2019年考研数学二真题及全面解析(Word版)
2019年全国硕士研究生入学统一考试(高等数学二)真题及答案解析

y
=
g(x) 在 x
=
a 对应的点处相切且曲率相等的充
分但不必条件,应选(A).
(7)设 A 是4阶矩阵,A* 是 A 的伴随矩阵,若线性方程组 Ax = 0 的基础解系中只有2个向量,
则 r( A*) = ( )
(A)0
应选(B)。
(3)下列反常积分发散的是( )
∫ (A) +∞ xe−xdx 0
∫ (B) +∞ xe−x2 dx 0
【答案】D
+∞ arctan x
∫ (C) 0
1+ x2 dx
+∞ x
∫ (D) 0
1+ x2 dx
【解析】(方法一)
∫ ∫ 由 +∞ xe−xdx = Γ(2) = 1,得 +∞ xe−xdx 收敛;
=
a 处连续,则 lim x→a
f
(x) − g(x) (x − a)2
= 0 是曲线
y = f (x) 和 y = g(x) 在 x = a 对应的点处相切且曲率相等的( )
(A)充分非必要条件,(B)充分必要条件 (C)必要非充分条件 (D)既非充分又非必要条件 【答案】A
【解析】若 lim x→a
∫∫ (5)已知平面区= 域 D
{(
x,
y)
||
x
|
+
|
y
|≤
π 2
}
,= 设 I1
D
x2 + y2 dxdy , I2 =
∫∫ ∫∫ sin x2 + y2 dxdy , I3 =(1− cos x2 + y2 )dxdy ,则( )
D
2019考研数学二考试真题及答案详解(完整版)

f (a ) g (a )
lim
f' (x)
g
' (
x)
xa 2(x a)
f (a) g(a)
lim f (x) g(x) = f (a) g(a) f ( a) g( a)
xa
2
2
f(x)与 g(x)相切于点 a.且曲率相等.选择(B)
f
+ y × f + 2y 2 f x
= - 2 y3 f + yf + 2 y3 f
x
x
=
yf
ççç
y2 x
÷÷÷÷
12. 设函数 y lncosx(0≤x≤ )的弧长为
.
6
解析:
y ln cos x, 0 x 6
l
6 0
1
sin x cos x
2019 考研数学二考试真题及答案详解 来源:文都教育
一、选择题 1~8 小题,每小题 4 分,共 32 分,下列每题给出的四个选项中,只有一个选项是符合题目要求 的.
1.当 x→0 时, x tan x与x k 同阶,求 k( )
A.1
B.2
C.3
D.4
解析:
x - tan x - x3 若要 x - tan x 与 xb 同阶无穷小, \ k = 3 3
A. y12 y22 y32
B. y12 y22 y32
C. y12 y22 y32
D. y12 y22 y32
解析: 由 A2 + A = 2E 得 λ2 + λ=2 , λ 为 A 的特征值, l=-2 或 1, 又 A λ1λ2 λ3=4 ,故 λ1=λ2=-2,λ3=1 ,
2019年全国硕士入学统考数学(二)试题考研数学真题及解析-12页word资料

2019年考研数学二真题一.选择题(本题共10小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号内)(1) 当0x +→( )A. 1-B.lnC. 1D.1-(2)函数11()tan ()()xxe e xf x x e e +=-在区间[],ππ-上的第一类间断点是x =( )A. 0B. 1C. 2π-D. 2π (3)如图.连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上图形分别是直径为2的上、下半圆周,设0()(),xF x f t dt =⎰则下列结论正确的是:( ).A .(3)F 3(2)4F =-- .B (3)F 5(2)4F = .C (3)F - 3(2)4F =- .D (3)F -5(2)4F =-- (4)设函数f (x )在x=0处连续,下列命题错误的是 ( )A. 若0()limx f x x →存在,则(0)0f = B. 若0()()lim x f x f x x→+-存在, (0)0f =C. 若0()lim x f x x →存在, 则(0)0f '=D. 0()()lim x f x f x x→--存在, (0)0f =(5)曲线1ln(1),xy e x=++渐近线的条数为 ( ).A 0 .B 1 .C 2 .D 3(6)设函数()f x 在(0,)+∞上具有二阶导数,且"()0f x >, 令n u = ()1,2.......,,f n n = 则下列结论正确的是 ( )A.若12u u >,则{}n u 必收敛B. 若12u u >,则{}n u 必发散C. 若12u u <,则{}n u 必收敛D. 若12u u <,则{}n u 必发散 (7)二元函数(,)f x y 在点(0,0)处可微的一个充分条件是 ( ) A.()()()(),0,0lim,0,00x y f x y f →-=⎡⎤⎣⎦B. ()(),00,0lim0x f x f x→-=,且()()00,0,0lim0y f y f y →-=C.()(,0,0,00,0lim0x y f x f →-=D. ()0lim ',0'(0,0)0,x x x f x f →-=⎡⎤⎣⎦且()0lim ',0'(0,0)0,y y y f x f →⎡⎤-=⎣⎦ (8)设函数(,)f x y 连续,则二次积分1sin 2(,)x dx f x y dy ππ⎰⎰等于 ( ).A10arcsin (,)y dy f x y dx ππ+⎰⎰ .B 10arcsin (,)y dy f x y dy ππ-⎰⎰.C 1arcsin 02(,)y dy f x y dx ππ+⎰⎰ .D 1arcsin 02(,)y dy f x y dx ππ-⎰⎰(9)设向量组123,,ααα线形无关,则下列向量组线形相关的是: ( ) (A ) ,,122331αααααα--- (B ) ,,122331αααααα+++ (C ) 1223312,2,2αααααα--- (D )1223312,2,2αααααα+++(10)设矩阵A=211121112--⎛⎫ ⎪-- ⎪ ⎪--⎝⎭,B=100010000⎛⎫ ⎪⎪ ⎪⎝⎭,则A 于B , ( )(A) 合同,且相似 (B) 合同,但不相似(C) 不合同,但相似 (D)既不合同,也不相似二.填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11)30arctan sin limx x xx →-=____.(12)曲线2cos cos 1sin x t t y t⎧=+⎨=+⎩上对应于4t π=的点处的法线斜率为_____ (13)设函数123y x =+,则()0ny =_____.(14)二阶常系数非齐次线性微分方程2''4'32x y y y e -+=的通解y =_____. (15)设(,)f u v 是二元可微函数,(,)y x z f x y =,则_____z zx yx y∂∂-=∂∂. (16)设矩阵01000010********A ⎛⎫⎪⎪= ⎪⎪⎝⎭,则3A 的秩为______.三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)设()f x 是区间0,4π⎡⎤⎢⎥⎣⎦上单调、可导函数,且满足()100cos sin ()sin cos f x x t t f t dt t dt t t --=+⎰⎰,其中1f -是f 的反函数,求()f x . (18)(本题满分11分) 设D是位于曲线y =- ()1,0a x >≤<+∞下方、x 轴上方的无界区域.(Ⅰ)求区域D 绕x 轴旋转一周所成旋转体的体积()V a ; (Ⅱ)当a 为何值时,()V a 最小?并求此最小值.(19)求微分方程()2''''y x y y +=满足初始条件(1)'(1)1y y ==的特解.(20)已知函数()f a 具有二阶导数,且'(0)f =1,函数()y y x =由方程11y y xe--=所确定.设(ln sin ),z f y x =-求x dzdx=,202x d z dx=.(21)(本题11分) 设函数(),()f x g x 在[,]a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==证明:存在(,)a b ξ∈,使得''''()()f g ξξ=.(22)(本题满分11分)设二元函数2. 1.(,)1 2.x x y f x y x y ⎧+≤⎪=≤+≤计算二重积分(,).Df x y d σ⎰⎰其中{}(,)2D x y x y =+≤(23)(本题满分11分)设线性方程组1231232123020(1)40x x x x x ax x x a x ⎧++=⎪++=⎨⎪++=⎩与方程12321(2)x x x a ++=-有公共解,求a 的值及所有公共解(24)设3阶对称矩阵A 的特征向量值1231,2,2,λλλ===-1(1,1,1)Tα=-是A 的属于1λ的一个特征向量,记534B A A E =-+其中E 为3阶单位矩阵是矩阵B的特征向量,并求B的全部特征值的特征向量;()I验证1II求矩阵B.()2019年考研数学二真题解析一.选择题(本题共10小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号内)(2) 当0x +→(B )A. 1-B.lnC. 1D.1-(2)函数11()tan ()()xxe e xf x x e e +=-在区间[],ππ-上的第一类间断点是x =(A)A. 0B. 1C. 2π-D. 2π (3)如图.连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上图形分别是直径为2的上、下半圆周,设0()(),xF x f t dt =⎰则下列结论正确的是:(C ).A .(3)F 3(2)4F =-- .B (3)F 5(2)4F = .C (3)F - 3(2)4F =- .D (3)F -5(2)4F =-- (4)设函数f (x )在x=0处连续,下列命题错误的是 (C)A. 若0()limx f x x →存在,则(0)0f = B. 若0()()lim x f x f x x→+-存在, (0)0f =C. 若0()lim x f x x →存在, 则(0)0f '=D. 0()()lim x f x f x x→--存在, (0)0f =(5)曲线1ln(1),xy e x=++渐近线的条数为 (D ).A 0 .B 1 .C 2 .D 3(6)设函数()f x 在(0,)+∞上具有二阶导数,且"()0f x >, 令n u = ()1,2.......,,f n n = 则下列结论正确的是 (D)A.若12u u >,则{}n u 必收敛B. 若12u u >,则{}n u 必发散C. 若12u u <,则{}n u 必收敛D. 若12u u <,则{}n u 必发散 (7)二元函数(,)f x y 在点(0,0)处可微的一个充分条件是 (B ) A.()()()(),0,0lim,0,00x y f x y f →-=⎡⎤⎣⎦B. ()(),00,0lim0x f x f x→-=,且()()00,0,0lim0y f y f y →-=C.()(,0,0,00,0lim0x y f x f →-=D. ()0lim ',0'(0,0)0,x x x f x f →-=⎡⎤⎣⎦且()0lim ',0'(0,0)0,y y y f x f →⎡⎤-=⎣⎦ (8)设函数(,)f x y 连续,则二次积分1sin 2(,)x dx f x y dy ππ⎰⎰等于 (B ).A10arcsin (,)y dy f x y dx ππ+⎰⎰ .B 10arcsin (,)y dy f x y dy ππ-⎰⎰.C 1arcsin 02(,)y dy f x y dx ππ+⎰⎰ .D 1arcsin 02(,)y dy f x y dx ππ-⎰⎰(9)设向量组123,,ααα线形无关,则下列向量组线形相关的是: (A) (A ) ,,122331αααααα--- (B ) ,,122331αααααα+++ (C ) 1223312,2,2αααααα--- (D )1223312,2,2αααααα+++(10)设矩阵A=211121112--⎛⎫ ⎪-- ⎪ ⎪--⎝⎭,B=100010000⎛⎫ ⎪⎪ ⎪⎝⎭,则A 于B , (B )(A) 合同,且相似 (B) 合同,但不相似(C) 不合同,但相似 (D)既不合同,也不相似二.填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11)30arctan sin limx x x x →-=16.(12)曲线2cos cos 1sin x t t y t⎧=+⎨=+⎩上对应于4t π=1). (13)设函数123y x =+,则()0ny =23n -⋅.(14)二阶常系数非齐次线性微分方程2''4'32x y y y e -+=的通解y =_32122x x x C e C e e +-. (15)设(,)f u v 是二元可微函数,(,)y x z f x y =,则1222(,)(,)z z y y x x y xx y f f x y x x y y x y∂∂''-=-+∂∂. (16)设矩阵01000010********A ⎛⎫⎪⎪= ⎪⎪⎝⎭,则3A 的秩为_1______.三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)设()f x 是区间0,4π⎡⎤⎢⎥⎣⎦上单调、可导函数,且满足()100cos sin ()sin cos f x x t t f t dt t dt t t --=+⎰⎰,其中1f -是f 的反函数,求()f x . 【详解】: 设(),y f t =则1()t fy -=.则原式可化为:1(0)0cos sin '()sin cos xxf t tyf y dy tdt t t--=+⎰⎰ 等式两边同时求导得:cos sin '()sin cos x xxf x x x x-=+c o s s i n'()s i n c o sx x f x x x -=+ (18)(本题满分11分) 设D是位于曲线y =- ()1,0a x >≤<+∞下方、x 轴上方的无界区域.(Ⅰ)求区域D 绕x 轴旋转一周所成旋转体的体积()V a ; (Ⅱ)当a 为何值时,()V a 最小?并求此最小值. 【详解】:22222()())(ln )xa a I V a y dx dx a πππ-+∞+∞===⎰⎰22412(ln )(2ln )2()()0(ln )a a a a II V a a π-'=⋅= 得ln (ln 1)0a a -=故ln 1a =即a e =是唯一驻点,也是最小值点,最小值2()V e e π= (19)求微分方程()2''''y x y y +=满足初始条件(1)'(1)1y y ==的特解.【详解】: 设dy p y dx '==,则dpy dx''=代入得: 22()dp dx x p x x p p p dx dp p p++=⇒==+ 设x u p= 则()d pu u p dp =+du u p u p dp ⇒+=+1dudp ⇒=1u p c ⇒=+即21x p c p =+ 由于(1)1y '=故11110c c =+⇒=即2x p =32223dy p y x c dx ⇒==⇒=±+ 由21(1)13y c =⇒=或253c = 特解为322133y x =+或322533y x =-+(20)已知函数()f a 具有二阶导数,且'(0)f =1,函数()y y x =由方程11y y xe--=所确定.设(ln sin ),z f y x =-求x dzdx=,202x d zdx=.【详解】: 11y y xe--=两边对x 求导得11()0y y y e xe y --''-+⋅=得 111y y e y xe --'=- (当01)x y ==,故有11121x e y -='==-1(ln sin )(cos )(0)(111)0x x dz f y x y x f dxy=='''=--=⨯-=222221()(ln sin )(cos )(ln sin )(sin )x x d z y f y x y x f y x x dx y y=='''''=--+--+221(0)(111)(0)(10)1(1)11f f -'''=⨯-+⨯+=⨯-=- (21)(本题11分)设函数(),()f x g x 在[,]a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==证明:存在(,)a b ξ∈,使得''''()()f g ξξ=.【详解】:证明:设(),()f x g x 在(,)a b 内某点(,)c a b ∈同时取得最大值,则()()f c g c =,此时的c 就是所求点()()f g ηηη=使得.若两个函数取得最大值的点不同则有设()max (),()max ()f c f x g d g x ==故有()()0,()()0f c g c g d f d ->-<,由介值定理,在(,)c d 内肯定存在()()f g ηηη=使得由罗尔定理在区间(,),(,)a b ηη内分别存在一点''1212,,()()f f ξξξξ使得==0在区间12(,)ξξ内再用罗尔定理,即''''(,)()()a b f g ξξξ∈=存在,使得. (22)(本题满分11分)设二元函数2.1.(,)12.x x y f x y x y ⎧+≤⎪=≤+≤计算二重积分(,).Df x y d σ⎰⎰其中{}(,)2D x y x y =+≤【详解】:D 如图(1)所示,它关于x,y 轴对称,(,)f x y 对x,y 均为偶函数,得1(,)4(,)DD f x y d f x y d σσ=⎰⎰⎰⎰,其中1D 是D 的第一象限部分.由于被积函数分块表示,将1D 分成(如图(2)):11112D D D =,且1112:1,0,0 :12,0,0D x y x y D x y x y +≤≥≥≤+≤≥≥于是11212(,)(,)(,)D D D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰.而111112200111(,)(1)3412xD f x y d dx x dy x x dx σ-==-=-=⎰⎰⎰⎰⎰(1)(2)121222cos sin 10cos sin 1(,)()D D f x y d d rdr rπθθθθσσθ++==⋅⎰⎰⎰⎰极坐标变换220221122200021112001cos sin cos sin 2sin cos222(tan )222122(1)1tan 2tan22221)u td d d du du u u u dt dt t πππθθθθθθθθθθθ-===+-+===-+---+==-===⎰⎰⎰⎰⎰⎰ 所以11(,)1)12D f x y d σ=⎰⎰得1(,)4(1))12Df x y d σ=+⎰⎰(23)(本题满分11分)设线性方程组1231232123020(1)40x x x x x ax x x a x ⎧++=⎪++=⎨⎪++=⎩与方程12321(2)x x x a ++=-有公共解,求a 的值及所有公共解. 【详解】:因为方程组(1)、(2)有公共解,即由方程组(1)、(2)组成的方程组1231232123123020(3)4021x x x x x ax x x a x x x x a ++=⎧⎪++=⎪⎨++=⎪⎪++=-⎩的解.即矩阵211100201401211aa a ⎛⎫ ⎪⎪ ⎪ ⎪ ⎪-⎝⎭211100110001000340a a a ⎛⎫ ⎪- ⎪→ ⎪- ⎪ ⎪++⎝⎭方程组(3)有解的充要条件为1,2a a ==.当1a =时,方程组(3)等价于方程组(1)即此时的公共解为方程组(1)的解.解方程组(1)的基础解系为(1,0,1)Tξ=-此时的公共解为:,1,2,x k k ξ==当2a =时,方程组(3)的系数矩阵为111011101220011014400001111100⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪→ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭此时方程组(3)的解为1230,1,1x x x ===-,即公共解为:(0,1,1)T k -(24)设3阶对称矩阵A 的特征向量值1231,2,2,λλλ===-1(1,1,1)Tα=-是A 的属于1λ的一个特征向量,记534B A A E =-+其中E 为3阶单位矩阵()I 验证1α是矩阵B 的特征向量,并求B 的全部特征值的特征向量; ()II 求矩阵B .【详解】:(Ⅰ)可以很容易验证111(1,2,3...)n nA n αλα==,于是 5353111111(4)(41)2B A A E ααλλαα=-+=-+=- 于是1α是矩阵B 的特征向量.B 的特征值可以由A 的特征值以及B 与A 的关系得到,即 53()()4()1B A A λλλ=-+, 所以B 的全部特征值为-2,1,1.前面已经求得1α为B 的属于-2的特征值,而A 为实对称矩阵,于是根据B 与A 的关系可以知道B 也是实对称矩阵,于是属于不同的特征值的特征向量正交,设B 的属于1的特征向量为123(,,)Tx x x ,所以有方程如下:1230x x x -+=于是求得B 的属于1的特征向量为23(1,0,1),(1,1,0)T Tαα=-=(Ⅱ)令矩阵[]123111,,101110P ααα-⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦,则1(2,1,1)P BP diag -=-,所以1111333111112(2,1,1)101(2,1,1)333110121333B P d i a g P d i a g -⎡⎤-⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=⋅-⋅=---⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦011101110-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦。
2019全国硕士研究生考研数学二真题及答案解析

一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1、当→x 0时,若−x x tan 与x k是同阶无穷小,则=k A. 1. B. 2.C. 3. D.4.【答案】C【解析】−−x x x 3tan ~3,所以选C.2、设函数=+−y x x x x 22sin 2cos ()π3π的拐点 A. 22(,).ππB.(0,2).C.−,2).π( D. −22(,).π3π3【答案】C.【解析】令=−=''y x x sin 0,可得=x π,因此拐点坐标为(,)−2π. 3、下列反常积分发散的是A. ⎰−+∞x xx e d 0B. ⎰−+∞x xx e d 02C.⎰++∞x x x1d arctan 02D.⎰++∞x x x 1d 02【答案】D 【解析】⎰+=+=+∞+∞+∞x x x x 12d ln(1)1022,其他的都收敛,选D. 4、已知微分方程x ce =by +y ¢a +y ¢¢的通解为x e +x -e )x 2C +1C (=y ,则a 、b 、c 依次为A 、1,0,1B 、 1,0,2C 、2,1,3D 、2,1,4【答案】 D.【解析】由通解形式知,==−λλ112,故特征方程为()+++λλλ1=21=022,所以==a b 2,1,又由于=y x e 是+='''y y y ce x +2的特解,代入得=c 4.5、已知积分区域=+D x y x y2{(,)|}π,⎰⎰=I x y d 1,2019全国硕士研究生考研数学二真题及答案解析(官方)2d DI x y =⎰⎰,3(1d DI x y =−⎰⎰,试比较123,,I I I 的大小A. 321I I I <<B. 123I I I <<C. 213I I I << D. 231I I I <<【答案】C【解析】在区域D上2220,4x y π≤+≤∴≤,进而213.I I I <<6、已知(),()f x g x 的二阶导数在x a =处连续,则2()g()lim0()x af x x x a →−=−是曲线(),()y f x y g x ==在x a =处相切及曲率相等的A.充分非必要条件.B.充分必要条件.C.必要非充分条件.D.既非充分又非必要条件.【答案】A【解析】充分性:利用洛必达法则,有2()g()()g ()()g ()limlim lim 0.()2()2x ax a x a f x x f x x f x x x a x a →→→''''''−−−===−−从而有()(),()(),()()f a g a f a g a f a g a ''''''===,即相切,曲率也相等. 反之不成立,这是因为曲率322(1)y K y ''='+,其分子部分带有绝对值,因此()()f a g a ''''=或()()f a g a ''''=−;选A.7、设A 是四阶矩阵,*A 是A 的伴随矩阵,若线性方程组Ax =0的基础解系中只有2个向量,则*A 的秩是() A.0 B.1 C.2D.3【答案】 A.【解析】由于方程组基础解系中只有2个向量,则()2r A =,()3r A <,()0r A *=.8、设A 是3阶实对称矩阵,E 是3阶单位矩阵. 若22+=A A E ,且4=A ,则二次型T x Ax 规范形为A. 222123.y y y ++ B. 222123.y y y +−C. 222123.y y y −− D. 222123.y y y −−−【答案】C【解答】由22+=A A E ,可知矩阵的特征值满足方程220λλ+−=,解得,1λ=或2λ=−. 再由4=A ,可知1231,2λλλ===−,所以规范形为222123.y y y −−故答案选C.二、填空题:9~14小题,每小题4分,共24分. 9. 2lim(2)x xx x →+=___________.【解析】022lim ln(2)lim(2)ex x x x xxx x →+→+=其中000221lim ln(2)2lim 2lim(12ln 2)2(1ln 2)x xx x x x x x x x→→→+−+==+=+所以222ln 22lim(2)e4x xx x e +→+==10.曲线sin 1cos x t t y t=−⎧⎨=−⎩在32t π=对应点处切线在y 轴上的截距___________.【解析】d sin d 1cos y tx t=−当32t π=时,3d 1,1,12d yx y xπ=+==−所以在32t π=对应点处切线方程为322y x π=−++所以切线在y 轴上的截距为322π+11.设函数()f u 可导,2()y z yf x=,则2z zx y x y ∂∂+=∂∂___________.【解析】223222()()()z y y y y yf f x x x x x∂''=−=−∂2222222()()()()()z y y y y y y f yf f f y x x x x x x ∂''=+=+∂所以22()z z y x y yf x y x∂∂+=∂∂12.设函数ln cos (0)6y x xπ=的弧长为___________.【解析】弧长61d cos s x x x xπ===⎰6011ln |tan |ln 3cos 2x x π=+==13.已知函数21sin ()d xt f x xt t=⎰,则10()d f x x =⎰___________.【解析】设21sin ()d xt F x t t=⎰,则1100()d ()d f x x xF x x=⎰⎰112212000111()d [()]d ()222F x x x F x x F x ==−⎰⎰211220011sin ()d d 22x x F x x x xx '=−=−⎰⎰122100111sin d cos (cos11)244x x x x =−==−⎰14.已知矩阵1100211132210034−⎛⎫ ⎪−− ⎪= ⎪−− ⎪⎝⎭A ,ij A 表示||A 中(,)i j 元的代数余子式,则1112A A −=___________.【解析】11121100100021112111||3221312100340034A A −−−−−−−===−−−A 1111111210104034034−−−−=−==−三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.15、(本题满分10分)已知2,0,()e 1,0,xx x x f x x x ⎧>⎪=⎨+⎪⎩求()f x ',并求()f x 的极值.解:0x >时,2ln 2ln (0)(e)e (2ln 2)x xx x f x ''==+;0x <时,()(1)e x f x x '=+;又2ln 00()(0)e 1(0)lim lim0x x x x f x f f x x+++→→−−'==−002ln lim lim 2ln x x x xx x++→→===−∞, 所以(0)f '不存在,因此22(1ln ),0,()(1)e ,0.xxx x x f x x x ⎧+>⎪'=⎨+<⎪⎩令()0f x '=,得驻点1311,ex x =−=;另外()f x 还有一个不可导点20x =; 又(,1)−∞−为单调递减区间,(1,0)−为单调递增区间,1(0,)e 为单调递减区间,1(,)e+∞为单调递增区间;因此有极小值1(1)1e f −=−和极小值2e 1()e ef −=,极大值(0)1f =.16、(本题满分10分) 求不定积分2236d .(1)(1)x x x x x +−++⎰解:2222362321d []d (1)(1)1(1)1x x x xx x x x x x x ++=−++−++−−++⎰⎰ 232ln 1ln(1)1x x x C x =−−−++++−17、(本题满分10分)()y y x =是微分方程22e x y xy '−=满足(1)y =.(1)求()y x ;(2)设平面区域{(,}|12,0()}D x y x y y x =,求D 绕x 轴旋转一周所得旋转体的体积.解(1)2d d 2()e [e e d ]x x xx xy x x C −⎰⎰=+⎰2222e ()e )x x x C C =+=+;又由(0)y =得0C =,最终有22()e x y x =.(2)所求体积22222211πe )d πe d x x V x x x==⎰⎰2241ππe (e e)22x ==−.18、已知平面区域D 满足2234,()xy x y y +,求d x y ⎰⎰.解:由xy 可知区域D 关于y 轴对称,在极坐标系中,π3π44θ;将cos ,sin x r y r θθ==代入2234()x y y +得2sin r θ;由奇偶对称性,有2πsin 2π04sin d d 2d d r x y x y r r r==⎰⎰⎰⎰⎰⎰θθθππ52222ππ44sin d (1cos )dcos 120==−−=⎰⎰θθθθ19、设n 为正整数,记n S 为曲线e sin (0π)xy x x n −=与x 轴所围图形的面积,求n S ,并求lim n n S →∞.解:设在区间[π,(1)π]k k +(0,1,2,,1)k n =−L 上所围的面积记为k u ,则(1)π(1)πππe |sin |d (1)e sin d k k x kx k k k u x x x x ++−−==−⎰⎰;记e sin d x I x x −=⎰,则e d cos (e cos cos de )x x x I x x x −−−=−=−−⎰⎰e cos e dsin e cos (e sin sin de )x x x x x x x x x x −−−−−=−−=−−−⎰⎰e (cos sin )x x x I −=−+−,所以1e (cos sin )2xI x x C −=−++;因此(1)π(1)πππ11(1)()e (cos sin )(e e )22k kk k k k k u x x +−−+−=−−+=+;(这里需要注意cos π(1)kk =−)因此π(1)π1ππ111e e e 221e n n n k n k k k S u −−+−−−==−==+=+−∑∑; π(1)πππππ1e e 1e 11lim lim21e 21e 2e 1n n n n S −−+−−−→∞→∞−=+=+=+−−−20、已知函数(,)u x y 满足222222330u u u u x y x y∂∂∂∂−++=∂∂∂∂,求,a b 的值,使得在变换(,)(,)e ax by u x y v x y +=下,上述等式可化为(,)v x y 不含一阶偏导数的等式.解:e e ax byax by x u v va x++∂'=+∂, 222e e e e ax by ax by ax byax by xx x x u v v a v a va x++++∂''''=+++∂2e 2ee ax by ax byax by xx x v av a v +++'''=++同理,可得ee ax by ax by y u v bv y++∂'=+∂,222e 2e e ax by ax by ax by yy y u v bv b v y +++∂'''=++∂; 将所求偏导数代入原方程,有22e [22(43)(34)(2233)]0ax by xx yy x y v v a v b v a b a b v +''''''−+++−+−++=,从而430,340a b +=−=,因此33,44a b =−=. 21、已知函数(,)f x y 在[0,1]上具有二阶导数,且1(0)0,(1)1,()d 1f f f x x ===⎰,证明:(1)存在(0,1)ξ∈,使得()0f ξ'=; (2)存在(0,1)η∈,使得()2f η''<−. 证明:(1)由积分中值定理可知,存在(0,1)c ∈,使得1()d (10)()f x x f c =−⎰,即()1f c =.因此()(1)1f c f ==,由罗尔定理知存在(,1)((0,1))c ∈⊂ξ,使得()0f ξ'=.(2)设2()()F x f x x =+,则有2(0)0,()1,(1)2F F c c F ==+=;由拉格朗日中值定理可得:存在1(0,)c ∈η,使得21()(0)1()0F c F c F c c −+'==−η;存在2(,1)c ∈η,使得22(1)()1()111F F c c F c c c−−'===+−−η;对于函数()F x ',由拉格朗然中值定理同样可得,存在12(,((0,1))∈⊂ηηη,使得22121212111(1)1()()()0c c F F c c F ++−−''−''===<−−−ηηηηηηηηη, 即()20f ''+<η;结论得证.22.已知向量组(Ⅰ)232111=1=0,=2443a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦1ααα,,(Ⅱ)21231011,2,3,313a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+−+⎣⎦⎣⎦⎣⎦βββ,若向量组(Ⅰ)和向量组(Ⅱ)等价,求a 的取值,并将3β用23,,1ααα线性表示.【解析】令123(,,)=A ααα,123(,,)=B βββ,所以,21a =−A ,22(1)a =−B . 因向量组I 与II 等价,故()()(,)r r r ==A B A B ,对矩阵(,)A B 作初等行变换.因为2222111101111101(,)102123011022.443313001111a a a a a a a a ⎛⎫⎛⎫ ⎪ ⎪=→− ⎪ ⎪ ⎪ ⎪++−+−−−−⎝⎭⎝⎭A B 当1a =时,()()(,)2r r r ===A B A B ;当1a =−时,()()2r r ==A B ,但(,)3r =A B ;当1a ≠±时,()()(,)3r r r ===A B A B . 综上,只需1a ≠−即可. 因为对列向量组构成的矩阵作初等行变换,不改变线性关系.①当1a =时,12331023(,,,)01120000⎛⎫ ⎪→−− ⎪ ⎪⎝⎭αααβ,故3112233x x x =++βααα的等价方程组为132332,2.x x x x =−⎧⎨=−+⎩故3123(3)(2)k k k =−+−++βααα(k 为任意常数);②当1a ≠±时,12331001(,,,)01010011⎛⎫⎪→− ⎪ ⎪⎝⎭αααβ,所以3123=−+βααα.23.已知矩阵22122002x −−⎡⎤⎢⎥=−⎢⎥⎢⎥−⎣⎦A 与21001000y ⎡⎤⎢⎥=−⎢⎥⎢⎥⎣⎦B 相似, (Ⅰ)求,x y ;(Ⅱ)求可逆矩阵P 使得1−P AP =B 解:(1)相似矩阵有相同的特征值,因此有2221,,x y −+−=−+⎧⎪⎨=⎪⎩A B 又2(42)x =−−A ,2y =−B ,所以3,2x y ==−. (2)易知B 的特征值为2,1,2−−;因此2102001000r⎛⎫⎪−⎯⎯→ ⎪ ⎪⎝⎭A E ,取T 1(1,2,0)ξ=−,120001000r⎛⎫ ⎪⎯⎯→ ⎪ ⎪⎝⎭A+E ,取T 2(2,1,0)ξ=−,4012021000r⎛⎫ ⎪⎯⎯→− ⎪ ⎪⎝⎭A+E ,取T3(1,2,4)ξ=−令1123(,,)P ξξξ=,则有111200010002P AP −⎛⎫⎪=− ⎪ ⎪−⎝⎭;同理可得,对于矩阵B ,有矩阵2110030001P −⎛⎫ ⎪= ⎪ ⎪⎝⎭,122200010002P BP −⎛⎫ ⎪=− ⎪ ⎪−⎝⎭,所以111122P AP P BP −−=,即112112B P P APP −−=,所以112111212004P PP −−−−⎛⎫⎪== ⎪ ⎪⎝⎭.。
2019年考研数学二真题及答案解析

x C
由y(e) e可得C 0,故y xe .
(2) V
x2 2
2
1
y 2 dx xe x dx V
2
2
2
1
(e4 4).
(18) (本题满分 10 分) 【答案】 【解析】 (19) (本题满分 10 分) n N , S n 是 f x e 求 S n ,并求 lim Sn
Born to win
2019 年考研数学二真题及答案解析
——跨考教育数学教研室
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项 符合题目要求的,请将所选项前的字母填在答题纸 指定位置上. ... (1)当 x 0 时,若 x tan x与x 是同阶无穷小,则 k
0 0 0
6 0
1 ln 3 ln 3 2
Born to win
(13)已知函数 f ( x) x 【答案】 【解析】
x
1
1 sin t 2 dt , 则 f ( x)dx =__________. 0 t
1 (cos1 1) 4
1
0
f ( x)dx f ( x) x
x 2 1
x
1
sin t 2 dt , t
令 ( x)
1 1 sin t 1 1 dt , 则 f ( x)dx = x ( x)dx ( x)dx 2 0 0 t 2 0 1
1 1 1 1 1 sin x 2 1 1 ( x ) x 2 0 x 2 d ( x ) x 2 dx cos x 2 (cos1 1) 0 0 2 2 x 4 4 0
2019年数学二真题及答案解析【原版】

2019年数学二真题及答案解析——一、选择题:1~8 小题,每小题4 分,共32 分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答.题.纸.指定位置上.(1)当x →0 时,若x −tan x 与x k是同阶无穷小,则k =(A )1.(B )2.(C )3.(D )4.【答案】C【解析】33311tan (())~,33x x x x x o x x -=-++-故 3.k =(2)设函数3sin 2cos 22y x x x x ππ⎛⎫=+-<< ⎪⎝⎭的拐点坐标为(A ),22ππ⎛⎫⎪⎝⎭(B )()0,2.(C )(),2π-(D )33,22ππ⎛⎫⎪⎝⎭【答案】C【解析】'sin cos 2sin cos sin y x x x x x x x=+-=-''cos sin cos sin y x x x x x x=--=-令''00y x x π===得或当''0;''0x y x y πππ>><<时当时,,故(,-2)为拐点(3)下列反常积分发散的是()(A )xxe dx +∞-⎰(B )2x xe dx +∞-⎰(C )2arctan 1x dx x +∞+⎰(D )201xdx x +∞+⎰【答案】(D )【解析】(A )1,.xx xx xe dx xde xee dx +∞+∞+∞----+∞=-=-+=⎰⎰⎰收敛.(B )2220011,.22x x xe dx e dx +∞+∞--==⎰⎰收敛(C )[]2220arctan 1arctan 128x dx x x π+∞+∞==+⎰,收敛.(D )22001ln(1).12x dx x x +∞+∞=+=+∞+⎰发散综上,故选(D )(4)已知微分方程xy ay by ce '''++=的通解为12(),xx y C C x ee -=++则,,a b c 依次为()(A )1,0,1(B )1,0,2(C )2,1,3(D )2,1,4【答案】D 【解析】()221012,1;2, 4.x x r ar b r a b e y y y ce c -++=+=='''++==由题干分析出为特征方程的二重根,即=0故又为的解代入方程得(5)【答案】【解析】(6)已知(),()f x g x 二阶可导且在x a =处连续,则(),()f x g x 在a 点相切且曲率相等是2()()lim0()x af xg x x a →-=-的()(A )充分非必要条件(B )充分必要条件(C )必要非充分条件(D )既非充分也非必要条件【答案】(C )【解析】因2()()lim0()x af xg x x a →-=-,则[][]221[()()]()()()()()()2lim0()x af ag a f a g a x a f a g a x a x a →''''''-+--+--=-,故()()0()()0()()0f a g a f a g a f a g a -=⎧⎪''-=⎨⎪''''-=⎩由此可得(),()f x g x 在a 点相切且曲率相等。
2019年考研数学二真题及全面解析(Word版)

2019年考研数学(二)真题及完全解析(Word 版)一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1、当0x →时,若tan x x -与k x 是 同阶无穷小量,则k =( )A 、 1.B 、2.C 、 3.D 、 4.【答案】C . 【解析】因为3tan ~3x x x --,所以3k =,选 C .2、曲线3sin 2cos y x x x x ππ⎛⎫=+<< ⎪⎝⎭ -22的拐点是( ) A 、,ππ⎛⎫ ⎪⎝⎭ 22 . B 、()0,2 . C 、(),2π- . D 、33,ππ⎛⎫⎪⎝⎭ 22. 【答案】C . 【解析】cos sin y x x x '=- ,sin y x x ''=-,令 sin 0y x x ''=-=,解得0x =或x π=。
当x π>时,0y ''>;当x π<时,0y ''<,所以(),2π- 是拐点。
故选 C .3、下列反常积分发散的是( )A 、0xxe dx +∞-⎰. B 、2x xe dx +∞-⎰. C 、20tan 1arx x dx x +∞+⎰. D 、201x dx x+∞+⎰. 【答案】D . 【解析】A 、1xxx x xe dx xde xee dx +∞+∞+∞+∞----=-=-+=⎰⎰⎰,收敛;B 、222001122x x xedx e dx +∞+∞--==⎰⎰,收敛;C 、22200tan 1arctan 128arx x dx x x π+∞+∞==+⎰,收敛;D 、2222000111(1)ln(1)1212x dx d x x x x +∞+∞+∞=+=+=+∞++⎰⎰,发散,故选D 。
4、已知微分方程的x y ay byce '''++=通解为12()x x y C C x e e -=++,则,,a b c 依次为( )A 、 1,0,1.B 、 1,0,2.C 、2,1,3.D 、2,1,4. 【答案】D .【解析】 由题设可知1r =-是特征方程20r ar b ++=的二重根,即特征方程为2(1)0r +=,所以2,1ab == 。
2019年年考研数学二真题答案解析.doc

1..【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: x x y )sin 1(+==)sin 1ln(x x e +,于是]sin 1cos )sin 1[ln()sin 1ln(x xx x e y x x +⋅++⋅='+,从而π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得 x xx x y ys i n 1c o s )s i n 1l n (1+++=', 于是]sin 1cos )sin 1[ln()sin 1(x xx x x y x +⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='【评注】 幂指函数的求导问题,既不能单纯作为指数函数对待,也不能单纯作为幂函数,而直接运用相应的求导公式.2..【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=,1)1(lim )(lim23=+=+∞→+∞→x x x x x f x x[]23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x ,于是所求斜渐近线方程为.23+=x y 【评注】 如何求垂直渐近线、水平渐近线和斜渐近线,是基本要求,应熟练掌握。
这里应注意两点:1)当存在水平渐近线时,不需要再求斜渐近线;2)若当∞→x 时,极限x x f a x )(lim∞→=不存在,则应进一步讨论+∞→x 或-∞→x 的情形,即在右或左侧是否存在斜渐近线,本题定义域为x>0,所以只考虑+∞→x 的情形. 3..【分析】 作三角代换求积分即可. 【详解】 令t x sin =,则=--⎰1221)2(x xxdx⎰-202cos )sin 2(cos sin πdt t t tt=.4)arctan(cos cos 1cos 20202πππ=-=+-⎰t tt d【评注】 本题为广义积分,但仍可以与普通积分一样对待作变量代换等. 4...【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可. 【详解】 原方程等价为x y x y ln 2=+',于是通解为⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x x C dx ex ey dxx dxx=2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=【评注】 本题虽属基本题型,但在用相关公式时应注意先化为标准型. 另外,本题也可如下求解:原方程可化为x x xy y x ln 222=+',即 x x y x ln ][22=',两边积分得Cx x x xdx x y x +-==⎰332291ln 31ln ,再代入初始条件即可得所求解为.91ln 31x x x y -=5…【分析】 题设相当于已知1)()(lim0=→x x x αβ,由此确定k 即可.【详解】 由题设,200cos arcsin 1lim )()(lim kx xx x x x x x -+=→→αβ=)cos arcsin 1(cos 1arcsin lim20x x x kx x x x x ++-+→=k 21143cos 1arcsin lim 20==-+→k x x x x x ,得.43=k【评注】 无穷小量比较问题是历年考查较多的部分,本质上,这类问题均转化为极限的计算.6…【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B【评注】 本题相当于矩阵B 的列向量组可由矩阵A 的列向量组线性表示,关键是将其转化为用矩阵乘积形式表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年考研数学(二)真题及完全解析(Word 版)一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1、当0x →时,若tan x x -与 kx 是 同阶无穷小量,则k=( )A 、 1.B 、2.C 、 3.D 、 4.【答案】C .【解析】因为 3tan ~3x x x --,所以3k =,选 C .2、曲线3sin 2cos y x x x x ππ⎛⎫=+<< ⎪⎝⎭ -22的拐点是( ) A 、,ππ⎛⎫⎪⎝⎭ 22 . B 、()0,2 . C 、(),2π- . D 、33,ππ⎛⎫ ⎪⎝⎭ 22.【答案】C . 【解析】cos sin y x x x '=- ,sin y x x ''=-,令 sin 0y x x ''=-=,解得0x =或x π=。
当x π>时,0y ''>;当x π<时,0y ''<,所以(),2π- 是拐点。
故选 C . 3、下列反常积分发散的是( )A 、xxe dx +∞-⎰. B 、 2x xe dx +∞-⎰. C 、 20tan 1arx x dx x +∞+⎰. D 、201x dx x+∞+⎰. 【答案】D . 【解析】A 、1xxx x xe dx xde xee dx +∞+∞+∞+∞----=-=-+=⎰⎰⎰,收敛;B 、222001122x x xe dx e dx +∞+∞--==⎰⎰,收敛;C 、22200tan 1arctan 128arx x dx x x π+∞+∞==+⎰,收敛; D 、2222000111(1)ln(1)1212x dx d x x x x +∞+∞+∞=+=+=+∞++⎰⎰,发散,故选D 。
4、已知微分方程的x y ay byce '''++=通解为12()x x y C C x e e -=++,则,,a b c 依次为( )A 、 1,0,1.B 、 1,0,2.C 、2,1,3.D 、2,1,4. 【答案】D .【解析】 由题设可知1r=-是特征方程20r ar b ++=的二重根,即特征方程为2(1)0r +=,所以2,1a b == 。
又知*x ye =是方程2xy y y ce '''++=的特解,代入方程的4c =。
故选D 。
5、已知积分区域(),2D x y x y π⎧⎫=+≤⎨⎬⎩⎭ ,221D I x y dxdy =+⎰⎰,222sin DI x y dxdy =+⎰⎰, ()2231cos DI x y dxdy =-+⎰⎰,则( )A 、321I I I <<.B 、 213I I I <<.C 、123I I I <<.D 、231I I I <<.【答案】A .【解析】比较积分的大小,当积分区域一致时,比较被积函数的大小即可解决问题。
由 2x y π+≤,可得 2222x y π⎛⎫+≤ ⎪⎝⎭【画图发现2x y π+≤包含在圆2222x y π⎛⎫+= ⎪⎝⎭的内部】,令22u x y =+,则 02u π≤≤,于是有 sin u u >,从而2222sin DDx y dxdy x y dxdy +>+⎰⎰⎰⎰。
令()1cos sin f u u u =--,则()sin cos f u u u '=-,()04f π'=。
()f u 在0,4π⎛⎫⎪⎝⎭内单调减少, 在,42ππ⎛⎫ ⎪⎝⎭单调增加,又因为(0)()02f f π==,故在0,2π⎛⎫⎪⎝⎭内()0f u <,即1cos sin u u -<,从而2222sin (1cos )DDx y dxdy x y dxdy +>-+⎰⎰⎰⎰。
综上,选A 。
6、设函数(),()f x g x 的二阶导数在x a =处连续,则2()()lim0()x af xg x x a →-=-是两条曲线()y f x =, ()y g x =在x a =对应的点处相切及曲率相等的( )A 、充分非必要条件.B 、充分必要条件.C 、必要非充分条件.D 、既非充分也非必要条件. 【答案】A .【解析】充分性:利用洛必达法则,由2()()lim0()x af xg x x a →-=-可得()()lim02()x af xg x x a →''-=-及()()lim02x a f x g x →''''-=, 进而推出 ()()f a g a =,()()f a g a ''=,()()f a g a ''''=。
由此可知两曲线在x a =处有相同切线,且由曲率公式322[1()]y K y ''='+可知曲线在x a =处曲率也相等,充分性得证。
必要性:由曲线()y f x =,()y g x =在x a =处相切,可得()()f a g a =,()()f a g a ''=; 由曲率相等332222()()[1(())][1(())]f ag a f a g a ''''=''++,可知()()f a g a ''''=或()()f a g a ''''=-。
当()()f a g a ''''=-时,所求极限2()()()()()()limlim lim ()()2()2x ax a x a f x g x f x g x f x g x f a x a x a →→→''''''---''===--,而()f a ''未必等于0,因此必要性不一定成立。
故选A 。
7、设A 是4阶矩阵,*A 为A 的伴随矩阵,若线性方程组0Ax =的基础解系中只有2个向量,则 *()r A =( )。
A 、0. B 、 1. C 、2. D 、3.【答案】A .【解析】因为方程组0Ax =的基础解系中只有2个向量,,所以4()2r A -=,从而()241r A =≤-, 则*()r A =0,故选 A 。
8、设A 是3阶实对称矩阵,E 是3阶单位矩阵,若22A A E +=,且4A =,则二次型Tx Ax 的规范型为( )A 、222123y y y ++. B 、 222123y y y +-. C 、222123y y y --. D 、222123y y y ---. 【答案】C .【解析】设λ是A 的特征值,根据22A A E +=得22λλ+=,解得1λ=或2λ=-;又因为4A =,所以A 的特征值为1,-2,-2,根据惯性定理,T x Ax 的规范型为222123y y y --。
故选C 。
二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. 9、2lim(2)x xx x →+=.【答案】24e 。
【解析】0222lim ln[1(21)]0lim(2)lim[1(21)]x x x x xxxxx x x x e→++-→→+=++-=0212lim 2(1ln 2)24x x x xee e →+-+===.10、曲线sin 1cos x t t y t=-⎧⎨=-⎩在32t π=对应点处的切线在y 轴上的截距为 。
【答案】322π+. 【解析】斜率32sin 11cos t dy t dx t π===--,切线方程为 322y x π=-++,截距为322π+。
11、设函数()f u 可导,2()y z yf x =,则2z zx y x y ∂∂+=∂∂ 。
【答案】2y yf x ⎛⎫⎪⎝⎭.【解析】3222222,z y y zy y y f f f x x x y x x x ⎛⎫⎛⎫⎛⎫∂∂''=-=+ ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭ ,22z z y x y yf x y x ⎛⎫∂∂+= ⎪∂∂⎝⎭.12、曲线ln cos (0)6y x x π=≤≤的弧长为 .【答案】1ln 32【解析】2211tan sec ds y dx xdx xdx '=+=+=66001sec ln(sec tan )ln3.2s xdx x x ππ==+=⎰ 13、已知函数21sin ()xt f x x dt t=⎰,则10()f x dx =⎰ .【答案】1(cos11)4-. 【解析】设21sin ()xt F x dt t=⎰,则 1111122200000111()()()[()]()222f x dx xF x dx F x dx x F x x dF x ===-⎰⎰⎰⎰211112222000011sin 111()sin cos (cos11)22244x x F x dx x dx x x dx x x '=-=-=-==-⎰⎰⎰.14、已知矩阵1100211132210034A -⎛⎫⎪-- ⎪= ⎪-- ⎪⎝⎭,ij A 表示元素ij a 的代数余子式,则1112A A -= . 【答案】4-.【解析】由行列式展开定理得1112110010001111112111211112101043221312103403400340034A A A -----------====-==----.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.15、(本题满分10分)已知函数2,0()1,0xx xx f x xe x ⎧>⎪=⎨+≤⎪⎩,求()f x ',并求函数()f x 的极值.【解析】当0x >时,22ln ()x x x f x x e ==,2()2(ln 1)x f x x x '=+;当0x <时, ()(1)x f x x e '=+;22000()(0)12(ln 1)(0)lim lim lim 1x x x x x f x f x x x f x x ++++→→→---'====-∞,即()f x 在0x =处不可导.综合上述:22(ln 1),0()(1),0xxx x x f x x e x ⎧+>⎪'=⎨+<⎪⎩; 令()0f x '=得驻点1211,x x e=-=;0x =是函数()f x 的不可导点。