22011515===C C C X P , 191)2(22001525===C C C X P , 所以随机变量X 的分布列为:分62192381380 =⨯+⨯+⨯=∴EX(2)合格机器人的件数可能是0,1,2,3,相应的不合格机器人的件数为3,2,1,0.所以ξ的可能取值为1,3,有题意知:1122213331319(1)()()()()444416P C C ξ==+=,3333331317(3)()()()()444416P C C ξ==+= 所以随机变量ξ的分布列为:分128163161)( =⨯+⨯=∴ξE 20.(本小题满分12分)编号为5,4,3,2,1的五位学生随意入座编号为5,4,3,2,1的五个座位,每位学生坐一个座位.设与座位编号相同的学生人数是X .(1)试求恰好有3个学生与座位编号相同的概率)3(=X P ; (2)求随机变量X 的分布列及均值.解:(1)恰好有3个学生与座位编号相同,这时另两个学生与座位编号不同,所以分412112010)3(5525 ====A C X P(2)随机变量X 的一切可能值为0,1,2,3,4,5. 且121)3(,00)4(,120112011)5(5555=========X P A X P A X P ; 83120459)1(,61120202)2(55155525========A C X P A C X P301112044)]5()4()3()2()1([1)0(===+=+=+=+=-==X P X P X P X P X P X P 随机变量X 的分布列为故分1211205041236281300)( =⨯+⨯+⨯+⨯+⨯+⨯=X E 21.(本小题满分12分)已知函数)(ln )(R a x ax x f ∈+=(1)若2=a ,求曲线)(x f y =在1=x 处的切线方程; (2)求)(x f 的单调区间;(3)设22)(2+-=x x x g ,若对任意),0(1+∞∈x ,均存在]1,0[2∈x ,使得)()(21x g x f <,求a 的取值范围. 解:(1)2),0(1)('=>+=a x x a x f )0(12)('>+=∴x xx f , 3)1('=∴f , 3=∴k又切点)2,1(,所以切线方程为)1(32-=-x y ,即:013=--y x 故曲线)(x f y =在1=x 处切线的切线方程为分4013 =--y x(2))0(11)('>+=+=x xax x a x f ①当0≥a 时,0)('>x f ,所以)(x f 的单调递增区间为分6),0( +∞②当0<a 时,由0)('=x f ,得ax 1-= 在区间)1,0(a -上0)('>x f ,在区间),1(+∞-a上,0)('<x f . 所以,函数)(x f 的单调递增区间为)1,0(a -,单调递减区间为分8),1( +∞-a(3)由已知,转化为]1,0[,1)1()(,)()(2max max ∈+-=<x x x g x g x f ,2)(max =∴x g 由(2)知,当0≥a 时,)(x f 在),0(+∞上单调递增,值域为R ,故不符合题意. (或者举出反例:存在23)(33>+=ae e f ,故不符合题意.)当0<a 时,)(x f 在)1,0(a -上单调递增,在),1(+∞-a上单调递减, 故)(x f 的极大值即为最大值,)ln(1)1()(max a af x f ---=-=, 所以2)ln(1<---a ,解得31e a -< 综上:分1213 ea -< 22.(本小题满分12分) 已知函数2()ln(1)f x ax x =++ (1)当14a =-时,求函数()f x 的极值; (2)若函数()f x 在区间[1)+∞,上为减函数,求实数a 的取值范围 (3)当[0)x ∈+∞,时,不等式()f x x ≤恒成立,求实数a 的取值范围. 解:(1))1()1(2)1)(2(1121)('->+-+-=++-=x x x x x x x f 令0)('>x f 得11<<-x ,令0)('<x f 得1>x .)(x f ∴在)1,1(-上是增函数,在),1(+∞上是减函数. 2ln 41)1()(+-==∴f x f 极大值,)(x f 无极小值分4(2)因为函数)(x f 在区间[1)+∞,上为减函数, 所以0112)('≤++=x ax x f 对任意的),1[+∞∈x 恒成立, 即)1(21+-≤x x a 对任意的),1[+∞∈x 恒成立,4121)211(2121)21(21)1(2122-=-+-≥-+-=+-x x x分841-≤∴a(3)因为当[0)x ∈+∞,时,不等式()f x x ≤恒成立, 即0)1ln(2≤-++x x ax 恒成立,令)0()1ln()(2≥-++=x x x ax x g , 转化为0)(max ≤x g 即可.1)]12(2[1112)('+-+=-++=x a ax x x ax x g 当0=a 时,1)('+-=x x x g ,0>x ,0)('<∴x g 即)(x g 在),0[+∞上单调递减,故0)0()(=≤g x g 成立. 当0>a 时,令0)('=x g 得,0=x 或121-=ax 若0121≤-a 即21≥a 时,),0(+∞∈x 有0)('>x g , 则)(x g 在),0[+∞上单调递增,0)0()(=≥g x g ,不满足题设; 若0121>-a 即210<<a 时,)121,0(-∈a x 有0)('<x g ,),121(+∞-∈ax 有0)('>x g , 则)(x g 在)121,0(-a 上单调递减,在),121(+∞-a上单调递增,无最大值,不满足题设; 当0<a 时,0>x ,0)('<∴x g即)(x g 在),0[+∞上单调递减,故0)0()(=≤g x g 成立. 综上:实数a 的取值范围为分12]0,( -∞。

江西省赣州市第一中学2017-2018学年高二下学期期中考试仿真卷(A卷)理科数学试题

江西省赣州市第一中学2017-2018学年高二下学期期中考试仿真卷(A卷)理科数学试题

20172018学年下学期高二年级期中考试仿真测试卷数学(A )注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2018·汇文中学]若复数21iz =-,其中i 为虚数单位,则共轭复数z =( ).A .1i +B .1i -C .1i -+D .1i --【答案】B 【解析】()()()21i 21i 1i1i 1i z +===+--+,则复数的共轭复数为1i -,故选B .2.[2018·人大附中]设()ln f x x x =,若()02f x '=,则0x 等于( ) A .2e B .e C .ln 22D .ln2【答案】B【解析】由函数的解析式可得:()ln 1f x x '=+,则()00ln 12f x x '=+=,0ln 1x ∴=,0e x =,本题选择B 选项.3.[2018·北京工大附中]函数332e x y x x -=+-,则导数y '=( )A .2236e xx x-+-B .22312e 3xx x-++此卷只装订不密封班级 姓名 准考证号 考场号 座位号C .22316e 3xx x-++D .22316e 3+x x x--+【答案】D【解析】根据幂函数的求导公式、指数函数的求导公式以及复合函数的求导法则可知,()2222331161633+ee xx y x xx x----=+-⨯-=+',故选D .4.[2018·山西一模]完成下列表格,据此可猜想多面体各面内角和的总和的表达式是( )(说明:上述表格内,顶点数V 指多面体的顶点数.) A .()22πV - B .()22πF -C .()2πE -D .()4πV F +-【答案】A【解析】用正方体(8V =,6F =,12E =)代入选项逐一检验,可排除B ,C ,D 选项. 故选:A5.[2018·湖北联考]如图,在矩形ABCD 中,2AB =,1AD =,以A 为顶点且过点C 的抛物线的一部分在矩形内.若在矩形ABCD 内随机地投一点,则此点落在阴影部分内的概率为( )A .12B .23C .35D .34【答案】B【解析】由题可知建立以AB 为X 轴,AD 为Y 轴的直角坐标系,则抛物线方程为214y x =,:2232011414123y x dx x x =-=-=⎛⎫⎪⎝⎭⎰,则此点落在阴影部分内的概率为42323=. 6.[2018·北京工大附中]函数()21ln 2f x x x =-的图象大致是( )A .B .C .D .【答案】B【解析】由函数()21ln 2f x x x =-得()211x f x x xx'-=-=,定义域为()0,+∞,由()0f x '>,得01x <<;由()0f x '<,得1x >,∴函数()f x 在区间()0,1上单调递增,在()1,+∞上单调递减,且()f x 在()0,+∞上的最大值为()1102f =-<,故选B .7.[2018·豫西名校]已知函数()222e xf x x ax ax =--在[)1,+∞上单调递增,则实数a 的取值范围是( ) A .(],e -∞ B .(],1-∞ C .[),e +∞ D .[)1,+∞【答案】A【解析】()()()()()212121e e x x f x x a x x a =+-+=+-',因为函数()f x 在区间[)1,+∞上单调递增,所以导函数在区间[)1,+∞上上()0f x '≥,即0e x a -≥,e xa ≤,e a ≤,选A .8.[2018·淮北一中]将正整数排成下表: 1 234 56789 ……………则在表中数字2017出现在( ) A .第44行第80列 B .第45行第80列 C .第44行第81列D .第45行第81列【答案】D【解析】因为每行的最后一个数分别为1,4,9,16,…,所以由此归纳出第n 行的最后一个数为2n .因为442=1936,452=2025,所以2017出现在第45行上; 又由2017﹣1936=81,故2017出现在第81列,故选D .9.[2018·人大附中]若函数()32f x x ax a =-+在()01,内无极值,则实数a 的取值范围是( ) A .30,2⎡⎤⎢⎥⎣⎦B .(),0-∞C .3,2⎡⎫+∞⎪⎢⎣⎭D .(]3,0,2⎡⎫-∞+∞⎪⎢⎣⎭【答案】D【解析】由函数的解析式可得:()232f x x a '=-,函数()32f x x ax a =-+在()01,内无极值,则()0f x '=在区间()01,内没有实数根, 当0a ≤时,()0f x '≥恒成立,函数()f x 无极值,满足题意,当0a >时,由()0f x '=可得x =1≥,解得:32a ≥, 综上可得:实数a 的取值范围是(]3,0,2⎡⎫-∞+∞⎪⎢⎣⎭,本题选择D 选项.10.[2018·中山期末][]0,3的最大值与最小值之积为( )A B C D 【答案】B【解析】结合函数的解析式有:()()()2422f x x x x '=-=+-,当()0,2x ∈时,()'0f x <,()f x 单调递减, 当()2,4x ∈时,()'0f x >,()f x 单调递增, 且:()04f =,()423f =-,()31f =,据此可得函数的最大值为()04f =,函数的最小值为()423f =-,则最大值与最小值之积为416433-⨯=-.本题选择B 选项.11.[2018·南阳一中]从图中所示的矩形OABC 区域内任取一点(),M x y ,则点M 取自阴影部分的概率为( )A .13B .12C .14D .23【答案】B【解析】阴影部分的面积为()()121222221xx dx xx x-----+--=-⎰⎰,矩形的面积为2,故点M 取自阴影部分的概率为12.故选B .12.[2018·豫西名校]偶函数()f x 定义域为ππ,22-⎛⎫⎪⎝⎭,其导函数是()f x '.当0π2x <<时,有()()cos sin 0f x x f x x '+<,则关于x 的不等式()2cos 4πf x f x >⎛⎫⎪⎝⎭的解集为( ) A .ππ,42⎛⎫⎪⎝⎭B .ππππ,,2442-⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭ C .ππ,44-⎛⎫⎪⎝⎭D .πππ,0,442-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭【答案】C【解析】由题意构造函数()()cos f x F x x=,()()()2cos sin cos f x x f x xF x x+''=,所以函数()F x 在区间π0,2⎛⎫ ⎪⎝⎭()0F x '<,()F x π0,2⎛⎫ ⎪⎝⎭()π2cos 4f x f x >⎛⎫⎪⎝⎭ππ,22x ∈-⎛⎫⎪⎝⎭时,可变形为()π4cos 22f f x x >⎛⎫⎪⎝⎭,即()π4F x F >⎛⎫⎪⎝⎭,即ππ44x -<<.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.[2018·首师附中]若复数z 满足,则复数z 的模为__________.【解析】14.[2018·百校联盟]函数()ln g x x =图象上一点P 到直线y x =的最短距离为__________. 2【解析】设与直线y x =平行的且与()ln g x x =相切的直线切点为()00,ln x x ,因为()1ln 'x x=,则011x =,01x ∴=,则切点为()1,0,∴最短距离为切点到直线yx =的距离:2d ==,故答案为2.15.[2018·上饶模拟]二维空间中,圆的一维测度(周长)2πl r =,二维测度(面积)2πS r =;三维空间中,球的二维测度(表面积)24πS r =,三维测度(体积)推理,若四维空间中,“特级球”的三维测度312πV r =,则其四维测度W =__________. 【答案】43πr 【解析】二维空间中圆的一维测度(周长)2πl r =,二维测度(面积)2πS r =;观察发现S l '=,三维空间中球的二维测度(表面积)24πS r =,三维测度(体积)发现V S '=,∴四维空间中“超球”的三维测度38πV r =,猜想其四维测度W ,则312πW V r '==,43πW r ∴=,故答案为43πr .16.[2018·烟台诊断]直线y b =分别与直线21y x =+和曲线ln y x =相交于点A 、B ,则AB 的最小值为____________________. 【答案】ln 212+【解析】两个交点分别为1A ,2b b -⎛⎫ ⎪⎝⎭,()e ,b B b ,1e 2bb AB -=-, 设函数()1e 2xx g x -=-,()1e 2xg x '=-,()0g x '=的根为ln 2x =-,所以()g x 在区间(),ln 2-∞-单调递减,在区间()ln 2,-+∞上单调递增, 所以()()ln 2min g x g =-=ln 212+.填ln 212+.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.[2018·石嘴山中学]已知复数1Z 2ai =+(其中a ∈R 且a 0>,i 为虚数单位),且21z 为纯虚数.(1)求实数a 的值; (2)若1z z 1i=-,求复数z 的模z . 【答案】(1)2;(2)2.【解析】(1)2221(2i)44i z a a a =+=-+,因为21z 为纯虚数,所以2400 0a a a ⎧-=≠>⎪⎨⎪⎩,解得:2a =.·······6分 (2)122i z =+,22i (22i)(1i)4i2i 1i (1i)(1i)2z +++====--+,2z =.·······12分 18.[2018·西城156中]已知函数()32133f x x x x =--.()求()f x 的单调区间.()求()f x 在区间[]3,3-上的最大值和最小值.【答案】(1)单调递增区间为()1-∞-,和()3,+∞,单调递减区间为()1,3-;(2)的最大值为53,最小值为9-.【解析】()由题得()()()22313f x x x x x '=--=+-.令()0f x '>,解得1x <-或3x >,令()0f x '<,解得13x -<<,∴()f x 的单调递增区间为()1-∞-,和()3,+∞,单调递减区间为()1,3-.·······6分()由()可知,()f x 在区间()3,1--上单调递增, 在()1,3-上单调递减,且()39f -=-,()39f =-, ∴()f x 在区间[]3,3-上的最大值为5(1)3f -=, 最小值为()()339f f -==-.·······12分19.[2018·豫西名校](1)当0n ≥时,证明:211n n n n +-+<+-; (2)已知x ∈R ,21a x =-,22b x =+,求证:a ,b 中至少有一个不小于0. 【答案】(1)见解析;(2)见解析.【解析】(1)要证211n n n n +-+<+-, 即证221n n n ++<+,只要证()()22221n nn ++<+,即证()222244n n n n +++<+,即证()21n n n +<+, 只要证22221n n n n +<++,而上式显然成立, 所以211n n n n +-+<+-成立.·······6分 (2)假设0a <且0b <,由210a x =-<得11x -<<,由220b x =+<得1x <-,这与11x -<<矛盾,所以假设错误,所以a 、b 中至少有一个不小于0.·······12分 20.[2018·天津联考]已知曲线21:2C y x =与221:2C y x =在第一象限内交点为P .(1)求过点P 且与曲线2C 相切的直线方程;(2)求两条曲线所围图形(如图所示阴影部分)的面积S . 【答案】解:(1)22212y xy x==⎧⎪⎨⎪⎩,22x y =⎧∴⎨=⎩,(2,2)P ∴,221()22x k x ='==,∴所求切线方程为:220x y --=.·······6分(2)2322320200011142(2)2363xdx x dx x x -=-=⎰⎰,·······12分 解法2:算y x =与212y x =围出的面积,再利用对称性可求.【解析】略.21.[2018·北京八中]若函数()34f x ax bx -=+,当2x =时,函数()f x 有极值43-.(1)求函数的解析式;(2)若关于x 的方程()f x k =有三个零点,求实数k 的取值范围.【答案】(1)()31443f x x x =-+;(2)42833k -<<.【解析】(1)由题意可知()23f x ax b '=-,于是()423f =-,()20f '=解得13a =,4b =故所求的解析式为()31443f x x x =-+. (5)分(2)由(1)可知()2()()422f x x x x =--'+=,令()0f x '=,得2x =或2x =-. 当x 变化时()f x '、()f x 的变化情况如下表所示:x(),2-∞-2-()2,2-2()2,+∞()f x ' + 0 0 +()f x单调递增283单调递减43- 单调递增因此,当2x =-时,()f x 有极大值283;当2x =时,()f x 有极小值43-. 所以函数的大致图象如图,故实数k 的取值范围是42833k -<<.·······12分22.[2018·贺州调研]已知函数()()()ln f x x a x a =+-∈R ,直线22:ln 333l y x =-+-是曲线()y f x =的的一条切线. (1)求a 的值;(2)设函数()()2e 22g x x x f x a a =----+,证明:函数()g x 无零点. 【答案】(1)1a =;(2)见解析. 【解析】(1)()11f x x a'=-+,设切点为()00,P x y ,则()0000121322ln ln 333x a x a x x -=-++-=-+-⎧⎪⎪⎨⎪⎪⎩, 解得02x =,1a =,∴1a =为所求.·······4分(2)由(1)知()()e 2112e ln xxg x x x f x x x x =----+=--,()()()()111e 1e1xxx g x x x xx+=+--=-',令()e 1x G x x =-,∵当0x >时,()()1e 0xG x x =+>',∴函数()G x 在()0+∞,上单调递增, 又()010G =-<,()1e 10G =->,∴()G x 存在唯一零点()0,1c ∈,且当()0,x c ∈时,()0G x <,当(),x c ∈+∞时,()0G x >. 即当()0,x c ∈时,()0g x '<;当(),x c ∈+∞时,()0g x '>, ∴()g x 在()0,c 上单调递减,在(),c +∞上单调递增,∴()()g x g c ≥. ∵()10e x G c c =+-=,01c <<,∴()ln 1ln 0x g c c c c c c c =+--=-->, ∴()()0g x g c ≥>,∴函数()g x 无零点.·······12分。

安徽省蚌埠市第二中学2015届高三上学期第一次月考数学理试题 Word版含解析

安徽省蚌埠市第二中学2015届高三上学期第一次月考数学理试题 Word版含解析

安徽省蚌埠二中2015届高三第一次月考数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共50分)1.若集合A={x|y=2x},集合,则A∩B=()A.(0,+∞)B.(1,+∞)C.[0,+∞)D.(﹣∞,+∞)考点:函数的定义域及其求法;交集及其运算.分析:求出集合A中函数的定义域确定出A,求出集合B中函数的定义域确定出B,求出A与B的交集即可.解答:解:集合A中的函数y=2x,x∈R,即A=R,集合B中的函数y=,x≥0,即B=[0,+∞),则A∩B=[0,+∞).故选C2.设a∈R,则“a=1”是“直线y=a2x+1与直线y=x﹣1平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.分析:结合直线平行的条件,利用充分条件和必要条件的定义进行判断.解答:解:若直线y=a2x+1与直线y=x﹣1平行,则a2=1,解得a=1或a=﹣1.所以“a=1”是“直线y=a2x+1与直线y=x﹣1平行”的充分不必要条件.故选A.3.已知复数z满足(3﹣4i)z=25,则z=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i考点:复数相等的充要条件.分析:由题意利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.解答:解:∵满足(3﹣4i)z=25,则z===3+4i,故选:D.4.下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行考点:命题的真假判断与应用;空间中直线与平面之间的位置关系.分析:利用直线与平面所成的角的定义,可排除A;利用面面平行的位置关系与点到平面的距离关系可排除B;利用线面平行的判定定理和性质定理可判断C正确;利用面面垂直的性质可排除D解答:解:A,若两条直线和同一个平面所成的角相等,则这两条直线平行、相交或异面;排除A;B,若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行或相交,排除B;C,设平面α∩β=a,l∥α,l∥β,由线面平行的性质定理,在平面α内存在直线b∥l,在平面β内存在直线c∥l,所以由平行公理知b∥c,从而由线面平行的判定定理可证明b∥β,进而由线面平行的性质定理证明得b∥a,从而l∥a;故C正确;D,若两个平面都垂直于第三个平面,则这两个平面平行或相交,排除D;故选C5.设等比数列{a n}的前n项和为S n,若8a2+a5=0,则下列式子中数值不能确定的是()A.B.C.D.考点:等比数列的性质.分析:根据已知的等式变形,利用等比数列的性质求出公比q的值,然后分别根据等比数列的通项公式及前n项和公式,即可找出四个选项中数值不能确定的选项.解答:解:由8a2+a5=0,得到=q3=﹣8,故选项A正确;解得:q=﹣2,则=q=﹣2,故选项C正确;则==,故选项B正确;而==,所以数值不能确定的是选项D.故选D6.若P(2,﹣1)为圆(x﹣1)2+y2=25的弦AB的中点,则直线AB的方程是()A.x﹣y﹣3=0 B.2x+y﹣3=0 C.x+y﹣1=0 D.2x﹣y﹣5=0 考点:直线和圆的方程的应用;直线与圆相交的性质.分析:由圆心为O(1,0),由点P为弦的中点,则该点与圆心的连线垂直于直线AB求解其斜率,再由点斜式求得其方程.解答:解:已知圆心为O(1,0)根据题意:K op=k AB k OP=﹣1k AB=1,又直线AB过点P(2,﹣1),∴直线AB的方程是x﹣y﹣3=0故选A点评:本题主要考查直线与圆的位置关系及其方程的应用,主要涉及了弦的中点与圆心的连线与弦所在的直线垂直.7.如图,一个底面半径为R的圆柱被与其底面所成角为θ(00<θ<900)的平面所截,截面是一个椭圆.当θ为30°时,这个椭圆的离心率为()A.B.C.D.考点:平面与圆柱面的截线.分析:利用已知条件,求出题意的长半轴,短半轴,然后求出半焦距,即可求出题意的离心率.解答:解:因为底面半径为R的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R,长半轴为:=,∵a2=b2+c2,∴c=,∴椭圆的离心率为:e==.故选:A.点评:本题考查椭圆离心率的求法,注意椭圆的几何量与双曲线的几何量(a,b,c)关系的正确应用,考查计算能力.8.有红、蓝、黄、绿四种颜色的球各6个,每种颜色的6个球分别标有数字1、2、3、4、5、6,从中任取3个标号不同的球,这3个颜色互不相同且所标数字互不相邻的取法种数为()A.80 B.84 C.96 D.104考点:计数原理的应用.分析:所标数字互不相邻的方法有4种,这3种颜色互不相同有C43A33种,根据分步计数原理,即可求出颜色互不相同且所标数字互不相邻的取法种数.解答:解:所标数字互不相邻的方法有:135,136,146,246,共4种方法.这3种颜色互不相同有C43A33=4×3×2×1=24种,∴这3种颜色互不相同且所标数字互不相邻的有4×24=96种.故选:C.点评:本题主要考查了排列组合,以及两个基本原理的应用,解题的关键是不遗漏不重复,属于中档题.9.函数:①y=x•sinx②y=x•cosx③y=x•|cosx|④y=x•2x的图象(部)如图所示,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是()A.④①②③B.①④③②C.①④②③D.③④②①考点:正弦函数的图象;余弦函数的图象.分析:依据函数的性质与图象的图象对应来确定函数与图象之间的对应关系,对函数的解析式研究发现,四个函数中有一个是偶函数,有两个是奇函数,还有一个是指数型递增较快的函数,由这些特征接合图象上的某些特殊点判断即可.解答:解:研究发现①是一个偶函数,其图象关于y轴对称,故它对应第一个图象②③都是奇函数,但②在y轴的右侧图象在x轴上方与下方都存在,而③在y轴右侧图象只存在于x轴上方,故②对应第三个图象,③对应第四个图象,④与第二个图象对应,易判断.故按照从左到右与图象对应的函数序号①④②③故选C.点评:本题考点是正弦函数的图象,考查了函数图象及函数图象变化的特点,解决此类问题有借助两个方面的知识进行研究,一是函数的性质,二是函数值在某些点的符号即图象上某些特殊点在坐标系中的确切位置.10.已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=e x(x+1),给出下列命题:①当x>0时,f(x)=e x(1﹣x);②f(x)>0的解集为(﹣1,0)∪(1,+∞);③函数f(x)有2个零点;④∀x1,x2∈R,都有|f(x1)﹣f(x2)|<2,其中正确命题的个数是()A.1 B.2C.3D.4考点:命题的真假判断与应用;奇偶性与单调性的综合.分析:逐个验证:①为函数对称区间的解析式的求解;②为不等式的求解,分段来解,然后去并集即可;③涉及函数的零点,分段来解即可,注意原点;④实际上是求函数的取值范围,综合利用导数和极值以及特殊点,画出函数的图象可得范围.解答:解:设x>0,则﹣x<0,故f(﹣x)=e﹣x(﹣x+1),又f(x)是定义在R上的奇函数,故f(﹣x)=﹣f(x)=e﹣x(﹣x+1),所以f(x)=e﹣x(x﹣1),故①错误;因为当x<0时,由f(x)=e x(x+1)>0,解得﹣1<x<0,当x>0时,由f(x)=e﹣x(x ﹣1)>0,解得x>1,故f(x)>0的解集为(﹣1,0)∪(1,+∞),故②正确;令e x(x+1)=0可解得x=﹣1,当e﹣x(x﹣1)=0时,可解得x=1,又函数f(x)是定义在R上的奇函数,故有f(0)=0,故函数的零点由3个,故③错误;④∀x1,x2∈R,都有|f(x1)﹣f(x2)|<2,正确,因为当x>0时f(x)=e﹣x(x﹣1),图象过点(1,0),又f′(x)=e﹣x(2﹣x),可知当0<x<2时,f′(x)>0,当x>2时,,f′(x)<0,故函数在x=2处取到极大值f (2)=,且当x趋向于0时,函数值趋向于﹣1,当x趋向于+∞时,函数值趋向于0,由奇函数的图象关于原点对称可作出函数f(x)的图象,可得函数﹣1<f(x)<1,故有|f(x1)﹣f(x2)|<2成立.综上可得正确的命题为②④,故选B点评:本题考查命题真假的判断,涉及函数性质的综合应用,属中档题.二、填空题(每小题5分,共25分)11.已知x,y满足,则z=2x+y的最大值为3.考点:简单线性规划.专题:计算题.分析:先根据约束条件画出可行域,再利用几何意义求最值,z=2x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.解答:解:,在坐标系中画出图象,三条线的交点分别是A(﹣1,﹣1),B(,),C(2,﹣1),在△ABC中满足z=2x+y的最大值是点C,代入得最大值等于3.故答案为:3.点评:本题只是直接考查线性规划问题,是一道较为简单的试题.近年来高考线性规划问题高考数学考试的热点,数形结合是数学思想的重要手段之一,体现了数形结合思想的应用.12.如果执行如图所示的程序图(判断条件k≤20?),那么输出的S=420.考点:程序框图.专题:算法和程序框图.分析:执行程序框图,分析程序框图的功能和意义,计算并输出S=2×(1+2+…+20)的值,不难计算为420.解答:解:执行程序框图,有k=1S=0满足条件k≤20,第1次执行循环体,有S=2,k=2满足条件k≤20,第2次执行循环体,有S=2+4,k=3满足条件k≤20,第3次执行循环体,有S=2+4+6,k=4…满足条件k≤20,第19次执行循环体,有S=2+4+..+38,k=20满足条件k≤20,第2次执行循环体,有S=2+4+…+40,k=21不满足条件k≤20,退出执行循环体,输出S的值根据程序框图的意义和功能,得S=2×(1+2+…+20)=420故答案为:420.点评:本题主要考察程序框图和算法,属于基础题.13.设(2x+1)5+(x﹣2)4=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a2=64.考点:二项式系数的性质.专题:二项式定理.分析:由题意可得,a2就是x2的系数,再根据二项式的展开式的通项公式可得x2的系数为+,计算求得结果.解答:解:由题意可得,a2就是x2的系数,再根据二项式的展开式的通项公式可得x2的系数为+=40+24=64,故答案为:64.点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.若方程log3(a﹣3x)+x﹣2=0有实根,则实数a的取值范围是[6,+∞).考点:函数的零点.专题:函数的性质及应用.分析:由题意可得方程a=3x+32﹣x有解,即a值属于3x+32﹣x值的范围内,根据均值不等式求出实数a的取值范围.解答:解:由题意可得,方程2﹣x=log3(a﹣3x)有解,∵方程2﹣x=log3(a﹣3x)可化为32﹣x=a﹣3x,即方程a=3x+32﹣x有解.再根据基本不等式可得a=3x+32﹣x ≥2=6,故实数a的取值范围是[6,+∞),故答案为:[6,+∞).点评:本题主要考查方程根的存在性及个数判断,利用基本不等式求函数的值域,体现了转化的数学思想,属于基础题.15.已知数列{a n}是各项均不为0的等差数列,S n为其前n项和,且满足a n2=S2n﹣1(n∈N+).若不等式≤对任意的n∈N+恒成立,则实数λ的最大值为﹣21.考点:等差数列的性质.专题:等差数列与等比数列.分析:在已知递推式中分别取n=1,2,联立方程组求得首项和公差,求出等差数列的通项公式,进一步得到a n+1,代入不等式≤后分n为偶数和奇数变形,分离参数λ后分别利用基本不等式求最值和函数单调性求最值,取交集后得到λ的取值范围,则λ的最大值可求.解答:解:在a n2=S2n﹣1中,令n=1,n=2,得,即,解得a1=1,d=2,∴a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1,a n+1=2n+1.①当n为偶数时,要使不等式≤恒成立,即需不等式恒成立,∵,等号在n=2时取得,∴此时λ需满足λ≤25;②当n为奇数时,要使不等式≤恒成立,即需不等式恒成立,∵随n的增大而增大,∴n=1时,取得最小值﹣6.则λ≤﹣6﹣15=﹣21.综合①、②可得λ的取值范围是λ≤﹣21.∴实数λ的最大值为﹣21.故答案为:﹣21.点评:本题考查数列递推式,考查了等差数列通项公式的求法,训练了利用基本不等式和函数单调性求函数的最值,体现了分类讨论的数学思想方法,是中档题.三、解答题(共75分)16.(12分)△ABC中角A,B,C的对边分别为a,b,c,且b2+c2﹣a2+bc=0,(1)求角A的大小;(2)若,求△ABC面积S△ABC的最大值.考点:余弦定理;三角形的面积公式.专题:计算题;解三角形.分析:(1)根据题中等式,利用余弦定理算出cosA=﹣,结合A为三角形的内角,可得A=;(2)利用基本不等式,算出bc≤1,当且仅当b=c=1时等号成立.由此结合正弦定理的面积公式,即可算出△ABC面积S△ABC的最大值.解答:解:(1)∵△ABC中,b2+c2﹣a2+bc=0,∴b2+c2﹣a2=﹣bc因此cosA===﹣∵A为三角形的内角,∴A=;(2)∵b2+c2﹣a2+bc=0,∴a2=b2+c2+bc=3,得b2+c2=﹣bc+3≥2bc解之得bc≤1,当且仅当b=c=1时等号成立∵△ABC面积S△ABC=bcsinA=bc∴当且仅当b=c=1时,△ABC面积S△ABC的最大值为.点评:本题给出三角形的边之间的平方关系,求角的大小并依此求三角形面积的最大值.着重考查了正余弦定理解三角形、运用基本不等式求最值等知识,属于中档题.17.(12分)数列{a n}的前n项和为S n,且a n是S n和1的等差中项,等差数列{b n}满足b1=a1,b4=S3.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)设c n=,数列{c n}的前n项和为T n,证明:T n<.考点:数列与不等式的综合;数列的求和.专题:等差数列与等比数列.分析:(I)由已知条件得到S n=2a n﹣1,由此推导出数列{a n}是以a1=1为首项,2为公比的等比数列,从而得到,S n=2n﹣1,进而得到b1=a1=1,b4=1+3d=7,由此能求出{b n}的通项公式.(II)由c n=,得T n=,由此利用裂项求和法能证明.解答:(I)解:∵a n是S n和1的等差中项,∴S n=2a n﹣1,当n=1时,a1=S1=2a1﹣1,∴a1=1,当n≥2时,a n=S n﹣S n﹣1=(2a n﹣1)=2a n﹣2a n﹣1,∴a n=2a n﹣1,即,(3分)∴数列{a n}是以a1=1为首项,2为公比的等比数列,∴,S n=2n﹣1,设{b n}的公差为d,b1=a1=1,b4=1+3d=7,∴d=2,∴b n=1+(n﹣1)×2=2n﹣1.(6分)(II)证明:c n===,(7分)∴T n=,(9分)∵n∈N*,∴.(12分)点评:本题考查数列的通项公式的求法,考查数列前n项和的求法及不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.18.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是直角梯形,AB∥DC,AB⊥AD,平面PAD⊥平面ABCD,若AB=8,DC=2,AD=6,PA=4,∠PAD=45°,且.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)设平面PAD与平面PBC所成二面角的大小为θ(0°<θ≤90°),求cosθ的值.考点:与二面角有关的立体几何综合题;直线与平面垂直的判定.专题:空间角.分析:(Ⅰ)由已知条件利用余弦定理求出,从而得到PO⊥AD,由此能够证明PO⊥平面ABCD.(Ⅱ)过O作OE∥AB交BC于E,以O为坐标原点,分别以OA,OE,OP所在直线为x、y、z轴,建立空间直角坐标系O﹣xyz利用向量法能求出平面PAD与平面PBC所成二面角的大小的余弦值.解答:解:(Ⅰ)因为,,所以,…(1分)在△PAO中,由余弦定理PO2=PA2+AO2﹣2PA•AOcos∠PAO,得,…(3分)∴,∴PO2+AO2=PA2,…(4分)∴PO⊥AD,…又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,∴PO⊥平面ABCD.…(6分)(Ⅱ)如图,过O作OE∥AB交BC于E,则OA,OE,OP两两垂直,以O为坐标原点,分别以OA,OE,OP所在直线为x、y、z轴,建立空间直角坐标系O﹣xyz,…(7分)则O(0,0,0),,.…(8分)∴,=,…(9分)设平面PBC的一个法向量为=(x,y,z),由,得,即,取x=1,则,∴为平面PBC的一个法向量.…(11分)∵AB⊥平面PAD,∴为平面PAD的一个法向量.∴=,…(12分)∴.…(13分)点评:本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.19.(13分)某网站用“10分制”调查一社区人们的幸福度.现从调查人群中随机抽取16名,如图所示茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):(1)指出这组数据的众数和中位数;(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.考点:离散型随机变量的期望与方差;众数、中位数、平均数.专题:概率与统计.分析:(1)根据所给的茎叶图看出16个数据,找出众数和中位数,中位数需要按照从小到大的顺序排列得到结论.(2)由题意知本题是一个古典概型,至多有1人是“极幸福”包括有一个人是极幸福和有零个人是极幸福,根据古典概型公式得到结果.(3)由于从该社区任选3人,记ξ表示抽到“极幸福”学生的人数,得到变量的可能取值是0、1、2、3,结合变量对应的事件,算出概率,写出分布列和期望.解答:解:(1)由茎叶图得到所有的数据从小到大排,8.6出现次数最多,∴众数:8.6;中位数:8.75;(2)设A i表示所取3人中有i个人是“极幸福”,至多有1人是“极幸福”记为事件A,则(3)ξ的可能取值为0、1、2、3.;;,ξ的分布列为ξ0 1 2 3P所以Eξ=.另解:ξ的可能取值为0、1、2、3.则,.ξ的分布列为ξ0 1 2 3P所以Eξ=.点评:本题是一个统计综合题,对于一组数据,通常要求的是这组数据的众数,中位数,平均数,题目分别表示一组数据的特征,这样的问题可以出现在选择题或填空题,考查最基本的知识点.20.(13分)分别过椭圆E:=1(a>b>0)左、右焦点F1、F2的动直线l1、l2相交于P点,与椭圆E分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率分别为k1、k2、k3、k4,且满足k1+k2=k3+k4,已知当l1与x轴重合时,|AB|=2,|CD|=.(1)求椭圆E的方程;(2)是否存在定点M,N,使得|PM|+|PN|为定值?若存在,求出M、N点坐标,若不存在,说明理由.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(1)由已知条件推导出|AB|=2a=2,|CD|=,由此能求出椭圆E的方程.(2)焦点F1、F2坐标分别为(﹣1,0),(1,0),当直线l1或l2斜率不存在时,P点坐标为(﹣1,0)或(1,0),当直线l1,l2斜率存在时,设斜率分别为m1,m2,设A(x1,y1),B(x2,y2),由,得,由此利用韦达定理结合题设条件能推导出存在点M,N其坐标分别为(0,﹣1)、(0,1),使得|PM|+|PN|为定值2.解答:解:(1)当l1与x轴重合时,k1+k2=k3+k4=0,即k3=﹣k4,∴l2垂直于x轴,得|AB|=2a=2,|CD|=,解得a=,b=,∴椭圆E的方程为.(2)焦点F1、F2坐标分别为(﹣1,0),(1,0),当直线l1或l2斜率不存在时,P点坐标为(﹣1,0)或(1,0),当直线l1,l2斜率存在时,设斜率分别为m1,m2,设A(x1,y1),B(x2,y2),由,得,∴,,===,同理k3+k4=,∵k1+k2=k3+k4,∴,即(m1m2+2)(m2﹣m1)=0,由题意知m1≠m2,∴m1m2+2=0,设P(x,y),则,即,x≠±1,由当直线l1或l2斜率不存在时,P点坐标为(﹣1,0)或(1,0)也满足,∴点P(x,y)点在椭圆上,∴存在点M,N其坐标分别为(0,﹣1)、(0,1),使得|PM|+|PN|为定值2.点评:本题考查椭圆方程的求法,考查是否存在定点M,N,使得|PM|+|PN|为定值的判断与证明,对数学思维的要求较高,有一定的探索性,解题时要注意函数与方程思想、等价转化思想的合理运用.21.(13分)已知函数φ(x)=lnx.(1)若曲线g(x)=φ(x)+﹣1在点(2,g(2))处的切线与直线3x+y﹣1=0平行,求a的值;(2)求证函数f(x)=φ(x)﹣在(0,+∞)上为单调增函数;(3)设m,n∈R+,且m≠n,求证:<||.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:证明题;导数的综合应用.分析:(1)先求出g(x)的导数g′(x),求出g′(2),根据条件得到g′(2)=﹣3,解出a的值;(2)可先求出f(x)的导数f′(x),并化简整理、因式分解,由条件x>0,即可判断导数的符号,从而得证;(3)设m>n>0,应用分析法证明,要证原不等式成立,可以适当变形,只需证,然后构造函数h(x)=lnx﹣(x>1),应用导数说明h(x)在(1,+∞)上是单调增函数,从而h(x)>h(1)=0,即可得证.解答:解:(1)=(x>0),(x >0),∵曲线在点(2,g(2))处的切线与直线3x+y﹣1=0平行,∴,解得a=14;(2)证明:═(x>0),∴≥0,∴函数在(0,+∞)上为单调增函数;(3)不妨设m>n>0,则,要证<||,即证,只需证,即证,只需证,设h(x)=lnx﹣(x>1),由(2)得,h(x)在(1,+∞)上是单调增函数,∵x>1,∴h(x)>h(1)=0,即,即.∴不等式成立.点评:本题主要考查导数在函数中的应用:求单调区间、证明单调性以及不等式,考查应用导数求切线方程,以及构造函数解题的能力,是一道综合题.。

安徽省蚌埠市第二中学2024_2025学年高一地理下学期期中试题

安徽省蚌埠市第二中学2024_2025学年高一地理下学期期中试题

安徽省蚌埠市其次中学2024-2025学年高一地理下学期期中试题时长:90分钟分值:100分一、选择题:本大题共30小题,每小题1.5分,共45分。

在每小题给出的四个选项中,只有一项是符合题目要求。

留意:全部选择题的答案必需用2B铅笔涂在答题卡中相应位置,否则不予记分。

由于水、土、光、热资源的优势,新疆棉花连续20多年产量全国第一,奠定了新疆在国内棉花生产中无可撼动的地位,形成了“中国棉花看新疆”的格局。

据此回答1~2题。

1.我国其他地区棉花成熟后需立刻采摘,但新疆棉花成熟后可集中采摘,其主要缘由是新疆A. 棉花质量好B. 机械化水平高C. 劳动力短缺D. 气候干旱2.近年来,前往新疆采摘棉花的外省农夫工有削减趋势,其主要缘由有①新疆机械化水平提高②交通费用的增加③农夫工就业机会增多④国家政策的改变A. ①②B. ③④C. ①③D. ②④“地球生态超载日”是指到一年中一个特定日期为止,人类对自然资源的消耗已超过地球在这一年里可以产出的资源总量。

如图为1987~2015年“地球生态超载日”改变图。

读图回答3~4题。

3.“地球生态超载日”的改变说明A. 气候变暖,资源更新周期变短B. 人口增加,资源消耗速度加快C. 技术发展,资源利用种类增多D. 经济下滑,资源供应数量不足4.应对“地球生态超载日”改变,可实行的措施有A. 加大资源开采力度B. 降低人口合理容量C. 提高资源利用效率D. 增加地球资源产出为解决城市停车难问题,近年来我国一些城市尝试了一种新的共享经济形式,即“共享停车”,其目的是激活闲置车位。

如白天居民区闲置车位较多,可临时租给到旁边办理业务须要停车的车主;到了夜晚,居民可以租用旁边一些单位的闲置车位停车。

如图为某城市某功能区不同时段人口流淌状况示意图。

据此回答5~6题。

5.依据如图推断,该功能区最可能是A. 居住区B. 仓储区C. 工业区D. 金融区6.城市管理机构在规划夜晚共享停车服务区时,考虑的首要因素是A. 绿地与水源B. 地形与路况C. 空间与距离D. 噪声与照明某市通过对市区的地貌图(图a)、水系图(图b)进行叠加探讨,明确了开发区的分布范围(图c)。

2017-2018学年第二学期高二数学文科期中考试试卷

2017-2018学年第二学期高二数学文科期中考试试卷

2017—2018学年第二学期八县(市)一中高二文科数学期末考试卷 第 1 页 共 3 页2017—2018学年度第二学期八县(市)一中期中联考 高中二年数学科(文科)试卷完卷时间:120分钟 满 分:150分第Ⅰ卷一、选择题(每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1、若212(1),1z i z i =+=-,则12z z 等于( ) A .1i + B .1i -+ C .1i - D .1i --2、在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且有99%以上的把握认为这个结论是成立的,则下列说法中正确的是( ) A. 100个吸烟者中至少有99人患有肺癌 B. 1个人吸烟,那么这人有99%的概率患有肺癌 C. 在100个吸烟者中一定有患肺癌的人D. 在100个吸烟者中可能一个患肺癌的人也没有3、下图是解决数学问题的思维过程的流程图:在此流程图中,①、②两条流程线与“推理与证明” 中的思维方法匹配正确的是( ) A .①—综合法,②—反证法 B .①—分析法,②—反证法 C .①—综合法,②—分析法 D .①—分析法,②—综合法4、用三段论推理命题:“任何实数的平方大于0,因为a 是实数,所以20a >”,你认为这个推理( ) A .大前题错误 B .小前题错误 C .推理形式错误 D .是正确的5、已知变量x 与y 负相关,且由观测数据算得样本平均数2, 1.5x y ==,则由该观测数据算得的线性回归方程可能是( )A .y=3x ﹣4.5B .y=﹣0.4x+3.3C .y=0.6x+1.1D . y=﹣2x+5.5 6、极坐标方程2cos4sin ρθθ=所表示的曲线是( )A .一条直线B .一个圆C .一条抛物线D .一条双曲线7、甲、乙、丙三位同学中只有一人考了满分,当他们被问到谁考了满分,回答如下:甲说:是我考满分;乙说:丙不是满分;丙说:乙说的是真话.事实证明:在这三名同学中,只有一人说的是假话,那么满分的同学是( )A .甲B .乙C .丙D .不确定8、如右图所示,程序框图输出的所有实数对(x ,y )所对应的点都在函数( ) A .y =x +1的图象上 B .y =2x 的图象上 C .y =2x 的图象上 D .y =2x -1的图象上 9、定义运算a bad bc c d=-,若1201812z i i =(i 为虚数单位)且复数z满足方程14z z -=,那么复数z 在复平面内对应的点P 组成的图形为( )A. 以(-1,-2)为圆心,以4为半径的圆B. 以(-1,-2)为圆心,以2为半径的圆C. 以(1,2)为圆心,以4为半径的圆D. 以(1,2)为圆心,以2为半径的圆10、若下列关于x 的方程24430x ax a +-+=,2220x ax a +-=,22(1)0x a x a +-+= (a 为常数)中至少有一个方程有实根,则实数a 的取值范围是( ) A .3(,1)2-- B .3(,0)2- C .3(,][1,)2-∞-⋃-+∞ D .3(,][0,)2-∞-⋃+∞ 11、以下命题正确的个数是( )①在回归直线方程82^+=x y 中,当解释变量x 每增加1个单位时,预报变量^y 平均增加2个单位; ②已知复数21,z z 是复数,若221121z z z z z z ⋅=⋅=,则;③用反证法证明命题:“三角形三个内角至少有一个不大于060”时,应假设“三个内角都大于060”;④在平面直角坐标系中,直线x y l 6:=经过变换⎩⎨⎧==yy x x ''23:ϕ后得到的直线'l 的方程:x y =; A .1B .2C .3D .412、《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术。

安徽省蚌埠市2017-2018学年七年级数学上学期期中试题

安徽省蚌埠市2017-2018学年七年级数学上学期期中试题

安徽省蚌埠市2017-2018学年七年级数学上学期期中试题考试时间:100分钟 试卷分值:120分一、选择题(30分) 1.5-的倒数是( ) A.15 B.5 C.15- D.5- 2.下列四种运算中,结果最大的是( )A .)2(1-+B .)2(1--C .)2(1-⨯D .)2(1-÷3.合肥地铁自开通以来,发展速度不断加快,现已成为合肥市民主要出行方式之一.今年10月1日合肥地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为( )A .18.1×105B .1.81×106C .1.81×107D .181×1044.计算3(2)4(2)x y x y --+-的结果是( )A .2x y -B .2x y +C .2x y --D .2x y -+ 5.解方程3162x x+-=,去分母,得( ) A .133x x --= B .633x x --= C .633x x -+= C .133x x -+= 6.若)3(2+a 的值与4互为相反数,则a 的值为( ) A .﹣1 B .72- C .﹣5 D .127.单项式31y xm -与n xy 4的和是单项式,则m n 的值是( )A .3B .6C .8D .9 8.下列说法中正确的是( )A. a -表示负数B.若x x -=,则0<xC.绝对值最小的有理数是0D. a 和0不是单项式 9.若()0521=---m xm 是关于x 的一元一次方程,则m 的值为( )A .﹣2B .2C .2±D .无法确定 10.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .84B .336C .510D .1326 二、填空题(32分)11.计算5)2(--的结果等于 .12.代数式5223bc a -系数为 ; 多项式424273xy y x y x --的最高次项是 .13.32)31(3-⨯-= . 14.已知2x =是关于x 的方程1(1)2a x a x +=+的解,则a 的值是 . 15.已知有理数y x ,满足:532-=--y x ,则整式x y -2的值为 . 16.若y x ,为有理数,且0)2017(20172=-++y x ,则2017)(yx 的值为 .17.已知数a 在数轴上对应的点如图所示,则代数式a a -+-14的值是 .18.观察按下列规则排成的一列数:61,15,24,33,42,51,14,23,32,41,13,22,31,12,21,11,…(※) 在(※)中,从左起第m 个数记为)(m F ,当1011)(=m F 时,则m 的值为 .三、解答题(58分) 19.(10分)计算:(1) .12)2()1()3(32-------(2).22)211(432)23(32-⨯-÷-⨯⨯-20.(8分)先化简再求值:求)]32(2[52222xy y x y x xy ---的值。

【小初高学习】2017_2018学年高二数学下学期期中试题文

【小初高学习】2017_2018学年高二数学下学期期中试题文

福建省师大附中2017-2018学年高二数学下学期期中试题 文(满分:150分,时间:120分钟)说明:试卷分第Ⅰ卷和第Ⅱ卷,请将答案填写在答卷纸上,考试结束后只交答卷。

第Ⅰ卷 共65分一、选择题(每小题5分,共65分;在给出的A,B,C,D 四个选项中,只有一项符合题目要求) 1.下列三句话按三段论的模式排列顺序正确的是( )① 2018能被2整除;②一切偶数都能被2整除;③ 2018是偶数; A .①②③ B .②①③ C .②③① D .③②①2.用反证法证明命题“三角形的内角中最多只有一个内角是钝角”时,应先假设( ) A .没有一个内角是钝角 B .有两个内角是钝角 C .有三个内角是钝角 D .至少有两个内角是钝角3.若实数a b ==则a 与b 的大小关系是( ) A .a b = B. a b < C. a b > D. 不确定4. 若复数2(4)(2)(),z x x i x R =-++∈则“2x =”是“z 是纯虚数”的( ) A .充分不必要条件 B. 必要不充分条件 C .充要条件 D. 既不充分也不必要条件 5.某工厂为了确定工效,进行了5次试验,收集数据如下:x 与加工时间y 这两个变量,下列判断正确的是( )A .负相关,其回归直线经过点()30,75B .正相关,其回归直线经过点()30,75C .负相关,其回归直线经过点()30,76D .正相关,其回归直线经过点()30,766.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…用你所发现的规律可得20182的末位数字是( ) A .2B .4C .6D .87.如图,在复平面内,复数12,z z 对应的向量分别是,OA OB ,则12||z z +=( )A .2B .3C ..8.给出下面四个类比结论:①实数b a ,,若0=ab ,则0=a 或0=b ;类比向量,a b ,若0a b ⋅=,则0a =或0b = ②实数b a ,,有222()2a b a ab b +=++;类比向量,a b ,有222()2a b a a b b +=+⋅+ ③向量a ,有22a a =;类比复数z 有22z z =④实数b a ,,有022=+b a ,则0==b a ;类比复数12,z z ,有22120z z +=,则120z z ==其中类比结论正确的命题的个数是( )A .0B .1 C. 2 D. 3 9.某程序框图如图所示,若输出的S=57,则判断框内填( ) A.4k > B.k >5 C.k >6 D.k >7 10. 下列不等式对任意的(0,)x ∈+∞恒成立的是( )A 、20x x -≥B 、sin 1x x >-+C 、ex e x≥ D 、ln x x >11.如图,可导函数)(x f y =在点P (0x ,)(0x f )处的切线为l :)(x g y =, 设)()()(x g x f x h -=,则下列说法正确的是( ) A.0)(0'=x h ,0x x =是)(x h 的极大值点 B.0)(0'=x h ,0x x =是)(x h 的极小值点 C.0)(0'≠x h ,0x x =不是)(x h 的极值点 D.0)(0'≠x h ,0x x =是)(x h 的极值点 12.已知函数()()21cos ,4f x x x f x '=+是函数()f x 的导函数,则()f x '的图象大致是( )13.设函数2()ln (2)f x x ax a x =---,若不等式()0f x >恰有两个整数解,则实数a 的取值范围是( ) A. 4ln 21,4+⎡⎫⎪⎢⎣⎭ B. 4ln 21,4+⎛⎤ ⎥⎝⎦ C. 6ln 34ln 2,126++⎡⎫⎪⎢⎣⎭ D. 6ln 34ln 2,126++⎛⎤⎥⎝⎦第Ⅱ卷 共85分二、填空题(每小题5分,共25分)14.已知复数z 满足i i z +=-1)1(,则z =_______.15.若根据10名儿童的年龄x (岁)和体重y (㎏)数据用最小二乘法得到用年龄预报体重的回归方程是y = 2 x + 7 ,已知这10名儿童的年龄分别是2、3、3、5、2、6、7、3、4、5,则这10名儿童的平均体重是__________㎏.16. 已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a = .17. 在一项田径比赛中,甲、乙、丙三人的夺冠呼声最高.观众A 、B 、C 做了一项预测:A 说:“我认为冠军不会是甲,也不会是乙”.B 说:“我觉得冠军不会是甲,冠军会是丙”.C 说:“我认为冠军不会是丙,而是甲”.比赛结果出来后,发现A 、B 、C 三人中有一人的两个判断都对,一人的两个判断都错,还有一人的两个判断一对一错,根据以上情况可判断冠军是_____________. 18.已知函数)(ln 1)(R a x a x xx f ∈+-=在其定义域上不单调,则a 的取值范围是__________.三、解答题(要求写出过程,共60分)19. (本小题满分12分)已知平行四边形OABC 的三个顶点C A O ,,对应的复数为4i 2-2i 30++,,(Ⅰ)求点B 所对应的复数0z ;(Ⅱ)若10=-z z ,求复数z 所对应的点的轨迹.20.(本小题满分12分)为了解学生的课外阅读时间情况,某学校随机抽取了50人进行统计分析,把这50人每天阅读的时间(单位:分钟)绘制成频数分布表,如下表所示:若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作出如图所示的等高条形图:(1)根据已知条件完成2x2列联表;(2)并判断是否有的把握认为“阅读达人”跟性别有关?附:参考公式22()()()()()n ad bc K a c a b b d c d -=++++21.(本小题满分12分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为π12000元.(1)将V 表示成r的函数)V(r ,并求该函数的定义域;(2)讨论函数)V(r 的单调性,并确定r 和h 为何值时该蓄水池的体积最大. 22.(本小题满分12分)设函数2)1()(ax e x x f x--= (Ⅰ)若21=a ,求)(x f 的极值;(Ⅱ)证明:当1≤a 且0>x 时, 0)(>x f .23.(本小题满分12分)设函数)(,)1(ln )(R a x a x x f ∈+-=(1)讨论函数)(x f 的单调性;(2)当函数)(x f 有最大值且最大值大于13-a 时,求a 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蚌埠二中2017-2018学年第二学期期中考试高二数学(理)试题试卷满分:150分考试时间:120分钟第I 卷(选择题)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求的.1.已知函数x x f =)(,在0=x 处函数极值的情况是( )A .没有极值B .有极大值C .有极小值D .极值情况不能确定 2.设i 是虚数单位,复数43iiz -=,则z =( ) A .34i -B .34i +C .34i --D .34i -+3.在等分区间的情况下,21()([0,2])1f x x x =∈+及x 轴所围成的曲边梯形的面积和式的极限形式正确的是( )A.2112lim 1()nn i i n n →∞=⎡⎤⎢⎥⋅⎢⎥⎢⎥+⎣⎦∑ B.2112lim 21()n n i i n n →∞=⎡⎤⎢⎥⋅⎢⎥⎢⎥+⎣⎦∑ C.2111lim 1nn i i n →∞=⎡⎤⋅⎢⎥+⎣⎦∑ D.211lim 1()nn i n i n →∞=⎡⎤⎢⎥⋅⎢⎥⎢⎥+⎣⎦∑ 4.余弦函数是偶函数,()cos(1)f x x =+是余弦函数,因此()cos(1)f x x =+是偶函数,以上推理()A .结论正确B .大前提不正确C .小前提不正确D .全不正确 5.在极坐标系中,曲线C 的方程是4sin ρθ=,过点(4,)6π作曲线C 的切线,切线长为( )A .22B .4C .32D .276.已知关于x 的不等式18x x a --+≥的解集不是空集,则a 的取值范围是( )A.9a ≤-B.7a ≥C.97a -≤≤D.97a a ≤-≥或7.已知3211()1,()32f x ax x x a R =+++∈,下列选项中不可能是函数()f x 图象的是( )A. B. C. D.8.若sin 0baxdx =⎰,则cos()a b +=( )A .1B .12C .0D .1- 9.设a ,b ,c ∈(-∞,0),则a +1b ,b +1c ,c +1a( )A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2 10. 已知函数2213()()f 'f x x x =--的最大值为()f a ,则a =() A .116B .344C .14D .34811.2017年吴京执导的动作、军事电影《战狼2》上映三个月,以56.8亿震撼世界的票房成绩圆满收官,该片也是首部跻身全球票房TOP100的中国电影.小明想约甲、乙、丙、丁四位好朋友一同去看《战狼2》,并把标识分别为A ,B ,C ,D 的四张电影票放在编号分别为1,2,3,4的四个不同盒子里,让四位好朋友进行猜测:甲说:第1个盒子里面放的是B ,第3个盒子里面放的是C ; 乙说:第2个盒子里面放的是B ,第3个盒子里面放的是D ; 丙说:第4个盒子里面放的是D ,第2个盒子里面放的是C ; 丁说:第4个盒子里面放的是A ,第3个盒子里面放的是C .小明说:“四位朋友,你们都只说对了一半.”可以推测,第4个盒子里面放的电影票为() A .A 或BB . B 或C C .C 或DD .D 或A12.设函数f (x )满足2x 2f (x )+x 3f ′(x )=e x,f (2)=28e .则x ∈[2,+∞)时,f (x )的最小值为( )A.22e B .232e C.24e D .28e第II 卷(非选择题)二.填空题:本大题共4小题,每小题5分,共20分. 13.3+4i 的平方根是14.现有一个关于平面图形的命题:如图,同一平面内有两个边长都是a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a 24。

类比到空间,有两个棱长为a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为________.15.已知a ,b ,c >0,且a +b +c =1,则4a +1+4b +1+4c +1的最大值为________. 16.已知函数2()1(0),()43,x f x e x x g x x x =--≥=-+-若有()()f a g b =,则b 的最大值为.三.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. (本小题10分)在极坐标系中,圆C 的极坐标方程为28sin()1303πρρθ--+=,已知33(1,),(3,)22A B ππ,P 为圆C 上一点,求PAB ∆面积的最小值。

18. (本小题12分)已知不等式36x x x +-<+的解集为(),m n 。

(Ⅰ)求,m n 的值;(Ⅱ)若0x >,0y >,0nx y m ++=,求证:16x y xy +≥。

19.(本小题12分)用数学归纳法证明:*111111,()22322n n n n N +≤++++≤+∈L 。

20.(本小题12分)已知曲线3:()x C f x x =-。

(1)求曲线C 在点(2,()2)f 处的切线方程; (2)求与直线53y x =+平行的曲线C 的切线方程。

21. (本小题12分)已知关于x 的方程2(6)90,()x i x ai a R -+++=∈有实数根b 。

(1)求实数a ,b 的值;(2)若复数z 满足20z a bi z ---=,求当z 为何值时,| z |有最小值?并求出|z |的最小值。

22. (本小题12分)已知函数21(),()ln 2f x xg x e x ==。

(1)设函数),()()(x g x f x F -=求)(x F 的单调区间;(2)若存在常数,,m k 使得m kx x f +≥)(对R x ∈恒成立,且m kx x g +≤)(对),0(+∞∈x 恒成立,则称直线m kx y +=为函数)(x f 与)(x g 的“分界线”,试问:)(x f 与)(x g 是否存在“分界线”?若存在,求出“分界线”的方程,若不存在,请说明理由.蚌埠二中2017—2018学年第二学期期中考试高二数学(理)答案一.选择题CDBCA —DDACB —DD 二.填空题13. 【答案】(2)i ±+ 14. 【答案】a 38 15.【答案】21 16.【答案】317.18. (Ⅰ)由36x x x +-<+,得3{36x x x x ≥+-<+或03{ 36x x <<<+或0{ 36x x x x ≤-+-<+,解得19x -<<,∴1m =-, 9n =.(Ⅱ)由(Ⅰ)知0x >, 0y >, 91x y +=,∴()119x y x y ⎛⎫++=⎪⎝⎭910y x x y ++≥ 910216y xx y +⨯=,当且仅当9y x x y=即112x =, 14y =时取等号, ∴1116x y+≥,即16x y xy +≥. 19.证明:(1)当n =1时,32≤1+12≤32,命题成立.(2)假设当n =k (k ∈N *)时命题成立,即1+k 2≤1+12+13+…+12k ≤12+k ,则当n =k +1时,1+12+13+…+12k +12k +1+12k +2+…+12k +2k >1+k 2+2k ·12k +1=1+k +12. 又1+12+13+…+12k +12k +1+12k +2+…+12k +2k <12+k +2k ·12k =12+(k +1), 即n =k +1时,命题成立.由(1)和(2)可知,命题对所有n ∈N *都成立.20.【答案】(1)11160x y --=;(2)5420x y --=或5420x y -+=.【解析】(1)∵3()x x f x =-,∴(62)f =,求导可得2()31x f 'x =-,∴切线的斜率为2()11k f '==, ∴所求切线方程为611(2)y x -=-,即11160x y --=. (2)设与直线53y x =+平行的切线的切点为00(,)x y ,则切线的斜率为200()31k f x x '==-.又所求切线与直线53y x =+平行,∴20315x -=,解得02x =±,代入3()x x f x =-可得切点为(2,2)或(2,2)--,∴所求切线方程为25(2)y x -=-或25(2)y x +=+,即5420x y --=或5420x y -+=.21.【解析】(1)因为b 是方程x 2-(6+i)x+9+ai=0(a ∈R)的实根, 所以(b 2-6b+9)+(a-b)i=0,故解得a=b=3.(2)设z=m+ni(m,n ∈R),由|-3-3i|=2|z|, 得(m-3)2+(n+3)2=4(m 2+n 2), 即(m+1)2+(n-1)2=8,所以Z 点的轨迹是以O 1(-1,1)为圆心,以2为半径的圆.如图,当Z 点在直线OO 1上时,|z|有最大值或最小值.因为|OO 1|=,半径r=2,所以当z=1-i 时,|z|有最小值,且|z|min =.22.【答案】(1)函数()x F 的单调减区间是(0,e ),单调增区间是(e ,+∞);(2)“分界线”的方程为:2ey ex =-(2)由(I )可知,当=x e 时,()x F 取得最小值F (e )=0, 则()x f 与()x g 的图象在=x e 处有公共点(e ,2e ) 假设()xf 与()xg 存在“分界线”,则其必过点(e ,2e)…………………6分 故设其方程为:()2e y k x e -=-,即2ey kx k e =+-, 由()≥x f 2ekx k e +-对R x ∈恒成立, 则2220x kx e k e --+≥对R x ∈恒成立, 所以,22244(2)484()k k e e k k e e e k e ∆=--=-+=-≤0成立,因此=k e ,“分界线”的方程为:2ey ex =-…………………………………9分下面证明()≤x g 2eex -对()+∞∈,0x 恒成立, 设()=x G ln 2ee x x e -+,则()'()e e e x G x e x x-=-=,所以当<<x 0e 时,'()0G x >,当>x e 时,'()G x <0,当=x e 时,()x G 取得最大值0,则()x g ≤2eex -对()+∞∈,0x 恒成立, 故所求“分界线”的方程为:2ey ex =-………………………………12分。

相关文档
最新文档