专题九坐标平面上的直线

合集下载

八年级数学下册专题九反比例函数中k的几何意义作业新版华东师大版

八年级数学下册专题九反比例函数中k的几何意义作业新版华东师大版
专题(九) 反比例函数中k的几何意义
1.如图,在平面直角坐标系中,A 是反比例函数 y=k 在第二象限的图象上的 x
点,过点 A 作 y 轴的垂线交 y 轴于点 B,点 C 在 x 轴上.若△ABC 的面积为 8,则
k 的值为___-__1_6___.
2.如图,点 P(x,y)在双曲线 y=k x
的直线 l∥y 轴,且直线 l 分别与反比例函数 y=8 和 y=k 的图象交于 P,Q 两点.若
x
x
S△POQ=15,则 k 的值为( D )
A.38 B.22 C.-7 D.-22
10.如图,直线 l⊥x 轴于点 P,且与反比例函数 y1=kx1 (x>0)及 y2=kx2 (x>0)的
图象分别交于 A,B 两点,连结 OA,OB.已知△OAB 的面积为 4,则 k1-k2=__8__.
x
8.如图,点 A 在双曲线 y=3 (x>0)上,点 B 在双曲线 y=k (k≠0,x>0),AB
x
x
∥x 轴,分别过点 A,B 向 x 轴作垂线,垂足分别为 D,C.若矩形 ABCD 的面积是 8,
则 k 的值为( D )
A.5 B.7 C.9 D.11
9.(内江中考)如图,在平面直角坐标系中,点 M 为 x 轴正半轴上一点,过点 M
11.如图,过 x 轴上任意一点 P 作 y 轴的平行线,分别与反比例函数 y=3 (x>0), x
y=-6x (x>0)的图象交于 A 点和 B 点.若 C 为 y 轴上任意一点,连结 AC,BC,则 9
△ABC 的面积为____2_____.
的图象上,PA⊥x 轴,垂足为 A,若 S△AOP
=2,则该反比例函数的表达式为___y_=__-__4x____.

2024年新高考版数学专题1_9.5 圆锥曲线的综合问题(分层集训)

2024年新高考版数学专题1_9.5 圆锥曲线的综合问题(分层集训)

解析 (1)设动点P的坐标为(x,y),因为| PF | = 5 ,
d5
所以
(x 1)2 y2
=
5 ,即5[(x+1)2+y2]=|x+5|2,整理得 x2 + y2 =1.所以动点P的
| x5|
5
54
轨迹方程为 x2 + y2 =1.
54
(2)设M(x1,y1),N(x2,y2),由(1)可得点A的坐标为(0,-2),故直线AM:y=
AC
·BC
=1,
则点C的轨迹为 ( )
A.圆 B.椭圆 C.抛物线 D.直线
答案 A
3.(2023届贵州遵义新高考协作体入学质量监测,8)已知圆C的方程为(x-1)2
+y2=16,B(-1,0),A为圆C上任意一点,若点P为线段AB的垂直平分线与直线
AC的交点,则点P的轨迹方程为 ( )
A. x2 + y2 =1
2 2
+
y2 b2
=1(a>b>0)的离心率e=
2 ,四
2
个顶点组成的菱形的面积为8 2 ,O为坐标原点.
(1)求椭圆E的方程;
(2)过☉O:x2+y2= 8
上任意点P作☉O的切线l与椭圆E交于点M,N,求证:
PM
·
3
PN
为定值.
解析 (1)由题意得2ab=8 2 ,e= c = 2 ,a2=b2+c2,
2
3
6
,
0
,∴
PM
=
0,
2
3
6
,
PN
=
0,
2
6 3
,

专题九(动点型问题)

专题九(动点型问题)
全效学习中考学练测
中考专题诠释 解题策略与解法精讲 中考典例剖析 中考真题演练
③如图②, 当EO=EF时, 过点E作EH⊥y轴 于点H ,在△AOE和△BEF中, ∵∠EAO=∠FBE, EO=EF, ∠AOE=∠BEF, ∴△AOE≌△BEF(AAS)。∴BE=AO=2。 ∵EH⊥OB ,∴∠EHB=90°。 ∴∠AOB=∠EHB。 ∴EH∥AO。 ∴∠BEH=∠BAO=45°。
4
全效学习中考学练测
中考专题诠释 解题策略与解法精讲 中考典例剖析 中考真题演练
中考典例剖析 (二)以双动点为载体,探求结论开放性问题 4 例轴8,.O如A为图y,轴在建矩立形平A面B直CD角中坐,标AO系=3,,设taDn、∠EA分CB别= 是3.线以段OA为C、坐O标C上原的点动,点OC,为它x 们同时出发,点D以每秒3个单位的速度从点A向点C运动,点E以每秒1个单 位的速度从点C向点O运动.设运动时间为t(秒) (1)求直线AC的解析式; (2)用含t的代数式表示点D的坐标; (3)在t为何值时,△ODE为直角三角形? (4)在什么条件下,以Rt△ODE的三个顶点能确定一条对称轴平行于y轴的 抛物线?并请选择一种情况,求出所确定的抛物线的解析式.
全效学习中考学练测
中考专题诠释 解题策略与解法精讲 中考典例剖析 中考真题演练 全效学习中考学练测
中考专题诠释 解题策略与解法精讲 中考典例剖析 中考真题演练 全效学习中考学练测
中考专题诠释 解题策略与解法精讲 中考典例剖析 中考真题演练 全效学习中考学练测
中考专题诠释 解题策略与解法精讲 中考典例剖析 中考真题演练 全效学习中考学练测
全效学习中考学练测
中考专题诠释 解题策略与解法精讲 中考典例剖析 中考真题演练

高中数学教师备课必备(直线与方程):专题九 直线与方程提高训练 含解析

高中数学教师备课必备(直线与方程):专题九 直线与方程提高训练 含解析

【知识点一:倾斜角与斜率】(1)直线的倾斜角①关于倾斜角的概念要抓住三点:1、与x 轴相交;2、x 轴正向;3、直线向上方向。

②直线与x 轴平行或重合时,规定它的倾斜角为0③倾斜角α的范围000180α≤<(2)直线的斜率①直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在。

记作tan k α=0(90)α≠⑴当直线l 与x 轴平行或重合时, 00α=,0tan 00k ==⑵当直线l 与x 轴垂直时, 090α=,k 不存在.②经过两点1112212(,),(,)P x y P x y xx ≠()的直线的斜率公式是2121y y k x x -=-③每条直线都有倾斜角,但并不是每条直线都有斜率. (3)求斜率的一般方法:①已知直线上两点,根据斜率公式212121()yy k x x x x -=≠-求斜率;②已知直线的倾斜角α或α的某种三角函数根据tan k α=来求斜率;(4)利用斜率证明三点共线的方法: 已知112233(,),(,),(,)A x y B x y C x y ,若123AB BC xx x k k ===或,则有A 、B 、C 三点共线。

【知识点二:直线平行与垂直】(1)两条直线平行:对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有2121 // k k ll =⇔特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行(2)两条直线垂直:如果两条直线12,l l 斜率存在,设为12,k k ,则有1- 2121=⋅⇔⊥k k ll注:两条直线12,l l 垂直的充要条件是斜率之积为—1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直;反过来,两直线垂直,斜率之积不一定为-1。

如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直.【知识点三:直线的方程】(1)直线方程的几种形式问题:过两点111222(,),(,)P x y P x y 的直线是否一定可用两点式方程表示? 【不一定】。

2020年中考数学压轴题专题9 动态几何定值问题学案(原版+解析)

2020年中考数学压轴题专题9 动态几何定值问题学案(原版+解析)

专题九动态几何定值问题【考题研究】数学因运动而充满活力,数学因变化而精彩纷呈。

动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。

解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。

以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。

【解题攻略】动态几何形成的定值和恒等问题是动态几何中的常见问题,其考点包括线段(和差)为定值问题;角度(和差)为定值问题;面积(和差)为定值问题;其它定值问题。

解答动态几何定值问题的方法,一般有两种:第一种是分两步完成:先探求定值. 它要用题中固有的几何量表示.再证明它能成立.探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.第二种是采用综合法,直接写出证明.【解题类型及其思路】在中考中,动态几何形成的定值和恒等问题命题形式主要为解答题。

在中考压轴题中,动态几何之定值(恒等)问题的重点是线段(和差)为定值问题,问题的难点在于准确应用适当的定理和方法进行探究。

【典例指引】类型一【线段及线段的和差为定值】【典例指引1】已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA ′D =15°时,作∠A ′EC 的平分线EF 交BC 于点F .①写出旋转角α的度数;②求证:EA ′+EC =EF ;(2)如图2,在(1)的条件下,设P 是直线A ′D 上的一个动点,连接PA ,PF ,若AB =2,求线段PA +PF 的最小值.(结果保留根号)【举一反三】如图(1),已知∠=90MON o ,点P 为射线ON 上一点,且=4OP ,B 、C 为射线OM 和ON 上的两个动点(OC OP >),过点P 作PA ⊥BC ,垂足为点A ,且=2PA ,联结BP .(1)若12PACABOP S S ∆=四边形时,求tan BPO ∠的值; (2)设PC x =,AB y BC=求y 与x 之间的函数解析式,并写出定义域; (3)如图(2),过点A 作BP 的垂线,垂足为点H ,交射线ON 于点Q ,点B 、C 在射线OM 和ON 上运动时,探索线段OQ 的长是否发生变化?若不发生变化,求出它的值。

09 专题九:一次函数与平行四边形存在性问题(方法专题)

09 专题九:一次函数与平行四边形存在性问题(方法专题)

1、如图,在平面直角坐标系xOy中,已知A(2,-2),B(4,0),若C是坐标平面内一点,且以A,B,C,O为顶点的平行四边形是_______________________。

【答案】(-2,-2),(6,-2)或(2,2)。

2、已知M(1,1)是AB的中点,若点A的坐标为(3,2)则点B的坐标为_________。

【答案】(-1,0)。

1.线段中点坐标公式平面直角坐标系中,点A坐标为(x1,y1),点B坐标为(x2,y2),则线段AB的中点坐标为1212,22x x y y++⎛⎫⎪⎝⎭。

2.平行四边形顶点坐标公式ABCD的顶点坐标分别为A(x A,y A)、B(x B,y B)、C(x C,y C)、D(x D,y D),则:x A+x C=x B+x D;y A+y C=y B+y D。

即平行四边形对角线两端点的横坐标、纵坐标之和分别相等。

解法点睛专题导入一次函数与平行四边形存在性问题3.一个基本事实,确定动点位置如图,已知不在同一直线上的三点A 、B 、C ,在平面内另找一个点D ,使以A 、B 、C 、D 为顶点的四边形是平行四边形.答案有三种:以AB 为对角线的ACBD 1,以AC 为对角线的ABCD 2,以BC 为对角线的ABD 3C 。

例1、已知:在平面直角坐标系中,点(1,0)A ,点(4,0)B ,点C 在y 轴正半轴上,且2OB OC =.(1)试确定直线BC 的解析式;(2)在平面内确定点M ,使得以点M 、A 、B 、C 为顶点的四边形是平行四边形,请直接写出点M 的坐标. 【答案】解:(1)(4,0)B ,4OB ∴=,又2OB OC =,C 在y 轴正半轴上,(0,2)C ∴.设直线BC 的解析式为(0)y kx b k =+≠.过点(4,0)B ,(0,2)C ,∴402k b b +=⎧⎨=⎩, 解得122k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为122y x =-+. 专题精析(2)如图,①当BC 为对角线时,易求1(3,2)M ;②当AC 为对角线时,//CM AB ,且CM AB =.所以2(3,2)M -;③当AB 为对角线时,//AC BM ,且AC BM =.则||2y M OC ==,||5x M OB OA =+=,所以3(5,2)M -. 综上所述,符合条件的点M 的坐标是1(3,2)M ,2(3,2)M -,3(5,2)M -.【举一反三】如图,在平面直角坐标系中,直线4y x =-+与x 轴、y 轴分别交于A ,B 两点,直线3y kx =-经过点A ,且与y 轴交于点C ,若点M 在直线AB 上运动,点N 在直线AC 上运动,且以O ,B ,M ,N 为顶点的四边形是平行四边形,则点M 的坐标 ______ .【答案】解:把0x =代入4y x =-+得:4y =,即点B 的坐标为:(0,4),线段OB 的长度为:4,把0y =代入4y x =-+得:40x -+=,解得:4x =,即点A 的坐标为:(4,0),把点(4,0)A 代入直线3y kx =-的:430k -=,解得:34k =,即直线AC 的解析式为:334y x =-,设点M 的横坐标为m ,则M 的坐标为:(,4)m m -+,根据题意得:点N 的坐标为:3(,3)4m m -当04m <<时,3(4)(3)44m m -+--=, 解得:127m =, 即点M 的坐标为:12(7,16)7, 当4m >时, 3(3)(4)44m m ---+=, 解得:447m =, 即点M 的坐标为:44(7,16)7-, 综上,点M 的坐标为:12(7,16)7或44(7,16)7-,如下图所示: 故答案为:12(7,16)7或44(7,16)7-.2.如图在平面直角坐标系中,点A 在x 轴的正半轴上,点B 在y 轴的正半轴上,且OA、OB 的长满足|2|0OA -.(1)求AB 的长;(2)若直线y kx b =+与线段AB 交于点E ,与坐标轴分别交于C 、D 两点,且点3(0,)2D ,(1,2)E ,求点C 的坐标;(3)在(2)的条件下,在坐标平面内是否存点P ,使以A 、B 、C 、P 为顶点的四边形是平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【答案】解:|2|0OA -,2OA ∴=,4OB =,在RtAOB ∆中,根据勾股定理得,AB(2)将点3(0,)2D ,(1,2)E 代入直线y kx b =+中得,232k b b +=⎧⎪⎨=⎪⎩, ∴1232k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线CD 是解析式为1322y x =+, 令0y =,则13022x +=,3x ∴=-, ∴点C 的坐标(3,0)-;(3)如图,连接BC ,由(1)知,2OA =,4OB =,点A 在x轴的正半轴上,点B 在y 轴的正半轴上,(2,0)A∴,(0,4)B,由(2)知,(3,0)C-,5AC∴=,以A、B、C、P为顶点的四边形是平行四边形,①当AC为边时,//BP AC,5BP AC==,(5,4)P∴-或(5,4);②当AC为对角线时,点B向下平移4个单位,再向右平移2个单位,∴点C向下平移4个单位,再向右平移2个单位得到点P的坐标(32,04)-+-,(1,4)P∴--,即:点P的坐标为(5,4)-或(5,4)或(1,4)--.例2、如图,在已建立直角坐标系的44⨯正方形方格纸中,若每个小正方形的边长为1,将ABC∆绕点B顺时针旋转90︒到DBE∆(1)求线段BC扫过的面积;(2)平移线段DE后的像为GF,在正方形格点上是否存在点F,G,使得以D,E,F,G为顶点的四边形是菱形,求线段FG所在的直线解析式.【答案】解:(1)2902360Sππ==;(2)当(2,2)F ,(0,3)G 时,D ,E ,F ,G 为顶点的四边形是菱形,设直线FG 的解析式为y kx b =+,223k b b +=⎧⎨=⎩, 解得123k b ⎧=-⎪⎨⎪=⎩,132FG y x =-+; 当(4,2)F ,(2,3)G 时,D ,E ,F ,G 为顶点的四边形是菱形,设直线FG 的解析式为y mx n =+,4223m n m n +=⎧⎨+=⎩, 解得124m n ⎧=-⎪⎨⎪=⎩,142FG y x =-+.【举一反三】如图,在平面直角坐标系xOy 中,直线21y x =-+与坐标轴分别交于A ,B 两点,与直线y x a =+交于点D ,点B 绕点A 顺时针旋转90︒的对应点C 恰好落在直线y x a =+上.(1)求直线CD 的表达式;(2)若点E 在y 轴上,且CDE ∆的周长最小,求点E 的坐标;(3)点F 是直线21y x =-+上的动点,G 为平面内的点,若以点C ,D ,F,G 为顶点的四边形是菱形,请直接写出点G 的坐标.【答案】解:(1)如图1中,连接AC ,作CE x ⊥轴于E .90BAC ∠=︒,90ABO BAO ∴∠+∠=︒,90BAO CAE ∠+∠=︒,ABO CAE ∴∠=∠,AB OC =,90AOB CEA ∠=∠=︒,ABO CAE ∴∆≅∆,12CE OA ∴==,1AE OB ==, 3(2C ∴,1)2, 把3(2C ,1)2代入y x a =+,得到1322a =+, 1a ∴=-,∴直线CD 的解析式为1y x =-.(2)如图2中,作D 关于y 轴的对称点D ',连接CD '交y 轴于E ,此时CDE ∆的周长最小.由121y x y x =-⎧⎨=-+⎩解得2313x y ⎧=⎪⎪⎨⎪=-⎪⎩, 2(3D ∴,1)3-,2(3D '-,1)3-, ∴直线CD '的解析式为511313y x =-,1(0,)13E ∴-.(3)如图3中,①如图3中,当DF 为菱形对角线时,四边形DCFG 是菱形,C ∴、G 关于AB 对称,易求直线CG 的解析式为1124y x =-, 由112421y x y x ⎧=-⎪⎨⎪=-+⎩,解得120x y ⎧=⎪⎨⎪=⎩,G ∴与C 关于1(2,0)对称,可得1(2G -,1)2-.②如图4中,当AC 为菱形的对角线时,F 、G 关于CD 对称,求出线段CD 的垂直平分线,同法可得7(3G ,7)6-. ③如图5中,当CF为菱形的对角线时,可得3(2G,12或32+,12.综上所述,满足条件的点G 坐标为1(2-,1)2-或7(3,7)6-或3(2,12+或32+,12.1.如图,直角坐标系中的网格由单位正方形构成,在格点ABC ∆中,点A 的坐标为(2,3)(1)若以A 、B 、C 及点D 为顶点的四边形是矩形,直接写出点D 的坐标: (0,4) ;(2)若以A 、B 、C 及点E 为顶点的四边形是平行四边形,请画出所有点E 的位置.【答案】解:(1)如图1所示:四边形ADBC是矩形,5CD AB ∴=,1OD =,4OD ∴=,(0,4)D ∴,故答案为:(0,4);专题过关(2)如图2所示:2.如图,直线2y =+与坐标轴分别交于A ,B 两点,点C 在y 轴上,且12OA AC =,直线CD AB ⊥于点P ,交x 轴于点D (1)求点P 的坐标(2)坐标系内是否存在点M ,使以点B ,P ,D ,M 为顶点的四边形为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】解:(1)对于直线2y +,令0x =得到2y =,令0y =得到-(0,2)A ∴,(B -0),2AC AO =,4AC ∴=,(0,6)C ∴,CD AB ⊥,∴直线CD 的解析式为6y =+,由26y x y ⎧+⎪⎨⎪=+⎩,解得3x y ⎧=⎪⎨=⎪⎩P ∴,3).(2)存在,P 点坐标3),(23D,0),(B -0), BD ∴=,当1PM BD是平形四边形, 则1BD PM ==1(M ∴-3),当2PBDM 是平形四边形,则2BD PM ==2M ∴,3),P 到x 轴距离等于3M 到x 轴距离,故3M 的纵坐标为3-,BE DF BD DE ==-=FO ∴3M ∴的横坐标为 3M ∴的坐标为(3)-;综上所述M 点的坐标为:1(M -3),2M3),3(M ,3)-.3.如图, 在平面直角坐标系xOy ,直线1y x =+与24y x =-+交于点A ,两直线与x 轴分别交于点B 和点C ,D 是直线AC 上的一个动点, 直线AB 上是否存在点E ,使得以E ,D ,O ,A 为顶点的四边形是平行四边形?若存在, 求出点E 的坐标;若不存在, 请说明理由 .【答案】解:①如下图: 当//OE AD 时,//OE AC ,所以直线OE 的解析式为2y x =-, 联立OE 、AB ,得12y x y x =+⎧⎨=-⎩①②,解得1323x y ⎧=-⎪⎪⎨⎪=⎪⎩,即11(3E -,2)3;②如下图: 当//DE OA 时,//OD AB 时,//OD AB ,∴直线OD 的解析式为y x =,联立OD 、AC ,得24y xy x =⎧⎨=-+⎩,解得4343x y ⎧=⎪⎪⎨⎪=⎪⎩,4(3D ,4)3. 联立AB 、AC 得241y x y x =-+⎧⎨=+⎩,解得12x y =⎧⎨=⎩,(1,2)A .OA 的解析式为2y x =, //DE OA ,∴设直线DE 的解析式为2y x b =+,将点D 的坐标代入直线的解析式得:42y x =-联立DE 、AB 得4231y x y x ⎧=-⎪⎨⎪=+⎩,解得73103x y ⎧=⎪⎪⎨⎪=⎪⎩,27(3E ,10)3. ③当OA 为对角线时,(1,2)A ,OA ∴的中点坐标为1(2,1),点D 在直线24y x =-+上,∴设(,24)D m m -+,点E 在直线1y x =+上,∴设(,1)E n n +,DE ∴的中点坐标为(2m n +,241)2m n -+++, ∴122m n +=,24112m n -+++=, 43m ∴=,13n =-,1(3E ∴-,2)3综上所述:11(3E -,2)3,27(3E ,10)3.4.如图,四边形OABC 为矩形,A 点在x 轴上,C 点在y 轴上,矩形一角经过翻折后,顶点B 落在OA边的点G 处,折痕为EF ,F 点的坐标是(4,1),30FGA ∠=︒. (1)求B 点坐标. (2)求直线EF 解析式.(3)若点M 在y 轴上,直线EF 上是否存在点N ,使以M 、N 、F 、G 为顶点的四边形是平行四边形?若存在,求N 点的坐标;若不存在,请说明理由.【答案】解:(1)F点的坐标是(4,1),1FA∴=,4OA=,30 FGA∠=︒,GA∴=,2FG=,由折叠的性质知2BF FG==,3AB∴=,四边形OABC为矩形,4CB OA∴==,B∴点坐标为(4,3);(2)903060AFG∠=︒-︒=︒,由折叠的性质知1(18060)602EFB EFG∠=∠=︒-︒=︒,BE∴=4CE∴=-(4E∴-3),设直线EF的解析式是y kx b=+,∴41(44k bk b+=⎧⎪⎨-+=⎪⎩,解得1kb⎧=⎪⎪⎨⎪=+⎪⎩,∴直线EF的解析式是1y=++(3)①如图1中,当四边形MNGF是平行四边形时,易知点N的横坐标为点N在直线EF上,(N ∴2.②如图2中,当四边形MNFG 是平行四边形时,易知点N 点N 在直线EF 上,N ∴.③如图3中,当四边形MFNG 是平行四边形时,易知点N 的横坐标为8(8N ∴2).5.平面直角坐标系中,直线132y x =-+与x 轴交于点A ,与y 轴交于点B ,与直线(0)y kx k =≠交于点(2,)C m .(1)求k 的值;(2)求OBC ∆的面积;(3)点M 为直线132y x =-+上一动点,过M 作/MN x 轴交直线y kx =于点N ,作MP x ⊥轴于点P ,过N作NQ x ⊥轴于点Q ,当以M ,N ,Q ,P 为顶点的四边形是正方形时,直接写出点M 的坐标.【答案】解:(1)(2,)C m 在直线132y x =-+上2m ∴=(2,2)C ∴将(2,2)C 代入(0)y kx k =≠中得:1k =(2)直线132y x =-+与x 轴交于点A ,与y 轴交于点B ,(6,0)A ∴,(0,3)B (2,2)COBC ∴∆的面积为:13232⨯⨯= (3)MP x ⊥轴,NQ x ⊥轴//MP NQ ∴,90MPQ ∠=︒/MN x 轴,即/MN PQ∴以M ,N ,Q ,P 为顶点的四边形是矩形当以M ,N ,Q ,P 为顶点的四边形是正方形时,即四边形MNQP 为正方形∴当满足MN NQ =时,必有以M ,N ,Q ,P 为顶点的四边形是正方形设(,)N a a ,则(62,)M a a -|63|MN a ∴=-,||NQ a =|63|||a a ∴-=3a ∴=或32(0,3)M ∴或3(3,)26.已知,如图,在平面直角坐标系xoy 中,直线1:3l y x =+分别交x 轴、y 轴于点A 、B 两点,直线2:3l y x =-过原点且与直线1l 相交于C ,点P 为y 轴上一动点. (1)求点C 的坐标;(2)在平面坐标系中是否存在点M ,使以A 、O 、C 、M 为顶点的四边形为平行四边形.若存在,求出点M 的坐标;若不存在,请说明理由;(3)当PA PC +的值最小时,求此时点P 的坐标,并求PA PC +的最小值.【答案】解:(1)直线1:3l y x =+①与直线2:3l y x =-②相交于C , 联立①②解得,34x =-,94y =,3(4C ∴-,9)4;(2)直线3y x =+交x 轴于点A ,(3,0)A ∴-,由(1)知,3(4C -,9)4,以A 、O 、C 、M 为顶点的四边形为平行四边形, 设(,)M m n 如图1,∴①当AC 是对角线时,131(3)242m --=,191(0)242n +=,154m ∴=-,94n =, 15(4M ∴-,9)4, ②当OC 是对角线时,131(0)(3)242m -=-+,191(0)(0)242n +=+,94m ∴=,94n =,19(4M ,9)4, ③当OA 为对角线时,113(03)()224m -=-,119(00)()224m +=+,94m ∴=-,94n =-.29(4M -,9)4,(3)如图2,作点(3,0)A -关于y 轴的对称点(3,0)A ',连接CA '交y 轴于点P ,此时,PC PA +最小,最小值为CA '= 由(1)知,3(4C -,9)4,(3,0)A ',∴直线A C '的解析式为3955y x =-+, 9(0,)5P ∴.。

专题09 平面向量 9.1线性运算、基本定理和坐标运算 题型归纳讲义-2022届高三数学一轮复习

专题09 平面向量 9.1线性运算、基本定理和坐标运算 题型归纳讲义-2022届高三数学一轮复习

r
交换律: a + b = b + a
r
r
r
r
r
r
结合律:( a + b )+ c = a +( b + c )
(二)减法:共起点,连终点,指向被减
高中数学一轮复习讲义
r
(三)数乘:求实数λ与向量 a 的积的运算
r
r
r
r
1.数乘意义:|λ a |=|λ|| a |,当λ>0 时,λ a 与 a 的方向相同;
8
C.
3
5
D.
3

2.已知 A(﹣3,0),B(0,2),O 为坐标原点,点 C 在第二象限内,|��| = 2 2,且∠��� = ,
4



设�� = ��� + ��(� ∈ �),则λ的值为(
2
B.− 3
A.1

1
C.
2
2
D.
3
3.如图,正方形 ABCD 中,E 为 AB 上一点,P 为以点 A 为圆心,以 AB 为半径的圆弧上一
r
(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定: 0 与任一向量平行或共
线.
(5)相等向量:长度相等且方向相同的向量
(6)相反向量:长度相等且方向相反的向量
二.向量的线性运算
(一)加法:求两个向量和的运算
1.三角形法则:首尾连,连首尾
2.平行四边形法则:起点相同连对角
3.运算律
r
r
r
4.平面向量基本定理
ur
ur
r
如果 e1 , e 2 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量 a ,有且只

重庆中考专题训练九阅读理解题型问题(二)几何相关

重庆中考专题训练九阅读理解题型问题(二)几何相关

中考专题训练九阅读理解题型问题(二)二、综合型阅读理解例3.对于平面直角坐标系xOy 中的点P 和线段AB ,其中(,0)A t 、(2,0)B t +两点,给出如下定义:若在线段AB 上存在一点Q ,使得P ,Q 两点间的距离不大于1,则称P 为线段AB 的“环绕点”. (1)当3t =-时,①在点1(0,1)M ,2(0,0)M ,3(2,1)M --中,线段AB 的伴随点是 ;②在直线2y x b =+上存在线段AB “环绕点”M 、N ,且MN =,求b 的取值范围;(2)线段AB 的中点关于点(2,0)的对称点是C ,将射线CO 以点C 为中心,顺时针旋转30︒得到射线l ,若射线l 上存在线段AB 的“环绕点”,直接写出t 的取值范围.例4.“构造图形解题”,它的应用十分广泛,特别是有些技巧性很强的题目,如果不能发现题目中所隐含的几何意义,而用通常的代数方法去思考,经常让我们手足无措,难以下手,这时,如果能转换思维,发现题目中隐含的几何条件,通过构造适合的几何图形,将会得到事半功倍的效果,下面介绍两则实例:实例一:1876年,美国总统伽非尔德利用实例一图证明了勾股定理:由ABC ADE ABE ABCD S S S S ∆∆∆=++四边形得:22111()2222a b ab c +=⨯+,化简得:222a b c +=.实例二:欧几里得的《几何原本》记载,关于x 的方程22x ax b +=的图解法是:画Rt ABC ∆,使90ACB ∠=︒,2a BC =,||ACb =,再在斜边AB 上截取2aBD =,则AD 的长就是该方程的一个正根(如实例二图). 请根据以上阅读材料回答下面的问题:(1)①如果,αβ都为锐角,且11tan ,tan 23αβ==,结合条件作出图1,则由图1可得αβ+= 。

(2)②如果,αβ都为锐角,且3tan 4,tan 5αβ==,则可在图2的正方形网络中,利用已作出的锐角α,画出=MON αβ∠-,由此可得αβ-= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.如图,直线 与 轴、y轴分别交于P、Q两点,把△POQ沿PQ翻折,点O落在R处,则点R的坐标是.
四、面积与坐标的联系
【例4】如图,直线 与 轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作等腰直角△ABC,∠BAC=90°,如果在第二象限内有一点P( , ),且△ABP的面积与△A ABC的面积相等,求 的值.
一、寻找比例系数
【例1】如图,在直角坐标系中,直角梯形OABC的顶点A(3,0)、B(2,7),P为线段OC上一点,若过B、P两点的直线为 ,过A、P两点的直线为 ,且BP⊥AP,则 =.
点拔
解题的关键是求出P点坐标,只需运用几何知识建立OP的等式即可.
解答
设OP=x
举一反三
(1)1.一次函数的自变量的取值范围是-3≤ ≤6,相应函数值的取值范围是-5≤ ≤-2,则这个函数的解析式为.
点拔
利用S△ABP=S△ABC建立含 的方程,解题的关键是把S△ABP表示成有边落在坐标轴上的三角形面积和、差.
注:解函数图象与面积结合的问题,关键是把相关三角形用边落在坐标轴的其他三角形面积来表示,这样面积与坐标就建立了联系.
解答
举一反三
(1)11.在直角坐标系 O 中, 轴上的动点M( ,0)到定点P(5,5)、Q(2,1)的距离分别为MP和MQ,那么,当MP+MQ取最小值时,点M的横坐标为.
(3)当售票数为时,不赔不赚;当售票数 满足时,放影厅要赔本;若放影厅要获得最大利润200元,此时售票数 应为
(4)当售票数 满足时,此时利润比 =150时多.
(2)
(3)二、利用函数关系求和
【例2】设直线 ( 为自然数)与两坐标轴围成的三角形面积为 ( =1,2,…2000),则S1+S2+…+S2000的值为( )
A.1 B. C. D.
点拔
求出直线与 轴、 轴交点坐标,从一般形式入手,把 用含 的代数式表示.
解答
举一反三
(1)4.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过P作EF∥AC,与平行四边形的两条边分别交于点E,F,设BP= ,EF=,则能反映 与 之间关系的图象是( )
12.如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线 恰好将矩形OABC分成面积相等的两部分,那么b=.
13.如果—条直线 经过不同的三点A(a,b),B(b,a),C(a-b,b-a),那么,直线 经过( )象限.
A.二、四B.—、三C.二、三、四D.一、三、四数对(a,b)的值.
(3)设 , ,则 的值是().
A.-3 B.1 C.3或-1 D.-3或1
三、两交点坐标的意义
【例3】某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油油箱余油量为Q2吨,加油时间为 分钟,Q1、Q2与 之间的函数图象如图所示,结合图象回答下列问题:
(1)分别求出 ≤2和 ≥2时 与 之间的函数关系式;
(2)如果每毫升血液中含药量为4微克或4微克以上时在治疗疾病时是有效的,那么这个有效时间是多长?
8.如图,正方形ABCD的边长是4,将此正方形置于平面直角坐标系 O 中,使AB在 轴的正半轴上,A点的坐标是(1,0)
(1)经过C点的直线 与 轴交于点E,求四边形AECD的面积;
(1)加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需多少分钟?
(2)求加油过程中,运输飞机的余油量Q1(吨)与时间 (分钟)的函数关系式;
(3)运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?说明理由.
点拔
对于(3),解题的关键是先求出运输飞机每小时耗油量.
注:(1)当自变量受限制时,一次函数图象可能是射线、线段、折线或点,一次函数当自变量取值受限制时,存在最大值与最小值,根据图象求最值直观明了.
5.下列图象中,不可能是关于 的一次函数 的图象是( )
6.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与卖瓜的千克数之间关系如图所示,那么小李赚了( )
A.32元B.36元C.38元D.44元
③若 ,则一定有 ;④若 ,则一定有 .
专题九坐标平面上的直线
任意一个一次函数 都可看作是关于 、 的一个二元一次方程 ;任意一个关于 、 的二元一次方程 ,可化为形如 ( )的函数形式.坐标平面上的直线可以表示一次函数与二元一次方程,而利用方程和函数的思想可以研究直线位置关系,求坐标平面上的直线交点坐标转化为解由函数解析式联立的方程组.
(2)若直线 经过点E且将正方形ABCD分成面积相等的两部分,求直线 的方程,并在坐标系中画出直线 .(2001年湖北省荆州市中考题)
9.如图,已知点A与B的坐标分别为(4,0),(0,2)
(1)求直线AB的解析式.
(2)过点C(2,0)的直线(与 轴不重合)与△AOB的另一边相交于点P,若截得的三角形与△AOB相似,求点P的坐标.
(2)当一次函数图象与两坐标轴有交点时,就与直角三角形联系在一起,求两交点坐标并能发掘隐含条件是解相关综合题的基础.
解答
举一反三
(1)7.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克(1微克=10-3毫克),接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量(微克)随时间 (小时)的变化如图所示,当成人按规定剂量服用后.
【例5】在直角坐标系中,有以A(一1,一1),B(1,一1),C(1,1),D(一1,1)为顶点的正方形,设它在折线 上侧部分的面积为S,试求S关于的函数关系式,并画出它们的图象.
2.已知 ,且 ,则关于自变量 的一次函数 的图象一定经过第象限.
3.一家小型放影厅的盈利额(元)与售票数 之间的关系如图所示,其中超过150人时,要缴纳公安消防保险费50元.试根据关系图回答下列问题:
(1)当售票数满足0< ≤150时,盈利额 (元)与之间的函数关系式是.
(2)当售票数满足150<x≤200时,盈利额 (元)与 之间的函数关系式是.
相关文档
最新文档