已知坐标平面内两点求它们连线的垂直平分线方程

合集下载

高中数学角平分线相关问题的解法探究

高中数学角平分线相关问题的解法探究

解法探究2023年7月上半月㊀㊀㊀高中数学角平分线相关问题的解法探究◉南京市金陵中学河西分校㊀王金辉㊀㊀摘要:思维是数学素养的灵魂,方法是数学学习的法宝.在高三数学一轮复习中,不少学生在解决与角平分线有关的解三角形㊁平面向量和解析几何等问题时,感觉困难重重,本文中通过四种常用解法的讲解,梳理了与角平分线相关的几种题型,帮助学生建构思维系统,提升数学核心素养.关键词:高中数学;核心素养;角平分线㊀㊀角平分线作为刻画三角形的一个重要要素,在高中数学解三角形㊁平面向量㊁解析几何等问题中常有出现.本文中尝试用微专题的方式,从等面积法㊁向量的线性运算和数量积运算㊁角平分线的性质和几何对称性等方面展开思考,对学生解决相关问题有明显的指导作用.1利用等面积法求解角平分线长在解三角形中,经常遇到与角平分线长度相关的问题,等面积法是一种常用且简便的方法.例1㊀(2022南京师大附中模拟预测 14)在әA B C 中,A C =2,A B =1,点D 为B C 边上的点,A D是øB A C 的角平分线,则A D 的取值范围㊀㊀㊀㊀.分析:本题涉及三角形的两边及夹角,求该角的角平分线长,可以考虑由三个三角形的面积建立等量关系,求出角平分线长度的表达式.解:设øB A D =øC A D =θ,则øB A C =2θ,且θɪ(0,π2).由S әA B D +S әA C D =S әA B C ,得12A B A D s i n θ+12A C A D s i n θ=12A B A C s i n 2θ.所以3A D s i n θ=2s i n 2θ,即A D =4c o s θ3.故A D 的取值范围是(0,43).变式㊀在әA B C 中,A C =2,A B =1,点D 为B C 边上的点,A D 三等分øB A C ,D 靠近点B ,则A D 的取值范围是㊀㊀㊀㊀.分析:将例1的平分角改编为三等分角,依然涉及三角形的两边及夹角,考虑由三个三角形的面积建立等量关系,结合二倍角公式和三倍角公式的应用,求出三等分角的平分线长度的表达式.解:设øA B D =α,øA C D =2α,则øB A C =3α.由0<3α<π,得αɪ(0,π3).由S әA B D +S әA C D =S әA B C ,得12|A B | |A D | s i n α+12|A C | |A D | s i n 2α=12|A B | |A C | s i n 3α.解得|A D |=2s i n 3αs i n α+2s i n 2α=2(4c o s 2α-1)1+4c o s α.令t =1+4c o s α,t ɪ(3,5),则|A D |=12(t -3t-2).设f (t )=12(t -3t-2),则f (t )在(3,5)单调递增.又t =3时,f (3)=12(3-33-2)=0;t =5时,f (5)=12(5-35-2)=65.所以A D 的取值范围为(0,65).点评:例1和变式均为等分角的等分线长度相关问题,通过等面积法寻找等量关系,再结合三角函数及解三角形等相关知识解决.当然,如果对两个分角任意赋值,不一定n 等分角,但等面积法依然适用,它是这一类问题的常用方法.2利用角平分线的对称性解题角的一边上任一点关于角平分线的对称点一定在角的另一条边上.利用这一对称性质可以巧妙解决解析几何中与角平分线相关的一类问题.例2㊀已知三角形的一个顶点A (4,-1),它的两条内角平分线所在的直线方程分别为l 1:x -y -1=0和l 2:x -1=0,则B C 边所在直线的方程为㊀㊀㊀㊀.分析:利用三角形的顶点A 关于另外两个顶点的内角平分线的对称点均在B C 上,可求出B C 上两个点的坐标,进而求出直线B C 的方程.解:易知点A 不在l 1和l 2上.因为l 1,l 2为øB ,øC 的平分线,所以点A 关于l 1,l 2的对称点均在BC 07Copyright ©博看网. All Rights Reserved.2023年7月上半月㊀解法探究㊀㊀㊀㊀边所在的直线上.易求得点A 关于l 1的对称点为A 1(0,3),点A 关于l 2的对称点为A 2(-2,-1).所以B C 边所在直线的方程为y -3-1-3=x -0-2-0,即2x -y +3=0.例3㊀(2022深圳高二期末 7)已知F 1,F 2分别为椭圆x 24+y 23=1的左㊁右焦点,P 为椭圆上除左右顶点外的任一点,P T 为әF 1P F 2的外角平分线,F 2T ʅP T ,求点T 的轨迹方程.分析:利用三角形的顶点F 2关于外角平分线的对称点在F 1P 的延长线上,结合椭圆的定义,可求出M F 1为定长,进而得出中位线O T 为定长.图1解:如图1所示,延长F 2T 交F 1P 的延长线于点M .因为P T 为øF 1P F 2的外角平分线,F 2T ʅP T ,所以由对称性可得P F 2=P M ,T F 2=T M .由椭圆的定义,得M F 1=P F 1+P M =P F 1+P F 2=4.又T 为F 2M 的中点,O 为F 1F 2的中点,所以在әF 1F 2M 中,O T =12M F 1=2.故点T 的轨迹方程是x 2+y 2=4(y ʂ0).点评:对称性是角平分线的重要几何性质,在解三角形和解析几何问题中,利用这个性质,结合圆锥曲线的相关定义,可以解决许多点㊁直线㊁圆和圆锥曲线的相关问题.3利用三角形内角平分线定理 解题三角形内角平分线定理:在әA B C 中,øA 的平分线交B C 于点D ,则有B D D C =A BA C .(苏教版高中数学教材必修二第93页例5.)例4㊀[山西吕梁2022届高三模拟(一)理 10]已知抛物线C :x 2=4y 的焦点为F ,C 的准线与对称轴交于点D ,过D 的直线l 与C 交于A ,B 两点,且A B ң=mB D ң(m >0),若F B 为øD F A 的角平分线,则B F =(㊀㊀).A.m ㊀㊀B .2m m +1㊀㊀C .2m +1m ㊀㊀D.m +12m分析:利用 三角形内角平分线定理 ,结合抛物线的定义和相似三角形的相似比,可巧妙地将线段的比例关系梳理清楚,进而问题得到解决.解:抛物线C :x 2=4y ,则F (0,1),D (0,-1),所以D F =2.过点A ,B 分别作准线的垂线,垂足分别为A 1,B 1,如图2,则B B 1ʊA A 1.因为F B 为øD FA图2的平分线,则有A BB D=A F D F ,又AB ң=m B D ң,所以A F D F =A BB D=m .于是A A 1=A F =m D F =2m .又B B 1A A 1=D B D A =1m +1,所以B F =B B 1=1m +1A A 1=2mm +1.故选:B .点评: 三角形内角平分线定理 是解决定比分点相关问题的常用知识点,熟练使用这个定理,结合解析几何中圆锥曲线的定义㊁方程和几何性质,在解决有关解三角形㊁解析几何等问题时可提速增效.4利用平面向量解决角平分线相关问题平面向量作为数学解题的工具,在很多领域有广泛应用.其中,单位向量㊁向量的数量积不仅是高中数学向量教学的重点和难点,有时在解决三角形的角平分线相关问题时也有巧妙的应用.例5㊀(2022厦门一中高一阶段测试 16)已知әA B C ,D 为线段A C 上一点,B D 是øA B C 的角平分线,I 为直线B D 上一点,满足A I ң=λ(A C ңA Cң-A B ңA Bң)(λ>0),C A ң+C B ң=6,C A ң-C B ң=2,则B I ң B A ң=㊀㊀㊀㊀.分析:两个单位向量的和向量与差向量分别对应以这两个向量所在线段为邻边的菱形的两条对角线,利用菱形对角线互相垂直且平分对角的特征,得到两条角平分线交点为三角形旁心的结论,再结合平面向量数量积的几何意义可破解该题.图3解:如图3所示,由A C ңA C ң,A B ңA Bң为AC ң,A B ң方向上的单位向量,易知A I 是øB A C 外角的角平分线,又B D 是øA B C 的角平分线,即I 为әA B C 的旁心.作I O ʅB A ,垂足为点O ,由C A ң+C B ң=6,C A ң-C B ң=B A ң=2,可得B O ң=12(A B ң+A C ң+B C ң)=4.由数量积的几何意义,可得17Copyright ©博看网. All Rights Reserved.解法探究2023年7月上半月㊀㊀㊀B I ң B A ң=B A ң B O ң=2ˑ4ˑc o s 0=8.例6㊀(山东实验中学2019届高三二模理 20改编)设椭圆C :x24+y 2=1的左㊁右焦点分别为F 1,F 2,M 为椭圆C 上异于长轴端点的一点,øF 1M F 2=2θ,әMF 1F 2的内心为I ,则M I ң M F 1ң+M I ң M F 2ң=㊀㊀㊀㊀.分析:三角形的内心是其角平分线的交点,且过圆外一点作内切圆的两条切线,切线长相等;结合椭圆的定义,可得切线长|M A |,再利用平面向量数量积的几何意义,轻松破解.解:由题意,可得|M F 1|+|M F 2|=4,|F 1F 2|=23.图4设圆I 与M F 1,M F 2分别切于点A ,B ,连接I A ,I B ,如图4.根据切线长定理,可得|F 1F 2|=|F 1A |+|F 2B |=23.又|M F 1|+|M F 2|=4,所以|M A |=|M B |=4-232=2-3.由平面向量数量积的几何意义,可得M I ң M F 1ң+M I ң M F 2ң=M A ң M F 1ң+M B ң M F 2ң=|M A | |M F 1|+|M B | |M F 2|=4(2-3).点评:结合菱形的对角线平分对角这一特点,可以将 三角形角平分线定理 和向量问题有机结合起来,考查学生综合应用知识的能力;利用三角形内角平分线定理和向量数量积的几何意义,结合解析几何中相关定义㊁几何性质,对学生的数学综合能力提出了更高的要求.合理构建知识结构,熟练使用常用规律和方法,是解决这类问题的良好途径.5综合应用例7㊀(湖南衡阳2022届高三下学期二模 11)已知F 1,F 2分别是双曲线C :x 2-y 22=1的左㊁右焦点,点P 为C 在第一象限上的点,点M 在F 1P 的延长线上,点Q 的坐标为(33,0),且P Q 为øF 1P F 2的平分线,则下列正确的是(㊀㊀).A.|P F 1||P F 2|=2B .øF 2P M 的角平分线所在直线的倾斜角为150ʎC .әF 1PF 2的内心坐标为(1,2-1)D.P Q 与双曲线相切解:在双曲线C 中,a =1,b =2,则c =3.因为F 1(-3,0),F 2(3,0),所以|Q F 1|=433,|Q F 2|=233.于是|P F 1||P F 2|=|Q F 1||Q F 2|=2,故选项A 正确.由|P F 1|=2|P F 2|,|P F 1|-|P F 2|=2,{得|P F 1|=4,|P F 2|=2.{设点P 的坐标为(x 0,y 0)(x 0>0,y 0>0),则由x 20-y 202=1,(x 0-3)2+y 20=4,ìîíïïï解得x 0=3,y 0=2.{图5如图5,设øF 2P M 的角平分线交x 轴于点N ,则得到øQ P F 2+øN P F 2=12(øF 1P F 2+øF 2P M )=90ʎ,所以P N ʅP Q .由k P Q =3,可得k P N =-1k P Q =-33.所以øF 2P M 的角平分线所在直线的倾斜角为150ʎ,故选项B 正确.设әF 1P F 2的内切圆H 与三边分别切于点R ,S ,T ,如图5,由内切圆性质,得|P R |=|P T |,|R F 1|=|F 1S |,|F 2T |=|F 2S |,则|P F 1|-|P F 2|=|S F 1|-|S F 2|=2a .设H (x 0.y 0),则S (x 0,0),|S F 1|-|S F 2|=x 0-(-3)[]-(3-x 0)=2x 0=2a .所以x 0=a =1,即H (1,y 0),代入直线P Q 的方程y =3x -1中,得H (1,3-1),故选项C 错误.联立y =3x -1,x 2-12y 2=1,ìîíïïï得x 2-23x +3=0.由D =0可知,直线P Q 与双曲线相切,故选项D 正确.故选:A B D .点评:该题综合应用 角平分线定理 ㊁内外角平分线互相垂直的性质研究了双曲线的焦点三角形内心的特点,验证了圆锥曲线的光学性质从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线过双曲线的另一个焦点.由此可得,过双曲线上任意一点的切线,平分该点与两焦点连线的夹角.本题综合性较强,是圆锥曲线中融合角平分线问题的典型例子.在新高考背景下,新课程强调对学生核心素养的培养.在高三数学一轮复习中,通过穿插微专题的方式,针对三角形角平分线的相关问题,深入探讨相关题型,多视角㊁多策略地处理一类问题,可以调动学生学习的积极性,帮助学生发现一类问题的解决方向和策略,构建完整的知识系统,从而培养学生良好的思维品质,提高分析问题和解决问题的能力.Z27Copyright ©博看网. All Rights Reserved.。

广西壮族自治区贵港市桂平市2024届高三下学期第二次月考试题数学试题

广西壮族自治区贵港市桂平市2024届高三下学期第二次月考试题数学试题

广西壮族自治区贵港市桂平市2024届高三下学期第二次月考试题数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为12,F F ,点()()0,0E t t >.已知动点P 在双曲线C 的右支上,且点2,,P E F 不共线.若2PEF ∆的周长的最小值为4b ,则双曲线C 的离心率e 的取值范围是( )A .23,3⎛⎫+∞ ⎪ ⎪⎝⎭B .231,3⎛⎤⎥ ⎝⎦C .)3,⎡+∞⎣ D .(1,3⎤⎦2.已知函数在上的值域为,则实数的取值范围为( ) A .B .C .D .3.已知椭圆22y a +22x b =1(a >b >0)与直线1y a x b -=交于A ,B 两点,焦点F (0,-c ),其中c 为半焦距,若△ABF 是直角三角形,则该椭圆的离心率为( ) A 5-1B 3-1C 31+D 51+ 4.已知实数,x y 满足线性约束条件1020x x y x y ≥⎧⎪+≥⎨⎪-+≥⎩,则1y x +的取值范围为( )A .(-2,-1]B .(-1,4]C .[-2,4)D .[0,4]5.ABC ∆中,25BC =D 为BC 的中点,4BAD π∠=,1AD =,则AC =( )A .5B .22C .65D .26.如图是2017年第一季度五省GDP 情况图,则下列陈述中不正确的是( )A .2017年第一季度GDP 增速由高到低排位第5的是浙江省.B .与去年同期相比,2017年第一季度的GDP 总量实现了增长.C .2017年第一季度GDP 总量和增速由高到低排位均居同一位的省只有1个D .去年同期河南省的GDP 总量不超过4000亿元.7.已知定义在R 上函数()f x 的图象关于原点对称,且()()120f x f x ++-=,若()11f =,则()1(2)(3)(2020)f f f f ++++=( )A .0B .1C .673D .6748.已知集合A ={x ∈N |x 2<8x },B ={2,3,6},C ={2,3,7},则()AB C ⋃=( )A .{2,3,4,5}B .{2,3,4,5,6}C .{1,2,3,4,5,6}D .{1,3,4,5,6,7}9.函数cos ()cos x xf x x x+=-在[2,2]ππ-的图象大致为A .B .C .D .10.已知实数,x y 满足约束条件11220220x y x y x y ≥-⎧⎪≥-⎪⎨-+≥⎪⎪--≤⎩,则23x y -的最小值是A .2-B .72-C .1D .411.小王因上班繁忙,来不及做午饭,所以叫了外卖.假设小王和外卖小哥都在12:00~12:10之间随机到达小王所居住的楼下,则小王在楼下等候外卖小哥的时间不超过5分钟的概率是( ) A .12B .45C .38D .3412.ABC 中,点D 在边AB 上,CD 平分ACB ∠,若CB a =,CA b =,2a =,1b =,则CD =( ) A .2133a b + B .1233a b +C .3455a b + D .4355a b + 二、填空题:本题共4小题,每小题5分,共20分。

2022-2023学年江苏省连云港市灌南高二年级上册学期期中模拟数学试题【含答案】

2022-2023学年江苏省连云港市灌南高二年级上册学期期中模拟数学试题【含答案】

2022-2023学年江苏省连云港市灌南高级中学高二上学期期中模拟数学试题一、单选题1.若圆22240x y kx +--=关于直线2x -y +3=0对称,则k 等于( ) A .32B .-32C .3D .-3【答案】B【分析】由题意可求得圆心坐标,圆关于直线对称,即直线过圆心,代入坐标,即可求解. 【详解】由题意知,圆22240x y kx +--=的圆心为(k ,0), 圆关于直线2x -y +3=0对称,即直线2x -y +3=0过圆心(k ,0), 所以2k +3=0,k =-32.答案:B【点睛】本题考查圆的对称性,考查分析理解,数形结合的能力,属基础题. 2.已知直线1l 经过()3,4A -,()8,1B --两点,直线2l 的倾斜角为135,那么1l 与2l A .垂直 B .平行 C .重合 D .相交但不垂直【答案】A【解析】根据两点求出直线1l 的斜率,根据倾斜角求出直线2l 的斜率;可知斜率乘积为1-,从而得到垂直关系.【详解】直线1l 经过()3,4A -,()8,1B --两点 ∴直线1l 的斜率:141138k +==-+ 直线2l 的倾斜角为135 ∴直线2l 的斜率:2tan1351k ==- 121k k ∴⋅=- 12l l ∴⊥本题正确选项:A【点睛】本题考查直线位置关系的判定,关键是利用两点连线斜率公式和倾斜角求出两条直线的斜率,根据斜率关系求得位置关系. 3.设1F 、2F 是椭圆22194x y +=的两个焦点,P 是椭圆上的点,且12||:||2:1PF PF =,则12F PF △的面积等于( )A .4B .6C .D .【答案】A【分析】根据椭圆方程,求出a 及椭圆的焦点坐标.由椭圆的定义结合12||:||2:1PF PF =,得1||PF ,2||PF ,结合勾股定理的逆定理得12F PF △是以P 为直角顶点的直角三角形,由此不难得到12F PF △的面积. 【详解】解:椭圆22194x y +=,3a ∴=,2b =,5c =,所以椭圆的焦点为()15,0F -,()25,0F ,12||||26PF PF a +==,且12||:||2:1PF PF =,1||4PF ∴=,2||2PF =可得2221212||||20||PF PF F F +==,因此12F PF △是以P 为直角顶点的直角三角形, 所以12F PF △的面积121|||42S PF PF =⋅=, 故选:A .4.如图,已知1F 、2F 分别是椭圆22:142x y C +=的左、右焦点,点A 、B 在椭圆上,四边形12AF F B 是梯形,12//AF BF ,且122AF BF =,则12BF F △的面积为( )A 14B 14C 2D 2【答案】A【分析】设点B 关于原点的对称点为点E ,连接1EF 、2EF ,分析可知A 、1F 、E 三点共线,设点()11,A x y 、()22,E x y ,设直线AE 的方程为2x my =122y y =-,将直线AE 的方程与椭圆的方程联立,列出韦达定理,求出2m 的值,可得出22y 的值,再利用三角形的面积公式可求得结果. 【详解】设点B 关于原点的对称点为点E ,连接1EF 、2EF ,如下图所示:因为O 为12F F 、BE 的中点,则四边形12BF EF 为平行四边形,可得21//BF EF 且21BF EF =, 因为12//AF BF ,故A 、1F 、E 三点共线,设()11,A x y 、()22,E x y , 易知点()12,0F -,()1112,AF x y =---,()1222,F E x y =+, 由题意可知,112AF F E =,可得122y y =-,若直线AE 与x 轴重合,设122AF a c =+=+,122EF =-,则112AF EF ≠,不合乎题意; 设直线AE 的方程为2x my =-,联立22224x my x y ⎧=-⎪⎨+=⎪⎩,可得()2222220m y my +--=, 由韦达定理可得1222221m y y y m +=-=+,得22222my m =-+, 21222222y y y m =-=-+,则()2222228122m y m m ==++,可得227m =,故2217216y m ==+, 因此,122171422244BF F S c y =⨯⨯=⨯=△. 故选:A.5.设1F ,2F 是双曲线2222:1x y C a b-=()的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为 A 5B 3C .2D 2【答案】B【详解】分析:由双曲线性质得到2PF b =,PO a =然后在2Rt PO F 和在12Rt PF F △中利用余弦定理可得.详解:由题可知22,PF b OF c ==PO a ∴=在2Rt PO F 中,222cos P O PF b F OF c∠==在12PF F △中,22221212212cos P O 2PF F F PF b F PF F F c+-∠==()2222246322b c abc a b cc+-∴=⇒=⋅ e 3∴=故选B.点睛:本题主要考查双曲线的相关知识,考查了双曲线的离心率和余弦定理的应用,属于中档题. 6.已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ). A .4 B .5 C .6 D .7【答案】A【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案. 【详解】设圆心(),C x y ,则()()22341x y -+-=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥22345+=,所以||514OC ≥-=, 当且仅当C 在线段OM 上时取得等号, 故选:A.【点睛】本题考查了圆的标准方程,属于基础题.7.已知在圆22:4240M x y x y +-+-=内,过点()0,0O 的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为( )A .6B .8C .10D .12【答案】D【分析】圆的最长弦是直径,过定点的最短弦是与过定点的最长弦垂直的,对角线互相垂直的四边形面积等于对角线乘积的一半. 【详解】圆22:4240M x y x y +-+-= 由题意可得()()22:219M x y -++= 最长弦为直径等于6,最短的弦由垂径定理可得4, 则四边形ABCD 的面积为164122⨯⨯=.故选:D.【点睛】本题考查过圆内定点求圆的弦长最值问题,考查求解运算能力,是基础题.8.过抛物线2:C y x =上定点(P 作圆()22:21M x y -+=的两条切线,分别交抛物线C 于另外两点A、B ,则直线AB 的方程为( ) A .10x -+= B .10x ++= C .20x -+= D .20x ++=【答案】B【分析】设过点P 且与圆M 相切的直线的方程为()2y k x =-,根据该直线与圆M 相切求出k 的值,设点()211,A y y 、()222,B y y ,求出1y 、2y 的值,求出直线AB 的斜率,利用点斜式可得出所求直线的方程.【详解】圆M 的圆心为()2,0M ,半径为1,易知PM x ⊥轴,所以,直线PA 、PB 的斜率必然存在, 设过点P 且与圆M 相切的直线的方程为()2y k x =-,即20kxy k -=,1=,解得1k =±,设点()211,A y y 、()222,B y y ,不妨设直线PA 、PB的斜率分别为1、1-, 则11PAk ==,可得11y =同理1PB k ==-,可得21y =-直线AB的斜率为122212121AB y y k y y y y -===-+ 易知点A的坐标为(3-, 所以,直线AB的方程为(13y x -=-+,即10x ++=. 故选:B.二、多选题9.下列说法正确的是( )A .直线20x y --=与两坐标轴围成的三角形的面积是2B .点()0,2关于直线=+1y x 的对称点为()1,1C .过11(,)x y ,22(,)x y 两点的直线方程为112121y y x x y y x x --=-- D .经过点()1,1且在x 轴和y 轴上截距都相等的直线方程为20x y +-= 【答案】AB【分析】对选项A ,分别令=0x 和=0y ,求出直线与坐标轴交点,再结合面积公式判断即可;对选项B ,求出对称点坐标即可判断;对选项C 特殊情况不成立;对选项D ,缺少过原点的直线. 【详解】A .令=0x 得2y =-,令=0y 得=2x ,则直线20x y --=与两坐标轴围成的三角形的面积12222⨯⨯=,正确; B .设(0,2)关于直线=+1y x 对称点坐标为(,)m n ,则2=1+2=+122n mn m -⎧-⎪⎪⎨⎪⎪⎩,解得=1=1m n ⎧⎨⎩,正确;C .两点式使用的前提是1212,x x y y ≠≠,错误;D .经过点()1,1且在x 轴和y 轴上截距都相等的直线还有过原点的直线=y x ,错误. 故选:AB .10.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点A 、B 的距离之比为定值λ(1λ≠)的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,成为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()2,0A -、()4,0B ,点Р满足12PA PB =,设点Р所构成的曲线为C ,下列结论正确的是( )A .C 的方程为()22416x y ++= B .在C 上存在点D ,使得1AD =C .在C 上存在点M ,使M 在直线20x y +-=上D .在C 上存在点N ,使得224NO NA += 【答案】AD【分析】通过设出点P 的坐标,利用12PA PB =,即可求出曲线C 的轨迹方程,然后假设曲线C 上一点坐标,根据BCD 三个选项逐一列出所满足条件,然后与C 的轨迹方程联立,判断是否有解,即可得出答案.【详解】设点(,)P x y ,由12PA PB =,12=,化简得2280x y x ++=,即22(4)16x y ++=,故A 选项正确;对于B 选项,设00(,)D x y ,由1AD =1=,又2200(4)16x y ++=,联立方程可知无解,故B 选项错误;对于C 选项,设00(,)M x y ,由M 在直线20x y +-=上得0020x y +-=,又2200(4)16x y ++=,联立方程可知无解,故C 选项错误;对于D 选项,设00(,)N x y ,由224NO NA +=,得22220000(2)4x y x y ++++=,又2200(4)16x y ++=,联立方程可知有解,故D 选项正确. 故选:AD .11.(多选题)已知抛物线2:4C y x =的焦点为F 、准线为l ,过点F 的直线与抛物线交于两点()11,P x y 、()22,Q x y ,点P 在l 上的射影为1P ,则 ( )A .若126x x +=,则8PQ =B .以PQ 为直径的圆与准线l 相切C .设()0,1M ,则1PM PP +D .过点()0,1M 与抛物线C 有且仅有一个公共点的直线至多有2条 【答案】ABC【分析】利用抛物线焦点弦长公式可判断AB 选项;利用抛物线的定义结合三点共线可判断C 选项;求出过点()0,1M 与抛物线C 有且仅有一个公共点的直线的方程,可判断D 选项. 【详解】对于选项A ,因为2p =,所以122x x PQ ++=,则8PQ =,故A 正确; 对于选项B ,线段PQ 的中点为1212,22x x y y T ++⎛⎫⎪⎝⎭,抛物线的准线l 的方程为=1x -,点T 到直线l 的距离为1212211222x x x x PQ ++++==, 所以,以PQ 为直径的圆与准线l 相切,B 对;对于选项C ,因为()1,0F ,所以12PM PP PM PF MF +=+≥=, 当且仅当点M 、P 、F 三点共线,且点P 为线段MF 与抛物线的交点时,等号成立,故C 正确;对于选项D ,显然直线0x =,1y =与抛物线只有一个公共点, 设过M 且斜率不为零的直线为()10y kx k =+≠,联立214y kx y x =+⎧⎨=⎩,可得()222410k x k x +-+=,令()222440k k ∆=--=,则1k =,所以直线1y x =+与抛物线也只有一个公共点,此时有三条直线符合题意,故D 错误. 故选:ABC.12.已知双曲线22:1916x y C -=,过其右焦点F 的直线l 与双曲线交于两点A 、B ,则( )A .若A 、B 同在双曲线的右支,则l 的斜率大于43B .若A 在双曲线的右支,则FA 最短长度为2C .AB 的最短长度为323D .满足11AB =的直线有4条【答案】BD【分析】设直线l 的方程为5x my =+,设点()11,A x y 、()22,B x y ,将直线l 的方程与双曲线C 的方程联立,利用判别式、韦达定理、弦长公式可判断各选项的正误. 【详解】易知双曲线C 的右焦点为()5,0F ,设点()11,A x y 、()22,B x y ,设直线l 的方程为5x my =+, 当0m ≠时,直线l 的斜率为1k m=, 联立225169144x my x y =+⎧⎨-=⎩,消去x 并整理得()221691602560m y my -++=. 则()()222222169016042561699610m m m m ⎧-≠⎪⎨∆=-⨯-=+>⎪⎩,解得34m ≠. 对于A 选项,当0m =时,直线l x ⊥轴,则A 、B 两点都在双曲线的右支上,此时直线l 的斜率不存在,A 选项错误;对于B 选项,min 532F c a A =-=-=,B 选项正确; 对于C 选项,当直线l 与x 轴重合时,32263AB a ==<,C 选项错误; 对于D 选项,当直线l 与x 轴重合时,2611AB a ==≠; 当直线l 与x 轴不重合时,由韦达定理得122160169m y y m +=--,122256169y y m =-,由弦长公式可得()2122961169m AB y y m +=-=-()226161611169m m +==-,解得m =或m =故满足11AB =的直线有4条,D 选项正确. 故选:BD.【点睛】本题考查直线与双曲线的综合问题,考查了直线与双曲线的交点个数,弦长的计算,考查了韦达定理设而不求法的应用,考查计算能力,属于中等题.三、填空题13.双曲线22221x y a b -=的其中一条渐近线方程为2y x =,且焦点到渐近线的距离为2,则双曲线的方程为_______【答案】2214y x -=【分析】由双曲线的渐近线方程可得2ba=,再由焦点到渐近线的距离为2可得2b =,即可得答案; 【详解】由题意得:2,12,b a ab ⎧=⎪⇒=⎨⎪=⎩, ∴双曲线的方程为2214y x -=,故答案为:2214y x -=.【点睛】本题考查双曲线的渐近线方程和焦点到渐近线的距离为b ,考查运算求解能力,属于基础题.14.一束光线从点()2,3A 射出,经y 轴反射后,与圆22:64120C x y x y +-++=相交,则反射光线所在直线的斜率k 的取值范围是_______________. 【答案】43,34⎛⎫-- ⎪⎝⎭【分析】将圆写成标准式,求出圆心半径,求出()2,3A 关于y 轴的对称点A ',设出过A '的直线方程,结合圆心到直线距离公式即可求解.【详解】由22:64120C x y x y +-++=可得()()22321x y -++=,即圆心为()3,2-,半径为1,()2,3A 关于y 轴的对称点()2,3A '-,可设过()2,3A '-的直线方程为()23y k x =++, 即230kx y k -++=,由反射光线与圆相交可得d r <,1d ,化简得()()34430k k ++<,即43,34k ⎛⎫∈-- ⎪⎝⎭.故答案为:43,34⎛⎫-- ⎪⎝⎭15.在椭圆22:153x y C +=中,以点(1,1)P -为中点的弦所在的直线方程______.【答案】3580x y --=【分析】先利用点差法求得直线的斜率k ,再利用点斜式即可求得所求直线方程.【详解】因为()2211153-+<,所以点(1,1)P -在椭圆22:153x y C +=内, 设以点(1,1)P -为中点的弦的两端的坐标分别为()()1122,,,x y x y ,则12122,2x x y y +=+=-,22112222153153x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减,得()()()()12221112053x x y x x y y y -+-+=+,则()()2222111135x y y x y x y x --=++-,设以点(1,1)P -为中点的弦所在直线斜率为k ,则()2211323525y k x x y ⨯==----=⨯, 所以所求直线方程为:()3115y x +=-,即3580x y --=. 故答案为:3580x y --=.四、双空题16.已知抛物线2:4C x y =的焦点为F ,直线l 过点F 且与抛物线C 交于A ,B 两点,分别过A ,B 两点作抛物线C 的切线1l ,2l ,设直线1l 与2l 交于点()00,P x y ,则0y =___________,PAB ∆面积的最小值为___________. 【答案】 1-; 4【分析】设211,4x A x ⎛⎫⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭,先根据导数几何意义求得两切线方程,然后联立两切线方程可求得交点坐标()2,1P k -.因为12PABS AB d =,所以将弦长AB 和点P 到直线AB 的距离d 带入即可求得面积的最小值.【详解】解:抛物线方程为24x y =, ∴抛物线的焦点()0,1F由题意,直线AB 的斜率存在,设:1AB l y kx =+,211,4x A x ⎛⎫⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭,联立241x yy kx ⎧=⎨=+⎩,得2440x kx --=,124x x k ∴+=,12·4x x =-,由24x y =,得24x y =,求导得2x y '=, ∴()21111:42x x l y x x -=-,即21124x x y x =-① 同理2222:24x x l y x =-② ∴由①②得12022x x x k +==,2211112112001242244x x x x x x x x y x +=-=-==-.()212141AB x k=-===+点P到直线AB的距离2d===()()322221141214122PABS AB d k k k∴==++=+,易知20k=,即0k=时,()min4PABS=,故PAB面积的最小值为4.故答案为:1-;4.【点睛】思路点睛:设出A,B两点的坐标,由导数几何意义求出两切线方程,然后联立求解交点P 坐标;设出直线AB方程,并联立抛物线方程,由弦长公式可得AB,由点到直线距离公式可得点P 到直线AB的距离,从而求得12PABS AB d=,进而易得面积的最小值.五、解答题17.设椭圆2222:1(0)x yC a ba b+=>>过点(0,4)M,离心率为35.(1)求椭圆C的方程;(2)过点(3,0)且斜率为45的直线l交椭圆C于A、B两点,求弦AB的中点坐标及AB.【答案】(1)2212516x y+=;(2)中点坐标为36,25⎛⎫-⎪⎝⎭,41||5AB=.【分析】(1)依题意求出b,再由离心率及222c a b=-,求出a,即可求出椭圆方程;(2)首先求出直线l的方程,设直线与C的交点为()11,A x y,()22,B x y,联立直线与椭圆方程,消元、列出韦达定理,即可求出中点坐标,再利用弦长公式求出弦长;【详解】解:(1)将点(0,4)代入椭圆C的方程得2161b=,所以4b=.又由35cea==,222c a b=-得222925a ba-=,即2169125a-=,所以5a=.所以椭圆C的方程为2212516x y+=.(2)过点(3,0)且斜率为45的直线方程为4(3)5y x =-,设直线与C 的交点为()11,A x y ,()22,B x y ,联立方程224(3)512516y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩ 消去y 得2380x x --=, 得123x x +=,128x x =-. 设线段AB 的中点坐标为()00,x y , 则120322x x x +==, ()12012266255y y y x x +==+-=-, 即中点坐标为36,25⎛⎫- ⎪⎝⎭由弦长公式41||5AB ==18.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为250x y --=,AC 边上的高BH 所在直线方程为250x y --=. (1)求直线AC 的垂直平分线方程; (2)求△ABC 的面积. 【答案】(1)2410x y --= (2)8【分析】(1)先求出AC 直线方程,再联立直线CM 与AC ,得到交点坐标(4,3)C ,最后求出AC 的 垂直平分线方程即可.(2)先求出AC (1,3)B --,再求△ABC 的AC ,最后由三角形面积公式求出面积即可.【详解】(1)BH 所在直线方程为250x y --=,∴12BH k =, 直线BH 垂直于AC , 1BH AC k k ∴⋅=-,2AC k ∴=-,∴AC 所在直线方程为2110x y +-=, 联立直线CM 与AC 得25=02+11=0x y x y ---⎧⎨⎩,解得=4=3x y ⎧⎨⎩,∴直线CM 与AC 的交点坐标(4,3)C , 顶点1(5)A ,, ∴A C 、的中点坐标为9(,2)2,直线AC 的垂直平分线的斜率与AC 边上的高BH 的斜率相等, ∴直线AC 的垂直平分线的斜率为12,∴直线AC 的垂直平分线方程为2410x y --=. (2)由(1)可知||AC 设点(,),B m n 则点51(,)22m n M ++, 点(,)B m n 在高线BH 上,M 在中线CM 上,25=0+5+12?5=022m n m n --∴--⎧⎪⎨⎪⎩, 解得=1=3m n --⎧⎨⎩,故点(1,3)B --,由题意知AC 边上的高为BH ,||BH ∴=∴△ABC的面积为11||||822ABCSAC BH =⋅==. 19.已知抛物线2:2(0)E y px p =>经过点(P . (1)求抛物线E 的方程;(2)若直线:(0)l y kx m km =+<与抛物线E 相交于,A B 两点,且4OA OB ⋅=,证明:直线l 过定点. 【答案】(1)23y x =(2)证明见解析【分析】(1)将抛物线上的点代入方程即可求解;(2)设出直线方程与抛物线联立,然后根据向量数量积建立等式求解.【详解】(1)∵抛物线22(>0)y px p =过点P ,222p ∴=⨯.32p ∴=. ∴动点C 的轨迹E 的方程为23y x =. (2)设11(,)A x y ,22(,)B x y ,由23y kx m y x =+⎧⎨=⎩得222(23)0k x km x m +-+=, 12232km x x k -∴+=,2122m x x k=.4OA OB ⋅=,2221212121223(1)()4m kmx x y y k x x km x x m k +∴+=++++==.22340m km k ∴+-=,m k ∴=或4m k =-. 0km <,m k ∴=舍去.4m k ∴=-,满足1290km ∆=-+>.∴直线l 的方程为4(4)y kx k k x =-=-. ∴直线l 必经过定点(40),. 20.双曲线E :22221(0,0)x y a b a b-=>>,已知()()000,Q x y x a ≠±是双曲线E 上一点,,A B 分别是双曲线E 的左右顶点,直线QA ,QB 的斜率之积为1. (1)求双曲线的离心率;(2)若双曲线E 的焦距为l 过点(2,0)P 且与双曲线E 交于M 、N 两点,若3MP PN =,求直线l 的方程.【答案】(2)2)y x =-【分析】(1)先由点在双曲线上得到2202220y b x a a =-,再由QA ,QB 的斜率之积为1得到202201y x a =-,从而得到a b =,由此可求得双曲线的离心率;(2)先由条件求得双线曲方程,再联立直线l 与双曲线得到1212,x x x x +,又由3MP PN =得到()12232x x -=-,从而求得k 值,由此可得直线l 的方程.【详解】(1)因为()()000,Q x y x a ≠±是双曲线E 上一点,可得2200221x y a b-=,即为2202220y b x a a =-,由题意可得()(),0,,0A a B a -,2000220001QA QBy y y k k x a x a x a =⋅==+--, 可得a b =,即有c e a ===(2)由题意可得c =1a b ==,则双曲线的方程为221x y -=, 易知直线l 斜率存在,设直线l 的方程为()()2,0,1y k x k k =-≠≠±,联立直线l 与双曲线E 的方程,可得()222214140k x k x k -+--=,设()()1122,,,M x y N x y ,则212241x k x k +--=,2122141k x x k +=--,①又3MP PN =,可得()12232x x -=-,② 由①②可得222421k x k -=-, 212421k x k --=-,代入①可得2315k =,解得k = 则直线l的方程为)2y x =-.21.在平面直角坐标系xOy 中,已知圆22:240C x y x y F ++-+=,且圆C被直线30x y -++=截得的弦长为2.(1)求圆C 的标准方程;(2)若圆C 的切线l 在x 轴和y 轴上的截距相等,求切线l 的方程;(3)若圆22:()(1)2D x a y -+-=上存在点P ,由点P 向圆C 引一条切线,切点为M,且满足PM =,求实数a 的取值范围.【答案】(1)22(1)(2)2x y ++-=;(2)26yx 或26y x 或30x y +-=或10x y ++=;(3)24a -≤≤【分析】(1)将圆方程整理为标准方程形式,可知5F <,得到圆心坐标和半径;由垂径定理可利用弦长构造出关于F 的方程,解方程求得F ,从而得到标准方程;(2)分为直线l 过原点和不过原点两种情况,分别假设直线方程,利用圆心到直线距离等于半径可构造方程求得结果;(3)设(),P x y ,根据222PM PO =且222PM PC r =-可整理出P 点轨迹方程为:()()22128x y -++=;根据P 在圆()()2212x a y -+-=上,则两圆有公共点,根据圆与圆位置关系的判定可构造不等式,解不等式求得结果.【详解】(1)圆C 方程可整理为:()()22125x y F ++-=- 5F ∴<∴圆C 的圆心坐标为()1,2C -,半径r =∴圆心C 到直线30x y -+=的距离:1d ==∴截得的弦长为:2==,解得:3F = ∴圆C 的标准方程为:()()22122x y ++-=(2)①若直线l 过原点,可假设直线l 方程为:y kx =,即0kx y直线l 与圆相切 ∴圆心到直线距离d r ===2k =∴切线l 方程为:(2y x =②若直线l 不过原点,可假设直线l 方程为:1x ya a+=,即0x y a +-=∴圆心到直线距离d r ==1a =-或3∴切线l 方程为10x y ++=或30x y +-=综上所述,切线l 方程为(2y x =或10x y ++=或30x y +-= (3)假设(),P x yPM =,即222PM PO =又直线PM 与圆C 相切,切点为M 2222222PM PC r PC PO ∴=-=-=即:()()()22222122x y x y +=++--,整理得:()()22128x y -++=P 又在圆()()2212x a y -+-=上 ∴两圆有公共点24a -≤≤即a 的取值范围为:[]2,4-【点睛】本题考查直线与圆的位置关系、圆与圆的位置关系的应用问题;关键是明确直线与圆的位置关系通过圆心到直线的距离与半径之间的大小关系来确定;圆与圆的位置关系通过圆心距与两圆半径之和、半径之差的关系来确定.22.已知双曲线2214y x -=的左、右顶点分别为A 、B ,曲线C 是以A 、B 为短轴的两端点且离心率P 在第一象限且在双曲线上,直线AP 与椭圆相交于另一点T . (1)求曲线C 的方程;(2)设点P 、T 的横坐标分别为x 1,x 2,证明:x 1x 2=1;(3)设△TAB 与△POB (其中O 为坐标原点)的面积分别为S 1与S 2,且10PA PB ⋅≤,求2212S S -的取值范围.【答案】(1)2214y x +=(2)证明见解析 (3)(0,1]【分析】(1)设椭圆的方程为222210y x a b a b+=,>>,依题意可得A (﹣1,0),B (1,0),推出b =1,a 2,即可得出答案. (2)设点P (x 1,y 1),T (x 2,y 2)(xi >0,yi >0,i =1,2),直线AP 的斜率为k (k >0),则直线AP 的方程为y =k (x +1),联立椭圆的方程,解得x 2,同理可得21244k x k +=-,进而可得x 1⋅x 2=1.(3)由(2)得1111(1,),(1,)PA x y PB x y =---=--,由10PA PB ⋅≤,得11x ≤<S 1,S 2,结合基本不等式得S 12﹣S 22的取值范围.【详解】(1)设椭圆的方程为222210y x a b a b+=,>>,依题意可得A (﹣1,0),B (1,0),所以b =1,所以22222134c a e a a -===,即a 2=4,所以椭圆方程为2214y x +=.(2)证明:设点P (x 1,y 1),T (x 2,y 2)(xi >0,yi >0,i =1,2),直线AP 的斜率为k (k >0), 则直线AP 的方程为y =k (x +1),联立方程组()22114y k x y x ⎧+⎪⎨+=⎪⎩=,整理,得(4+k 2)x 2+2k 2x +k 2﹣4=0,解得x =﹣1或2244k x k -=+,所以22244k x k -=+,同理联立直线AP 和双曲线可得,21244k x k +=-,所以x 1⋅x 2=1.(3)由(2)1111(1,),(1,)PA x y PB x y =---=--, 因为10PA PB ⋅≤,所以()()21111110x x y ---+≤,即221111x y +≤,因为点P 在双曲线上,则221114y x -=,所以22114411x x +-≤,即213x ≤,因为点P 是双曲线在第一象限内的一点,所以11x ≤< 因为122211111222S AB y y S OB y y =⋅==⋅=,, 所以()()22222222122121121441544S S y y x x x x -=-=---=--. 由(2)知,x 1⋅x 2=1,即211x x =, 设21t x =,则1<t ≤3,则221245S S t t-=--.设f (t )=5﹣t 4t -=5﹣(t 4t+)≤5﹣4=1, 当且仅当4t t=,即t =2时取等号, 结合对勾函数单调性知函数f (t )在(1,2)上单调递增,在(2,3]上单调递减. 因为()()423531033f f =--==,,所以f (1)<f (3),所以2212S S 的取值范围为(0,1].。

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法求轨迹方程的一般方法:1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线〔如圆、椭圆、双曲线、抛物线〕的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标〔x ,y 〕表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f 〔t 〕, y =g 〔t 〕,进而通过消参化为轨迹的普通方程F 〔x ,y 〕=0。

4. 代入法〔相关点法〕:如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,〔该点坐标满足某已知曲线方程〕,则可以设出P 〔x ,y 〕,用〔x ,y 〕表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点〔含参数〕的坐标,再消去参数求得所求的轨迹方程〔假设能直接消去两方程的参数,也可直接消去参数得到轨迹方程〕,该法经常与参数法并用。

一:用定义法求轨迹方程例1:已知ABC ∆的顶点A ,B 的坐标分别为〔-4,0〕,〔4,0〕,C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,假设b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.【变式】:已知圆的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。

高中数学解析几何双曲线性质与定义

高中数学解析几何双曲线性质与定义

双曲线双曲线是圆锥曲线的一种,即双曲线是圆锥面与平行于轴的平面相截而得的曲线。

双曲线在一定的仿射变换下,也可以看成反比例函数。

双曲线有两个定义,一是与平面上两个定点的距离之差的绝对值为定值的点的轨迹,二是到定点与定直线的距离之比是一个大于1的常数的点之轨迹。

一、双曲线的定义 ①双曲线的第一定义一动点移动于一个平面上,与该平面上两个定点F 1、F 2的距离之差的绝对值始终为一定值2a(2a 小于F 1和F 2之间的距离即2a<2c )时所成的轨迹叫做双曲线。

取过两个定点F 1、F 2的直线为x 轴,线段F 1F 2的垂直平分线为y 轴建立直角坐标系。

设M(x ,y)为双曲线上任意一点,那么F1、F2的坐标分别是(-c ,0)、(c ,0).又设点M 与F1、F2的距离的差的绝对值等于常数2a 。

将这个方程移项,两边平方得:两边再平方,整理得:()()22222222a c a y a x a c -=--由双曲线定义,2c >2a 即c >a ,所以c 2-a 2>0.设222b a c =- (b >0),代入上式得:双曲线的标准方程:12222=-by a x两个定点F 1,F 2叫做双曲线的左,右焦点。

两焦点的距离叫焦距,长度为2c 。

坐标轴上的端点叫做顶点,其中2a 为双曲线的实轴长,2b 为双曲线的虚轴长。

实轴长、虚轴长、焦距间的关系:222b a c +=,②双曲线的第二定义与椭圆的方法类似:对于双曲线的标准方程:12222=-by a x ,我们将222b a c +=代入,可得:()ac ca x c x y =±±+22 所以有:双曲线的第二定义可描述为:平面内一个动点(x,y )到定点F (±c,0)的距离与到定直线l (ca x 2±=)的距离之比为常数()0ce c a a=>>的点的轨迹是双曲线,其中,定点F 叫做双曲线的焦点,定直线l 叫做双曲线的准线,常数e 是双曲线的离心率。

高一数学平面直角坐标系中的基本公式及直线方程人教实验B版知识精讲

高一数学平面直角坐标系中的基本公式及直线方程人教实验B版知识精讲

高一数学平面直角坐标系中的基本公式及直线方程人教实验B 版【本讲教育信息】一、教学内容:平面直角坐标系中的基本公式及直线方程二、学习目标1、理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握由点和斜率导出直线方程的方法;掌握直线方程的点斜式、两点式和一般式,确定一条直线需要两个独立的已知量,并能根据条件熟练地求出直线方程或用待定系数法求出直线方程中的未知量。

2、在运用直线的斜率解题时,注意不要遗漏斜率不存在的情形。

三、知识要点1、在数轴上,设点A 的坐标为1x ,点B 的坐标为2x ,则AB=2x -1x 。

2、数轴上两点A ,B 的距离为d (A ,B )=AB =12x x -3、计算A ),(11y x ,B ),(22y x 两点之间的距离公式 d (A ,B )=AB =212212)()(y y x x -+-4、已知A ),(11y x ,B ),(22y x 。

则线段中点的坐标为221x x x +=,221y y y += 5、倾斜角:在平面直角坐标系中,把x 轴绕直线L 与x 轴的交点按逆时针方向旋转到和直线L 重合时所转的最小正角。

当直线L 和x 轴平行或重合时,我们规定直线L 的倾斜角为0°。

故倾斜角的X 围是[0,π)。

6、斜率:不是90°的倾斜角的正切值叫做直线的斜率,即k=tan α。

7、过两点P (x 1,y 1),P (x 2,y 2),(x 1≠x 2)的直线的斜率公式——k=tan α=1212x x y y --注意:除了一般式以外,每一种方程的形式都有其局限性。

【典型例题】例1、求满足下列条件的直线l 的方程:在y 轴上的截距为3-,且它与两坐标轴围成的三角形面积为6。

解:设直线l 的方程为13x y a +=-, 由题意得6|3||a |21=-⋅⋅,4a ∴=±。

当4a =时,直线l 的方程为143x y +=- 即34120x y --=。

两条直线的位置关系-平行和垂直

两条直线的位置关系-平行和垂直

直线的方程及其性质
直线的方程:一般形式为 Ax+By+C=0,其中A、B不同时为0。
直线的性质
直线上的任意两点确定的直线方程是 唯一的。
两条不重合的直线,如果斜率相等,则它们平 行;如果斜率之积为-1,则它们垂直。
两条平行线之间的距离是常数,可以 通过公式计算。
两条垂直线的斜率互为相反数的倒数, 即k1*k2=-1。
01
两条垂直相交直线的交角为90度 。
02
在同一平面内,两条直线的交角 的平分线与这两条直线所形成的 四个角中,有一个角是直角。
垂直直ቤተ መጻሕፍቲ ባይዱ在坐标系中的表示
在平面直角坐标系中,两条垂直相交直线的斜 率互为相反数的倒数。即,如果一条直线的斜 率为k,那么与它垂直的直线的斜率为-1/k。
一条直线与y轴垂直,那么它的斜率为 0,可以表示为y=b(b为常数)的形式。
利用方程联立求解交点坐标
01
02
03
04
将两条直线的方程联立,解出 交点坐标;
若方程组无解,则两直线平行 ;
若方程组有唯一解,则两直线 相交于该点;
若方程组有无穷多解,则两直 线重合。
结合图形分析实际问题
在平面直角坐标系中, 画出两条直线的图形;
结合实际问题的背景 和意义,分析两直线 位置关系对问题的影 响。
在三角形 ABC 中,已知 A(0,0), B(4,0),C(0,3)。若直线 DE 与 AB 边平行且过点 C,求 DE 所在 直线的方程。
解答
由题意知 AB 边所在直线的方程为 x/4 + y/3 = 1。因为 DE 与 AB 边平行,所以 DE 所在直线的斜率 也为 -3/4。设 DE 所在直线的方 程为 y = -3/4x + b,将点 C(0,3) 代入得 b = 3。所以,DE 所在直 线的方程为 y = -3/4x + 3。

专题08 直线和圆的方程(解答题)(11月)(人教A版2021)(原卷版)

专题08 直线和圆的方程(解答题)(11月)(人教A版2021)(原卷版)

专题08 直线和圆的方程(解答题)1.直角坐标系xOy 中,点A 坐标为()2,0-,点B 坐标为()4,3,点C 坐标为()1,3-,且()AM t AB t R =∈.(1)若CM AB ⊥,求t 的值;(2)当01t ≤≤时,求直线CM 的斜率k 的取值范围.2.已知ABC 的顶点()5,1A ,边AB 上的中线CM 所在直线方程为250x y --=,边AC 上的高BH 所在直线方程为250x y --=,(1)求顶点C 的坐标;(2)求ABC 的面积.3.如图所示,在平面直角坐标系中,已知矩形ABCD 的长为3,宽为2,边,AB AD 分别在x 轴、y 轴的正半轴上,点A 与坐标原点重合.将矩形折叠,使点A 落在线段DC 上,已知折痕所在直线的斜率为12-.(1)求折痕所在的直线方程;(2)若点P 为BC 的中点,求PEF 的面积.4.已知圆C 过点(4,2)A ,()1,3B ,它与x 轴的交点为()1,0x ,()2,0x ,与y 轴的交点为()10y ,,()20,y ,且12126x x y y +++=.(1)求圆C 的标准方程;(2)若(3,9)A --,直线:20l x y ++=,从点A 发出的一条光线经直线l 反射后与圆C 有交点,求反射光线所在的直线的斜率的取值范围.5.已知圆O 圆心为坐标原点,半径为43,直线l :)4y x =+交x 轴负半轴于A 点,交y 轴正半轴于B 点(1)求BAO ∠(2)设圆O 与x 轴的两交点是1F ,2F ,若从1F 发出的光线经l 上的点M 反射后过点2F ,求光线从1F 射出经反射到2F 经过的路程;(3)点P 是x 轴负半轴上一点,从点P 发出的光线经l 反射后与圆O 相切.若光线从射出经反射到相切经过的路程最短,求点P 的坐标.6.一条光线从点()6,4P 射出,与x 轴相交于点()2,0Q ,经x 轴反射后与y 轴交于点H . (1)求反射光线QH 所在直线的方程;(2)求P 点关于直线QH 的对称点P'的坐标.7.已知直线l :()120kx y k k R -++=∈.(1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设AOB ∆的面积为S ,求S 的最小值及此时直线l 的方程.8.已知直线1:3470l x y +-=与2:3480l x y ++=.(1)若()11,A x y 、()22,B x y 两点分别在直线1l 、2l 上运动,求AB 的中点D 到原点的最短距离;(2)若()2,3M ,直线l 过点M ,且被直线1l 、2l 截得的线段长为l 的方程. 9.已知圆22:(3)(4)4C x y -+-=.(1)若直线l 过点(2,3)A 且被圆C 截得的弦长为l 的方程;(2)若直线l 过点(1,0)B 与圆C 相交于P ,Q 两点,求CPQ ∆的面积的最大值,并求此时直线l 的方程.10.(1)已知直线l 过点()3,4P -,若直线l 在两坐标轴上的截距之和为12,求直线l 的一般式方程;(2)已知直线l 过点()3,2P 且与x 轴,y 轴的正半轴相交于A ,B 两点,求ABO 面积最小值及这时直线l 的一般式方程;(3)已知直线l 经过点()2,2P -,且与第一象限的平分线(0)y x x =≥,y 轴(原点除外)分别交于A ,B 两点,直线l ,射线(0)y x x =≥,y 轴围成的三角形OAB 的面积为12,则符合要求的直线共有几条,请说明理由.11.设集合L ={|l 直线l 与直线3y x =相交,且以交点的横坐标为斜率}.(1)是否存在直线0l 使0l L ∈,且0l 过点()1,5,若存在,请写出0l 的方程;若不存在,请说明理由;(3)设(0,)a ∈+∞,点()3,P a -与集合L 中的直线的距离最小值为()f a ,求()f a 的解析式.12.已知直线:20l x y --=和点(1,1),(1,1)A B -,(1)直线l 上是否存在点C ,使得ABC 为直角三角形,若存在,请求出C 点的坐标;若不存在,请说明理由;(2)在直线l 上找一点P ,使得APB ∠最大,求出P 点的坐标.13.已知过点(,)P m n 的直线l 与直线:240l x y '++=垂直.(1) 若12m =,且点P 在函数11y x=-的图象上,求直线l 的一般式方程;14.已知直线1:21l y x =-,2:1l y x =-+的交点为P ,求(1)过点P 且与直线32y x =-+平行的直线l 的方程;(2)以点P 为圆心,且与直线3410x y ++=相交所得弦长为125的圆的方程. 15.(1)一条直线经过()2,3A -,并且它的斜率是直线y x =斜率的2倍,求这条直线方程; (2)求经过两条直线280x y +-=和210x y -+=交点,且平行于直线4370x y --=的直线方程.16.求圆心在直线30x y -=上,与x 轴相切,被直线0x y -=截得的弦长的圆的方程.17.(1)求圆221:10C x y +=的切线方程,使得它经过点(2M (2)圆()()222:122C x y ++-=的切线在x y 、轴上截距相等,求切线方程 18.已知圆心在直线270x y --=上的圆C 与y 交于两点()04A -,,()02B -, (1)求圆C 的标准方程(2)求圆C 上的点到直线210x y --=距离的最大值和最小值19.求圆221:10100C x y x y +--=与圆2226240C x y x y +-+-=:的公共弦长.20.已知圆22:414450C x y x y +--+=.(1)求圆的圆心C 的坐标和半径长;(2)若直线7:2l y x =与圆C 相交于A B 、两点,求AB 的长; 21.已知圆1C 与y 轴相切于点()03,,圆心在经过点()2,1与点()2,3--的直线l 上 (1)求圆1C 的方程;(2)若圆1C 与圆2C :226350x y x y +--+=相交于M 、N 两点,求两圆的公共弦MN的长.22.已知圆1C 过点1)-,且圆心在直线1y =,圆222:420C x y x y +-+=.(1)求圆1C 的标准方程;(2)求圆1C 与圆2C 的公共弦长;23.已知圆C 的圆心在x 轴上,且经过点1,0,()(,2)1A B -.(1)求圆C 的标准方程;(2)过点(0,2)P 的直线l 与圆C 相交于,M N 两点,且||MN =l 的方程. 24.已知点(2,)P a (0a >)在圆C :22(1)2x y -+=上.(1)求P 点的坐标;(2)求过P 点的圆C 的切线方程.25.已知直线1l ,2l 的方程分别为20x y -=,230x y -+=,且1l ,2l 的交点为P . (1)求P 点坐标;(2)若直线l 过点P ,且与x ,y 轴正半轴围成的三角形面积为92,求直线l 的方程. 26.圆C 经过点()2,1A -,和直线1x y +=相切,且圆心在直线2y x =-上.(1)求圆C 的方程;(2)圆内有一点52,2B ⎛⎫- ⎪⎝⎭,求以该点为中点的弦所在的直线的方程. 27.ABC 中,(0,1)A ,AB 边上的高线方程为240x y +-=,AC 边上的中线方程为230x y +-=,求,,AB BC AC 边所在的直线方程.28.根据下列条件求直线方程:(1)已知直线过点(2,2)P -且与两坐标轴所围成的三角形的面积为1;(2)已知直线过两直线3210x y -+=和340x y ++=的交点,且垂直于直线340x y ++=.29.已知直线1:0l x y -=,2:230l x y +-=,3:240l ax y -+=.(1)若点P 在1l 上,且到直线2l 的距离为,求点P 的坐标;(2)若2l //3l ,求2l 与3l 的距离.30.如图,在ABC 中,(5,2)A -,(7,4)B ,且AC 边的中点M 在y 轴上,BC 的中点N 在x 轴上.(1)求点C 的坐标;(2)求ABC 的面积.31.已知点(5,1)A 关于x 轴的对称点为B ,关于原点的对称点为C .(1)求ABC 中过AB ,BC 边上中点的直线方程;(2)求AC 边上高线所在的直线方程.32.已知直线1:10l ax y a +++=与22(:1)30l x a y +-+=.(1)当0a =时,求直线1l 与2l 的交点坐标;(2)若12l l ,求a 的值.33.已知直线l 的方程为210x y -+=.(1)求过点()3,2A ,且与直线l 垂直的直线1l 方程;(2)求过l 与1l 的交点B ,且倾斜角是直线l 的一半的直线2l 的方程.34.已知点(1,2),(1,4),(5,2)A B C -,求ABC ∆的边AB 上的中线所在的直线方程.35.已知ABC ∆的顶点坐标为(1,5)A -,(2,1)B --,(4,3)C .(1)求AB 边上的高线所在的直线方程;(2)求ABC ∆的面积.36.已知直线()():20l m n x m n y m n ++++-=及点()4,5P(1)证明直线l 过某定点,并求该定点的坐标(2)当点P 到直线l 的距离最大时,求直线l 的方程37.如图所示,在平行四边形OABC 中,点(1,3),(3,0)C A .(1)求直线AB 的方程;(2)过点C 作CD AB ⊥于点D ,求直线CD 的方程.38.求适合下列条件的直线方程:(1)已知()2,3A -,()3,2B -,求线段AB 的垂直平分线的方程;(2)求经过点()2,3A -并且在两个坐标轴上的截距相等的直线方程.39.已知ABC ∆的顶点()3,1A ,AB 边上的中线CM 所在直线方程为210x y --=,B ∠的角平分线BN 所在直线方程为20x y -=.(1)求顶点B 的坐标;(2)求直线BC 的方程.40.已知点(3,2)A ,直线l :210x y ++=.(1)求直线l 关于点A 对称的直线方程;(2)求直线l 与两坐标轴围成的三角形的重心坐标. 41.已知两个定点()0,4A ,()0,1B ,动点P 满足2PA PB =,设动点P 的轨迹为曲线E ,直线l :4y kx =-.(1)求曲线E 的轨迹方程;(2)若l 与曲线E 交于不同的C 、D 两点,且120COD ∠=︒(O 为坐标原点),求直线l 的斜率;42.已知圆C 经过点()31A ,和点()20B -,,且圆心C 在直线24y x =-上. (1)求圆C 的方程;(2)过点()14D -,的直线l 被圆C 截得的弦长为6,求直线l 的方程. 43.已知圆C : ()2215x y +-=,直线:10.l mx y m -+-=(1)求证:对m R ∈,直线l 与圆C 总有两个不同的交点;(2)设直线l 与圆C 交于,A B 两点,若AB l 的方程.44.某高速公路隧道内设双行线公路,其截面由一段圆弧和一个长方形的三边构成(如图所示).已知隧道总宽度AD 为,行车道总宽度BC 为,侧墙面高EA ,FD 为2m ,弧顶高MN 为5m .(1)建立适当的直角坐标系,求圆弧所在的圆的方程.(2)为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上的高度之差至少要有0.5m .请计算车辆通过隧道的限制高度是多少.45.已知圆1C 过点),()1,1-,且圆心在直线1y =上,圆222:420C x y x y +-+=. (1)求圆1C 的标准方程;(2)求圆1C 与圆2C 的公共弦长;(3)求过两圆的交点且圆心在直线241x y +=上的圆的方程.46.已知直线240x y +-=与圆224:20(0)C x y mx y m m+--=>相交于点M N 、,且||||OM ON =(O 为坐标原点).(1)求圆C 的标准方程;(2)若(0,2)A ,点P Q 、分别是直线20x y ++=和圆C 上的动点,求||||PA PQ +的最小值及求得最小值时的点P 的坐标.47.在平面直角坐标系xOy 中,已知圆C 的方程为2230x y x y +-+=,点()1,1P 是圆C 上一点.(1)若M ,N 为圆C 上两点,若四边形MONP 的对角线MN 的方程为20x y m ++=,求四边形MONP 面积的最大值;(2)过点P 作两条相异直线分别与圆C 相交于A ,B 两点,若直线PA ,PB 的斜率分别为1k ,2k ,且120k k +=,试判断直线AB 的斜率是否为定值,并说明理由.48.已知坐标平面上两个定点()0,4A ,()0,0O ,动点(),M x y 满足:3MA OM =. (1)求点M 的轨迹方程,并说明轨迹是什么图形;(2)记(1)中的轨迹为C ,过点1,12N ⎛⎫-⎪⎝⎭的直线l 被C所截得的线段的长为直线l 的方程.49.如图,圆22():21M x y -+=,点(1,)P t -为直线:1l x =-上一动点,过点P 引圆M 的两条切线,切点分别为,A B .(1)若1t =,求两条切线所在的直线方程;(2)求直线AB 的方程,并写出直线AB 所经过的定点的坐标;(3)若两条切线,PA PB 与y 轴分别交于S T 、两点,求ST 的最小值.50.已知动圆过定点(0,2)A ,且在x 轴上截得的弦长为4.(1)求动圆圆心M 的轨迹方程C ;(2)设不与x 轴垂直的直线l 与轨迹C 交手不同两点()11,P x y ,()22,Q x y .若12112+=x x ,求证:直线l 过定点.51.如图,已知圆22:(4)4M x y +-=,直线l 的方程为20x y -=,点P 是直线l 上一动点,过点P 作圆的切线PA 、PB ,切点为A 、B .(1)当P 的横坐标为165时,求APB ∠的大小; (2)求证:经过A 、P 、M 三点的圆N 必过定点,并求出所有定点的坐标.52.圆C :22(3)1x y +-=,点(,0)P t 为x 轴上一动点,过点P 引圆C 的两条切线,切点分别为M ,N .(1)若1t =,求切线和直线MN 的方程;(2)若两条切线PM ,PN 与直线1y =分别交于A ,B 两点,求ABC 面积的最小值.53.已知两个定点A (0,4),B (0,1),动点P 满足|P A |=2|PB |,设动点P 的轨迹为曲线E ,直线l :y =kx ﹣4.(1)求曲线E 的轨迹方程;(2)若l 与曲线E 交于不同的C 、D 两点,且120COD ∠=︒(O 为坐标原点),求直线l 的斜率;(3)若k =1,Q 是直线l 上的动点,过Q 作曲线E 的两条切线QM 、QN ,切点为M 、N ,探究:直线MN 是否过定点,若存在定点请写出坐标,若不存在则说明理由.54.已知ABC 的顶点()45A AB -,,边上的中线CM 所在直线方程为450x y AC --=,边上的高BH 所在直线方程为410x y --=,求:(1)顶点C 的坐标;(2)直线BC 的方程.55.已知三角形的三个顶点()2,0A -,()4,4B -,()0,2C .(1)求线段BC 的垂直平分线所在直线方程;(2)求过AB 边上的高所在的直线方程;56.已知直线l 过点P (2,3)且与定直线l 0:y =2x 在第一象限内交于点A ,与x 轴正半轴交于点B ,记AOB 的面积为S (O 为坐标原点),点B (a ,0).(1)求实数a 的取值范围;(2)求当S 取得最小值时,直线l 的方程.57.在平面直角坐标系xOy 中,已知点,,P B C 坐标分别为0,12,(),(),0(0,2),E 为线段BC 上一点,直线EP 与x 轴负半轴交于点A ,直线BP 与AC 交于点D .(1)当E 点坐标为13,22⎛⎫ ⎪⎝⎭时,求直线OD 的方程; (2)求BOE △与ABE △面积之和S 的最小值.58.已知()()221340m x m y m -++++=.(1)m 为何值时,点Q (3,4)到直线距离最大,最大值为多少;(2)若直线分别与x 轴,y 轴的负半轴交于AB 两点,求三角形AOB 面积的最小值及此时直线的方程.59.已知ABC 的三边所在直线的方程分别是43100AB l x y -+=:,2BC l y =:,345CA l x y -=:.(1)求与AB 边平行的中位线方程;(2)求AB 边上的高所在直线的方程.60.已知ABC 的三个顶点为()4,0A ,()0,2B ,()2,6C .(1)求AC 边上的高BD 所在直线的方程;(2)求ABC 的外接圆的方程.61.已知直线l 经过点()2,3P -.(1)若原点到直线l 的距离为2,求直线l 的方程;(2)若直线l 被两条相交直线220x y --=和30x y ++=所截得的线段恰被点P 平分,求直线l 的方程.62.直线l 1过点A (0,1), l 2过点B (5,0), l 1∥l 2且l 1与l 2的距离为5,求直线l 1与l 2的一般式方程.63.已知ABC ∆的三个顶点(4,6)A -,(4,0)B -,(1,4)C -,求:(1)AC 边上的高BD 所在直线的方程;(2)BC 的垂直平分线EF 所在直线的方程;(3)AB 边的中线的方程.64.已知圆C :()()221+11x y --= (1)求过点A ()24,且与圆C 相切的直线方程.(2)若(),P x y 为圆C 上的任意一点,求()()2223x y +++的取值范围. 65.已知ABC 中,顶点()4,5A ,点B 在直线:220l x y -+=上,点C 在x 轴上,求ABC 周长的最小值.66.已知ABC ∆的三个顶点(),A m n 、()2,1B 、()2,3C -.(1)求BC 边所在直线的方程;(2)BC 边上中线AD 的方程为2360x y -+=,且7ABC S ∆=,求点A 的坐标. 67.已知圆22:(4)1M x y +-=,直线:20l x y -=,点P 在直线l 上,过点P 作圆M 的切线PA 、PB ,切点为A 、B .(1)若60APB ∠=,求P 点坐标;(2)若点P 的坐标为(1,2),过P 作直线与圆M 交于C 、D 两点,当CD =线CD 的方程;(3)求证:经过A 、P 、M 三点的圆与圆M 的公共弦必过定点,并求出定点的坐标. 68.已知直线l 经过点(6,4)P ,斜率为k(1)若l 的纵截距是横截距的两倍,求直线l 的方程;(2)若1k =-,一条光线从点(6,0)M 出发,遇到直线l 反射,反射光线遇到y 轴再次反射回点M ,求光线所经过的路程.69.已知圆22:1O x y +=,圆()()221:231O x y -+-=过1O 作圆O 的切线,切点为T (T 在第二象限).(1)求1OO T ∠的正弦值;(2)已知点(),P a b ,过P 点分别作两圆切线,若切线长相等,求,a b 关系;70.圆C :22(3)1x y +-=,点(,0)P t 为x 轴上一动点,过点P 引圆C 的两条切线,切点分别为M ,N .(1)若1t =,求切线方程;(2)若两条切线PM ,PN 与直线1y =分别交于A ,B 两点,求ABC 面积的最小值.71.已知圆C 轨迹方程为()22225x y -+=(1)设点31,2M ⎛⎫- ⎪⎝⎭,过点M 作直线l 与圆C 交于A ,B 两点,若8AB =,求直线l 的方程;(2)设P 是直线60x y ++=上的点,过P 点作圆C 的切线PA ,PB ,切点为A ,B .求证:经过A ,P ,C 三点的圆必过定点,并求出所有定点的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

已知坐标平面内两点求它们连线的垂直平分
线方程
在坐标平面内,两点之间连线的垂直平分线是一条很特殊的直线。

它不仅将两点连接起来,而且还将连接它们的直线垂直平分成两半。

这条直线在很多数学问题中都会涉及到,因此了解如何求取这条直线
的方程非常重要。

假设我们有两个点A(x1,y1)和B(x2,y2)。

那么,我们如何找到它
们之间的垂直平分线?
首先,我们需要找到这两个点之间连线的中点M,也就是它们的平均值坐标。

如下公式所示:
M = ((x1+x2)/2, (y1+y2)/2)
接着,我们需要找到连线AB的斜率,也就是两点之间的直线斜率。

如下公式所示:
k = (y2-y1)/(x2-x1)
然后,我们需要找到连线AB的垂线斜率。

垂线斜率是一个与原斜
率k垂直的斜率,其值为-k的倒数。

如下公式所示:
k1 = -1/k
最后,我们可以使用点斜式来求解垂直平分线的方程。

点斜式指的是通过一点和它的斜率确定直线的方法。

这里的点是中点M,斜率是垂线斜率k1。

因此,我们可以写出以下方程:
y - (y1+y2)/2 = k1(x - (x1+x2)/2)
将垂线斜率代入上式,我们得到垂直平分线的方程:
y - (y1+y2)/2 = (x - (x1+x2)/2)/k
或者
(y1-y2)(x-(x1+x2)/2) + (x2-x1)(y-(y1+y2)/2) = 0
这个方程的含义是,对于连接两点A和B的线段,垂直平分线将其分成两个相等的部分。

这个方程可以用于解决许多问题,例如求垂直平分线上的点、两个点之间的最短距离等。

总之,了解两个点之间的垂直平分线方程是数学中的重要基础知识。

在实际应用中,我们可以用它来解决许多实际问题,如绘图、测量等。

所以,掌握这个方程是很有指导意义的。

相关文档
最新文档