定义法求轨迹方程

合集下载

轨迹方程的五种求法

轨迹方程的五种求法

轨迹方程的五种求法一、直接法:直接根据等量关系式建立方程.例1:已知点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =·,则点P 的轨迹是( ) A .圆B .椭圆C .双曲线D .抛物线解析:由题知(2)PA x y =--- ,,(3)PB x y =-- ,,由2P AP B x =·,得22(2)(3)x x y x ---+=,即26y x =+, P ∴点轨迹为抛物线.故选D .二、定义法:运用有关曲线的定义求轨迹方程.例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆,其中1213c a ==,.5b ==∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 三、转代法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题.例3:已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ②又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠.四、参数法:如果不易直接找出动点坐标之间的关系,可考虑借助中间变量(参数),把x ,y 联系起来例4:已知线段2AA a '=,直线l 垂直平分AA '于O ,在l 上取两点P P ',,使其满足4OP OP '=·,求直线AP 与A P ''的交点M 的轨迹方程.解:如图2,以线段AA '所在直线为x 轴,以线段AA '的中垂线为y 轴建立直角坐标系. 设点(0)(0)P t t ≠,, 则由题意,得40P t ⎛⎫' ⎪⎝⎭,.由点斜式得直线AP A P '',的方程分别为4()()t y x a y x a a ta=+=--,. 两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,关键有两点:一是选参,容易表示出动点;二是消参,消参的途径灵活多变.五、待定系数法:当曲线的形状已知时,一般可用待定系数法解决.例5:已知A ,B ,D 三点不在一条直线上,且(20)A -,,(20)B ,,2AD = ,1()2AE AB AD =+.(1)求E 点轨迹方程;(2)过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆方程.解:(1)设()E x y ,,由1()2AE AB AD =+知E 为BD 中点,易知(222)D x y -,.又2AD =,则22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,.由题意设椭圆方程为222214x y a a +=-,直线MN 方程为(2)y k x =+.∵直线MN 与E 点的轨迹相切,1=,解得k =将y =(2)x +代入椭圆方程并整理,得222244(3)41630a x a x a a -++-=,2120222(3)x x a x a +==--∴, 又由题意知045x =-,即2242(3)5a a =-,解得28a =.故所求的椭圆方程为22184x y +=.配套训练一、选择题1. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2. 设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y x D.14922=-x y二、填空题3. △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________.4. 高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________. 三、解答题5. 已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6. 双曲线2222by a x =1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q的交点为Q ,求Q 点的轨迹方程.7. 已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案配套训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|,∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆.答案:A2.解析:设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)∵A 1、P 1、P 共线,∴300+=--x y x x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y 解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a , ∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-. 答案:)4(1316162222ax a y a x >=-4.解析:设P (x ,y ),依题意有2222)5(3)5(5y x y x +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0) 6.解:设P (x 0,y 0)(x ≠±a ),Q (x ,y ).∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b2x 02-a 2y 02=a 2b 2,即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),则A 1P 的方程为:y =)(11m x mx y ++ ①A 2Q 的方程为:y =-)(11m x mx y -- ②①³②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =m n m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =n m n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ ,∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0). |F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |²|OB |²sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。

例谈动点的轨迹方程的四种求法

例谈动点的轨迹方程的四种求法

思路探寻求动点的轨迹方程问题经常出现在解析几何试题中,这类问题侧重于考查同学们的推理、分析以及运算能力.求解这类问题的主要方法有定义法、参数法、相关点法和交轨法.下面结合实例,谈一谈这四种方法的特点以及应用技巧.一、定义法定义法是指运用圆锥曲线的定义解题.若发现动点的轨迹形如椭圆、圆、双曲线、抛物线或其中的一部分曲线,就可以根据椭圆、圆、双曲线、抛物线的定义,确定定点、焦点、焦点与动点之间的关系,求得椭圆、圆、双曲线、抛物线方程中的各个参数,便可以快速确定曲线的轨迹方程.例1.如图1所示,已知圆C1:x2+(y+4)2=25和圆C2:x2+(y-4)2=1,某动圆C分别与圆C1和圆C2外切,求动圆圆心C的轨迹方程.图1解:由题意知两圆的圆心为C1(0,-4),C2(0,4),半径为r1=5,r2=1,设动圆C的半径为r,因为圆C分别与圆C1和圆C2外切,所以||CC1=r+5,||CC2=r+1,所以||CC1-||CC2=4<8,即点C到两定点C1、C2的距离之差为常数4,所以动圆圆心C的轨迹是以C1、C2为焦点的双曲线的上支,可得2a=4,2c=||C1C2=8,所以b2=c2-a2=12.所以动圆圆心C的轨迹方程是y24-x212=1(y≥2).结合图形分析动圆C与圆C1、圆C2的位置关系,即可发现||CC1=r+5,||CC2=r+1,即可得出||CC1-||CC2=4<8,由此可联想到双曲线的定义,即平面内到两定点的距离之差为定值的点的轨迹,确定动点的轨迹,求得a、b、c值,即可求得动点的轨迹方程.二、参数法参数法是解答数学问题的重要方法.若动点受某些变量的影响,而我们又无法确定这些变量的取值,则需运用参数法,即用参数表示出变量,设出直线的斜率、点的坐标、曲线的方程等,然后将其代入题设中,建立关系式,通过恒等变换消去参数,即可求得动点的轨迹方程.例2.已知抛物线y2=4px(p>0)的顶点为O,A,B是抛物线上的两个动点,且OA⊥OB,OM⊥AB于点M,求点M的轨迹方程.解:设M(x,y),直线AB的方程为y=kx+b,因为OA⊥OB,所以k=-xy,由ìíîy2=4px,y=kx+b,得k2x2+(2kb-4p)x+b2=0,所以x1x2=-b2k2,y1y2=-4pb k,因为OA⊥OB,所以y1y2=-x1x2,所以-4pbk=-b2k2,即b=-4kp,所以直线AB的方程为y=kx+b=k(x-4p),将k=-xy代入,得x2+y2-4px=0(x≠0),即所求点M的轨迹方程为x2+y2-4px=0(x≠0).解答本题主要运用了参数法,即先引入参数x、y,49k 、b 、x 1、x 2、y 1、y 2,设出动点M 的坐标、直线AB 的方程以及A 、B 两点的坐标;然后将直线与抛物线的方程联立,根据一元二次方程的根与系数的关系建立关系式;最后通过恒等变换消去参数,得到关于x 、y 的方程,即为动点的轨迹方程.三、相关点法若两个动点之间存在某种特定的关系,则可以采用相关点法求解.先分别设出两个动点的坐标,并根据二者之间的关系,用所求动点的坐标表示另一个动点的坐标;然后根据另一个动点的几何关系,建立关于所求动点坐标的关系式,从而求得动点的轨迹方程.运用相关点法解题,要注意寻找两个动点之间的联系,并确定另一个动点所满足的几何关系.例3.如图2所示,在圆x 2+y 2=4上任意选取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,求线段PD中点M 的轨迹方程.图2解:设点M (x ,y ),P (x 0,y 0),因为M 为线段PD 的中点,所以ìíîïïx =x 0,y =y 02,得{x 0=x ,y 0=2y ,又因为点P (x 0,y 0)在圆x 2+y 2=4上,所以x 02+y 02=4,将{x 0=x ,y 0=2y ,代入上述方程中,得x 24+y 2=1,所以点M 的轨迹为一个椭圆,其方程为x 24+y 2=1.本题中P 、M 均为动点,且点M 随着点P 的运动而变化,需采用相关点法求解,先分别设出P 、M 两点的坐标;然后用M 点的坐标表示P 的坐标;再将其代入点P 的轨迹方程,即可确定点M 的轨迹及其方程.四、交轨法当问题中所求的动点为两条动曲线的交点时,往往需采用交轨法,即将两条动曲线的方程联立,消去其中的参数,得到的关于x 、y 的方程即为所求的动点的轨迹方程.例4.如图3所示,已知双曲线C :y 24-x 23=1与y轴交于点A 1(0,-2)与点A 2(0,2),直线l :y =m 与双曲线交于点P ,Q ,直线A 1P 与直线A 2Q 相交于点M ,试求点M 的轨迹方程.图3解:设P (x 1,m ),Q (-x 1,m ),M (x ,y ),因为点P 在双曲线上,所以m 24-x 123=1.当x 1≠0时,直线PA 1的方程为y +2=m +2x 1x ,直线QA 2的方程为y -2=2-m x 1x,可得y 2-4=4-m 2x 12x 2,所以x 12=3m 2-124,将其代入y 2-4=4-m 2x 12x 2,得y 2-4=-43x 2,化简整理得y 24+x 23=1.当x 1=0时,点M 的坐标满足方程y 24+x 23=1.综上所述,点M 的轨迹方程为y 24+x 23=1.仔细分析题意可知,M 为直线A 1P 与直线A 2Q 的交点,且点A 1、A 2、P 、Q 都满足双曲线的方程,于是采用交轨法,求得两动直线A 1P 与A 2Q 的方程,再将两方程联立,消去参数,即可求出交点M 的轨迹方程.总之,求动点的轨迹方程,关键是要根据题目中的几何条件,寻找动点的横坐标与纵坐标之间的关系,建立关于动点的横坐标与纵坐标的方程.求动点的轨迹方程的方法很多,同学们需熟练掌握一些常用方法的特点、适用情形、解题思路,才能将其灵活地应用于解题中.(作者单位:江苏省南通市海门实验学校)思路探寻50。

高中数学求轨迹方程的六种常用技法

高中数学求轨迹方程的六种常用技法

求轨迹方程六种常用技法轨迹方程探求是解析几何中根本问题之一,也是近几年来高考中常见题型之一。

学生解这类问题时,不善于提醒问题内部规律及知识之间相互联系,动辄就是罗列一大堆坐标关系,进展无目大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结与归纳探求轨迹方程常用技法,对提高学生解题能力、优化学生解题思路很有帮助。

本文通过典型例子阐述探求轨迹方程常用技法。

1.直接法根据条件及一些根本公式如两点间距离公式,点到直线距离公式,直线斜率公式等,直接列出动点满足等量关系式,从而求得轨迹方程。

例1.线段,直线相交于,且它们斜率之积是,求点轨迹方程。

解:以所在直线为轴,垂直平分线为轴建立坐标系,那么,设点坐标为,那么直线斜率,直线斜率由有化简,整理得点轨迹方程为练习:1.平面内动点到点距离与到直线距离之比为2,那么点轨迹方程是。

2.设动直线垂直于轴,且与椭圆交于、两点,是上满足点,求点轨迹方程。

3. 到两互相垂直异面直线距离相等点,在过其中一条直线且平行于另一条直线平面内轨迹是〔〕A.直线B.椭圆C.抛物线D.双曲线2.定义法通过图形几何性质判断动点轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹定义,如线段垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何一些性质定理。

例2.假设为两顶点,与两边上中线长之与是,那么重心轨迹方程是_______________。

解:设重心为,那么由与两边上中线长之与是可得,而点为定点,所以点轨迹为以为焦点椭圆。

所以由可得故重心轨迹方程是练习:4.方程表示曲线是〔〕A.椭圆 B.双曲线 C.线段 D.抛物线3.点差法圆锥曲线中与弦中点有关问题可用点差法,其根本方法是把弦两端点坐标代入圆锥曲线方程,然而相减,利用平方差公式可得,,,等关系式,由于弦中点坐标满足,且直线斜率为,由此可求得弦中点轨迹方程。

例3.椭圆中,过弦恰被点平分,那么该弦所在直线方程为_________________。

轨迹方程的求法

轨迹方程的求法

解:以BC所在的直线为x轴,BC中点为坐标
原点,建立如图所示的直角坐标系,则B
(一a/2,0),C(a/2,0),设A(x,y)

由sinC- sinB=
∴c-b=
1 2
a
1 2
sinA
A
B
C
即|AB|-|AC|=
1 2
a(定值)
些密如发丝的暗青色珠粒被烟一晃,立刻变成皎洁辉映的珠光,不一会儿这些珠光就闪烁着飞向罕见异绳的上空,很快在四金砂地之上 变成了隐隐约约的凸凹飘动的摇钱树……这时,宝石状的物体,也快速变成了树皮模样的湖青色胶状物开始缓缓下降……只见女政客
4、参数法 例题4、已知线段AB的长为a,P分AB为
AP∶PB= 2∶l两部分,当A点在y轴上运动时, B点在x轴上运动,求动点P的轨迹方程。
解 : 设 动 点 P ( x , y ) , AB 和 x 轴 的 夹 角 为 θ ,
|θ|≤
2
,作PM⊥x于M,
PN⊥y轴于N
∵|AB|= a, | AP | 2
皮肤时浓时淡渗出水睡朦胧般的晃动!接着玩了一个,飞蟒吊灯翻一千零八十度外加狐嚎排骨旋七周半的招数,接着又来了一出,怪体 牛蹦海飞翻七百二十度外加笨转四百周的尊贵招式……紧接着异常的如同原木一样的脚立刻蠕动变形起来……鲜红色酒罐耳朵闪出水绿 色的团团明烟……深灰色麦穗样的嘴唇闪出中灰色的点点神响。最后摆起多变的深黄色土堆模样的卷发一嚎,飘然从里面涌出一道佛光, 她抓住佛光冷峻地一颤,一件银晃晃、黄澄澄的咒符『蓝鸟骨怪火腿宝典』便显露出来,只见这个这件东西儿,一边转化,一边发出“咝 咝”的神响。骤然间女政客T.克坦琳叶女士急速地弄了一个侧卧扭曲炸蛤蟆的怪异把戏,,只见她修长的淡灰色怪石一样的脑袋中,威

利用定义法求轨迹方程!!!!!!!!

利用定义法求轨迹方程!!!!!!!!

1. 若F 1(3,0),F 2(-3,0),点P 到F 1,F 2的距离之和为10,则P 点的轨迹方程是_________________________________.2. .动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为__________.解析 因为|PF 1|+|PF 2|=10>|F 1F 2|=6,所以点P 的轨迹是以F 1,F 2为焦点的椭圆,其中a =5,c =3,b =a 2-c 2=4,故点P 的轨迹方程为x 225+y 216=1. 答案 x 225+y 216=13.如图,圆O 的半径为定长r ,A 是圆O 内一个定点,P 是圆上任意一点,线段AP 的垂直平分线l 和半径OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是( ) A.椭圆B.双曲线C.抛物线D.圆解析 (1)连接QA . 由已知得|QA |=|QP |.所以|QO |+|QA |=|QO |+|QP |=|OP |=r .又因为点A 在圆内,所以|OA |<|OP |,根据椭圆的定义,点Q 的轨迹是以O ,A 为焦点,r 为长轴长的椭圆.4.已知点F ⎝⎛⎭⎫14,0,直线l :x =-14,点B 是l 上的动点,若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线答案 D解析 由已知|MF |=|MB |,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.5.已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C,求C的方程.解由已知得圆M的圆心为M(-1,0),半径r1=1;圆N的圆心为N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.因为圆P与圆M外切并且与圆N内切,所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4>2=|MN|.由椭圆的定义可知,曲线C是以M,N为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x24+y23=1(x≠-2).一、选择题(共10小题,每小题5.0分,共50分)1.如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是()A.椭圆B.双曲线C.抛物线D.圆2.已知动点P(x,y)满足5√(x−1)2+(y−2)2=|3x+4y-11|,则P点的轨迹是() A.直线B.抛物线C.双曲线D.椭圆3.若点P到直线x=-1的距离比它到点(2,0)的距离小1,则点P的轨迹为()A.圆B.椭圆C.双曲线4.动点P 为椭圆x 2a 2+y 2b 2=1(a >b >0)上异于椭圆顶点(±a,0)的一点,F 1,F 2为椭圆的两个焦点,动圆C 与线段F 1P ,F 1F 2的延长线及线段PF 2相切,则圆心C 的轨迹为( )A . 椭圆B . 双曲线C . 抛物线D . 直线5.点P 是以F 1,F 2为焦点的椭圆上一点,过点F 2作∠F 1PF 2外角平分线的垂线,垂足为M ,则点M 的轨迹是( )A . 圆B . 椭圆C . 双曲线D . 抛物线6.若M ,N 为两个定点,且|MN |=6,动点P 满足PM ⃗⃗⃗⃗⃗⃗ ·PN⃗⃗⃗⃗⃗⃗ ·=0,则P 点的轨迹是( ) A . 圆B . 椭圆C . 双曲线D . 抛物线7.已知AB ⃗⃗⃗⃗⃗ =3,A ,B 分别在y 轴和x 轴上运动,O 为坐标原点,OP ⃗⃗⃗⃗⃗ =13OA ⃗⃗⃗⃗⃗ +23OB ⃗⃗⃗⃗⃗ ,则动点P 的轨迹方程为( )A .x 24+y 2=1 B .x 2+y 24=1 C .x 29+y 2=1 D .x 2+y 29=1 8.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则动点P 的轨迹是( )A . 直线B . 圆C . 椭圆9.设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点.线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为()A.4x221-4y225=1B.4x221+4y225=1C.4x225-4y221=1D.4x225+4y221=110.自圆x2+y2=1外动点P作该圆的两条切线,切点分别为A,B.若∠APB=π2,则动点P的轨迹方程是()A.x2+y2=4B.x2+y2=2C.x24+y2=1D.x22+y2=1分卷II二、填空题(共1小题,每小题5.0分,共5分)11.过抛物线y2=8x的焦点F的直线交抛物线于A,B两点,过原点O作OM⊥AB,垂足为M,则点M的轨迹方程是________.三、解答题(共3小题,每小题12.0分,共36分)12.点P(-3,0)是圆C:x2+y2-6x-55=0内一定点,动圆M与已知圆相内切且过P点,求圆心M的轨迹方程.13.一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切,求动圆圆心M的轨迹方程,并说明它是什么曲线.14.在直角坐标平面内,已知两点A(-2,0)及B(2,0),动点Q到点A的距离为6,线段BQ的垂直平分线交AQ于点P.证明|PA|+|PB|为常数,并写出点P的轨迹T的方程;答案解析1.【答案】A【解析】由条件知|PM|=|PF|.∴|PO|+|PF|=|PO|+|PM|=|OM|=R>|OF|.∴P点的轨迹是以O,F为焦点的椭圆.2.【答案】A,即动点P(x,y)到定点(1,2)和定直线【解析】由已知,得√(x−1)2+(y−2)2=|3x+4y−11|53x+4y-11=0的距离相等,而定点(1,2)在直线3x+4y-11=0上,所以P点的轨迹是过点(1,2)且与直线3x+4y-11=0垂直的直线.3.【答案】D【解析】依题意知,点P到直线x=-2的距离等于它到点(2,0)的距离,故点P的轨迹是抛物线.4.【答案】D【解析】如图所示,设三个切点分别为M,N,Q.∴|PF1|+|PF2|=|PF1|+|PM|+|F2N|=|F1N|+|F2N|=|F1F2|+2|F2N|=2a,∴|F2N|=a-c,∴N点是椭圆的右顶点,∴CN⊥x轴,∴圆心C的轨迹为直线.5.【答案】A【解析】如图,延长F2M交F1P的延长线于点N.∵|PF2|=|PN|,∴|F1N|=2a.连接OM,则在△NF1F2中,OM为中位线,|F1N|=a,∴点M的轨迹是圆.则|OM|=126.【答案】A【解析】∵PM ⃗⃗⃗⃗⃗⃗ ·PN⃗⃗⃗⃗⃗⃗ =0,∴PM ⊥PN .∴点P 的轨迹是以线段MN 为直径的圆. 7.【答案】A【解析】设A (0,a ),B (b,0),由AB⃗⃗⃗⃗⃗ =3,得a 2+b 2=9. 设P (x ,y ),由OP ⃗⃗⃗⃗⃗ =13OA ⃗⃗⃗⃗⃗ +23OB ⃗⃗⃗⃗⃗ ,得(x ,y )=13(0,a )+23(b,0). 所以{b =32x,a =3y.又a 2+b 2=9,则9y 2+94x 2=9,即x 24+y 2=1,故选A. 8.【答案】B【解析】设P (x ,y ),则√(x +2)2+y =2√(x −1)2+y 2, 整理得x 2+y 2-4x =0,又D 2+E 2-4F =16>0,所以动点P 的轨迹是圆.9.【答案】D【解析】M 为AQ 垂直平分线上一点,则|AM |=|MQ |, ∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5>|CA |=2,故M 的轨迹为椭圆, ∴a =52,c =1,则b 2=a 2-c 2=214,∴椭圆的标准方程为4x 225+4y 221=1.10.【答案】B【解析】四边形PAOB 为正方形,故|OP |=√2.所以点A 的轨迹是从原点为圆心,从√2为半径的圆.11.【答案】x 2+y 2-2x =0【解析】如图,∵OM ⊥AB ,∴∠OMF =90°,∴点M 的轨迹是以OF 为直径的圆,其圆心为(1,0),半径为1. ∴方程为x 2+y 2-2x =0.12.【答案】已知圆为(x -3)2+y 2=64,其圆心为C (3,0),半径为8, 由于动圆M 过P 点,所以|MP |等于动圆的半径r ,即|MP |=r . 又圆M 与已知圆C 相内切,所以圆心距等于半径之差,即|MC |=8-r , 从而有|MC |=8-|MP |,即|MC |+|MP |=8.根据椭圆的定义,动点M 到两定点C ,P 的距离之和为定值8>6=|CP |, 所以动点M 的轨迹是椭圆,并且2a =8,a =4;2c =6,c =3;b 2=16-9=7, 因此M 点的轨迹方程为x 216+y 27=1. 【解析】13.【答案】如图所示,设动圆圆心为M (x ,y ),半径为R ,设已知圆的圆心分别为O 1,O 2,将圆的方程分别配方,得图O 1:(x +3)2+y 2=4,图O 2:(x -3)2+y 2=100,当动圆与圆O 1相外切时,有|O 1M |=R +2. ①当动圆与圆O 2相内切时,有|O 2M |=10-R . ②将①②两式相加,得|O 1M |+|O 2M |=12>|O 1O 2|,∴动圆圆心M (x ,y )到点O 1(-3,0)和O 2(3,0)的距离和是常数12, ∴点M 的轨迹是焦点为O 1(-3,0),O 2(3,0),长轴长等于12的椭圆. ∴2c =6,2a =12,∴c =3,a =6,∴b 2=36-9=27,∴圆心M 的轨迹方程为x 236+y 227=1,轨迹为椭圆. 【解析】14.【答案】连接PB .∵线段BQ 的垂直平分线与AQ 交于点P ,∴|PB |=|PQ |,又|AQ |=6, ∴|PA |+|PB |=|PA |+|PQ |=|AQ |=6(常数). 又|PA |+|PB |>|AB |,从而P 点的轨迹T 是中心在原点,以A ,B 为两个焦点,长轴在x 轴上的椭圆,其中,2a =6,2c =4,∴P 点的轨迹T 的方程为x 29+y 25=1. 【解析】。

与椭圆有关的轨迹方程的求法

与椭圆有关的轨迹方程的求法

与椭圆有关的轨迹方程的求法一.定义法:若动点轨迹的条件符合某一基本轨迹的定义,可用定义直接探求.例1:已知两圆169)4(:221=+-y x C ,9)4(:221=++y x C ,动圆在圆1C 内部且和圆1C 相内切,和圆2C 相外切,求动圆圆心M 的轨迹方程.分析:动圆满足的条件为:①与圆C 1相内切;②与圆C 2相外切.依据两圆相切的充要条件建立关系式 解:设动圆圆心),(y x M ,半径为r 如图所示,由题意:圆M内切于圆C 1,∴r MC -=131, 圆M外切于圆C 2 ,∴r MC +=32, ∴1621=+MC MC ,∴动圆圆心M的轨迹是以C 1、C 2为焦点的椭圆, 且82,162==c a ,48222=-=c a b ,故所求轨迹方程为:1486422=+y x 。

例2.在周长为定值的ABC ∆中,已知|AB |6=,且当顶点C 位于定点P 时,C cos 有最小值为257,建立适当的坐标系,求顶点C 的轨迹方程. 解:以AB 所在直线为x 轴,线段AB 的中垂线为y 轴建立直角坐标系,设 )3(2>=+a a CB CA 为定值,则C 点的轨迹是以B A ,为焦点的椭圆, 焦距62==AB c ,因为:1||||182||||236||||2|)||(|||||26||||cos 22222--=--+=-+=CB CA a CB CA CB CA CB CA CB CA CB CA C又 22)22(||||a a CB CA =≤⋅,所以 2181cos a C -≥, 由题意得 25,25718122==-a a,此时,PB PA =,P 点坐标为)4,0(±, 所以C 点的轨迹方程为:)0(1162522≠=+y y x 。

例3.已知圆16)1(:22=++y x B 及点)0,1(A ,C 为圆B 上任一点,求线段AC 的垂直平分线l 与线段BC 交点P 的轨迹方程。

求曲线轨迹方程的方法

求曲线轨迹方程的方法

四、参数法求曲线方程
若过点 P(1,1)且互相垂直的两条直线 l1,l2 分别与 x 轴,y 轴交于 A,B 两点,则 AB 中点 M 的轨迹方程为________.
四、参数法求曲线方程
【审题】 斜率存在时,点斜式设l1的方程→得l2的方程→ 联立方程→求交点坐标→消去参数→得结果→斜率不存在时将
三、相关点法求曲线轨迹方程
基本思路:
①设点:设被动点的坐标 M (x, y),主动点的坐标 P(x0, y0;) ②求关系式:用被动点的坐标M (x, y) 表示主动点的坐标 P(x0, y0 ),即
得关系式
xy00
g(x, h(x,
y) y)
③代换:将上述关系式带入主动点满足的方程,化简整理可得所求动 点的轨迹方程。
三、相关点法求曲线轨迹方程
x 例 在圆 x2 y2 4上任取一点P,过点P作 轴的垂线段PD,
D为垂足。当点P在圆上运动时,线段PD的中点M的轨迹方程。
解析:设M (x, y), P(x0 , y0 ),则x
x0 , y
y0 2
.
因为点P在圆上,所以x02 y02 4 。
把 x0 x, y0 2x带入上式得:x2 4 y2 4.
二:定义法求轨迹方程
思路:如果动点的轨迹满足某种已知曲线定义,则可由曲 线的定义直接写出方程,利用定义法求轨迹方程要善于抓 住曲线定义的特征。 要点:四种曲线定义及成立条件
方法:建系设点 定型(思考几何关系,进而寻求数量关系) 定方程 定范围
二:定义法求轨迹方程
圆的定义: |PC|=r (r>0) 椭圆的定义:
一:直接法(直译法)求轨迹方程
例 已知一条直线 l 和它上方的一个点F,点F到l 的距离是2.一条曲线 也 l 在的上方,它上面的每一点到F的距离减去到 l 的距离的差都是2,

轨迹方程的求法

轨迹方程的求法

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 定义法(待定系数法):如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。

此方法又称为待定系数法。

2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系x=f(t),y=g(t),进而通过消参化为轨迹的普通方程F(x,y)=0。

4. 代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。

5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

6.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律,即P点满足的等量关系,因此要学会动中求静,变中求不变。

)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相切,求动圆圆心 M 的轨迹方程
6y
4
2
A
B
-5
o
5
x 10
-2
-4
(1)
6y
4
A: ( x 5)2 y2 1(2)
8 6
M
2
B:(x5)2 y2 16
4
M 2
A
B
A
-5
o
5
x 10
-5
B
5
10
-2
-2 -4
4x2
-4 4y2
1 (X<0)
9 91
(3)
6
4
4x2
-6
4y
2
1
(X>0)
庖丁 解牛
例1. 一动圆与圆O1 : (x 3)2 y2 4外 切,同时与圆O2 : (x 3)2 y2 100 内切, 求动圆圆心P的轨迹。
y
P
O1
O2
PO1 2 R
PO2 10 R x PO1 PO2 12 O1O2 6
方程为x2 y2 1 36 27
例2:一动圆与圆O1: (x+3)2+y2=4外 庖丁 切,同时与
小试 牛刀
在平面内 ,讨论:
(1)已知A(2,3)且PA 3,则点P的轨迹是什么?
(2)已知ABC的一边 BC的长为 2, 周长为8, 则顶点 A的 轨迹是什么?
(3)若A(3,0), B(3,0),且 MA MB 4,则点M的轨迹是 什么? (4)过点(1, 0)且与直线x=-1相切的圆的圆心的轨迹 是什么?
9 91 10
(4)
8
6
M
2
A
-10
-5
-2
B
5
10
4
M
2
A
B
-5
5
10
-2
4x2 4y2-4
-6 1(X<0)
25 75
4x2
-4
4y
2
1(X>0)
25 75
解练:习当3点:M在已y知轴右圆侧O或1原: (点x运-2动)2时+y2=4,动圆M与圆 O1外切,且与y轴相切,求动圆圆心M的轨 迹方程.
因此合理应用定义是寻求解题捷径的 一种重要方法,灵活运用圆锥曲线的定义 常常会给解题带来极大方便.
山重水复 柳暗花明
一.复习提问:
1.圆的定义
平面内到定点O的距离等于定长r的点的轨迹 O叫做圆心
r叫做半径
(x a)2 ( y b)2 r2
O
M
r
确定圆的标准方程需要知道什么条件? 圆心(a,b),半径r
中心,焦点位置M,2a和2c 确定椭圆的标准
方程F1x
a
2 2
F1by22
1或
y2 a2
Fbx2F222
1
方程需要知道什 么条件?
3.双曲线的定义
平面内与两个定点F1,F2的距离的差 的绝对值
等于常数(小于︱F1F2︱)的点的轨迹叫做双曲线.
① 两个定点F1、F2——双曲线的焦点;
② |F1F2|=2c ——焦距.
·F
定直线 l 叫做抛物线的准线.
即:
若︳︳MMNF

︳ 1,
则点M的轨迹是抛物线。
确定抛物线的标准方程需要知道什么条件? 顶点、对称轴、焦点、p值
方程y2 2 px,y2 2 px,x2 2 py,x2 2 py
定义法求轨迹方程的基本步骤:
1.用几何方法论证动点的轨迹是某种圆锥曲线. 2.根据已知坐标判定该曲线的方程是标准方程. 3. 算出标准方程中所需的数据. 4. 写出方程,注意范围.
庖丁 解牛
例1. 一动圆与圆O1 : (x 3)2 y2 4外 切,同时与圆O2 : (x 3)2 y2 100 内切, 求动圆圆心P的轨迹。
例2.一动圆与圆O1: (x+3)2+y2=4外切, 同时与 圆O2: (x-3)2+y2=9外切,求动圆圆心 M的轨迹方程.
例3.一动圆M与圆C: (x-2)2 + y2=1 外切, 且与直线x+1=0相切,求圆心M的轨迹方 程是_________.
M
| |MF1| - |MF2| | = 2a(2a<|F1F2|=2c)
F1
oF
2
确定双曲线的标准方程
需要知道什么条件?
中心,焦点位置,2a和2c
方程
x2 a2
y2 b2
1或
y2 a2
x2 b2
1
4.抛物线的定义
平面内与一个定点F和一条定直线l
的距离相等的点的轨迹叫做抛物线.
l
· N M
定点 F 叫做抛物线的焦点,
定义法求轨迹方程
郸城二高:牛少华
2015.01.06
求轨迹方程的一般步骤:
(1)建系设点 (2)列式 (3)代换 (4)化简 (5)证明(一般省略不写)
在解题中,有的同学能自觉地根据问 题的特点应用公式, 定理, 法则; 但对 数学定义往往未加重视,以至不能及时地 发现一些促进问题迅速获解的隐含条件, 造成舍近求远,舍简求繁的情况.
解牛
圆O2: (x-3)2+y2<=︱9O外1O切2 ︱,求动圆圆心 ∴ 点M的轨M迹的是以轨O迹1 、方O程2 为.焦点的双曲线的左支
解:∴∴∴∵设a︱2b︱︱=a动2M=M=M2圆11OcOOM2212-︱的a︱2︱c2c—半===23r6︱径++33rM4为5Or,1依︱题=1可得
y
M
∴轨迹方程为:
2(Βιβλιοθήκη 3,0O)1Ox2—
1
y2 35 =1(
X<0
)
44
(3,O02)
x
3
例3:一动圆M与圆C: (x-2)2 + y2=1
庖丁 解牛
外切,且与直线x+1=0相切,求圆心M的
轨迹方程是_y_2___8__x__.
y
N
M
oC
x
练习1.∆ABC顶点为A(0,-2),C(0,2),三边长 BC,AC,BA成等差数列,公差d<0,求动点B的轨迹 方程。
练习.已知圆A: ( x 5)2 y2 1 , 圆 B : ( x 5)2 y2 16 ,若动圆 M 与圆 A、B 都
相切,求动圆圆心 M 的轨迹方程
练习3.已知圆O1: (x-2)2+y2=4,动圆M与圆O1 外切,且与y轴相切,求动圆圆心M的轨迹 方程.
练习2.ABC顶点为A(0, 2),C(0, 2),三边长a,b, c
方程(x a)2 ( y b)2 r 2
2.椭圆的定义
平面内与两定点F1、F2的距离的 和 等于常数
2a ( 2a > |F1F2| ) 的点的轨迹.
① 两个定点F1、F2——双曲线的焦点; ② |F1F2|=2c ——焦距. |MF1|+|MMF2|=2a(2a>|F1F2|=2c>0)
成等差数列,公差d 0,求动点B的轨迹方程. 解:由题意 BC BA 2 AC 8且 BC BA
动点B的轨迹是以A、C为焦点,以8为长轴长
的椭圆在y轴右边的部分,故所求轨迹方程为
x2 y2 1 x 0
16 12
y a
B
C
bc x
A
2、已知圆 A: ( x 5)2 y2 1 , 圆 B : ( x 5)2 y2 16 ,若动圆 M 与圆 A、B 都
相关文档
最新文档