光纤衰减系数公式

合集下载

波分计算公式

波分计算公式

1再生段光衰耗、色散、光信噪比、Q值、BER值、DGD值计算说明1.1衰耗受限计算采用最坏值法设计:L=(Ps-Pr-C)/a式中:Ps:为光放大器(OAU板)单信道的最小输出功率,单位为dBm。

光功率放大器OAU单信道输出功率取为+1dBm。

Pr:为单信道接收端的最小允许输入功率,单位为dBm。

C:所有光连接器的衰减和,每个光连接器的衰减为0.5dB。

a:为光纤损耗系数(dB/km),包含了光纤衰减、光纤熔接衰减和光纤富裕度,默认值取0.275dB/km 。

衰耗受限距离计算:对于发端配置OAU(+1dB输出)、收端配置OAU(-32dB接收)的33dB的光中继段:L=(Ps-Pr-C)/a=[1-(-32)-2×0.5]/0.275=116km注:DWDM系统是OSNR受限系统,以上数据仅表明光放大器的在此距离内是不受限的。

本次工程站间距离及衰减已经过测试,指标值标注在传输系统配置图中。

1.2色散受限距离计算DCM的补偿方法详见3.1色散容限配置部分。

1.3级联光放大器时的光信噪比OSNR计算(1)、单个放大器产生的ASE噪声功率:一个光放大器产生的自发辐射噪声功率PASEˊ为PASEˊ=2Nsp(G-1)hv·△v(mw)式中:Nsp是放大器自发辐射因子v是光中心频率h是普朗克常数G是放大器的增益(倍数)△v是光接收机的带宽(取0.1nm)。

进而可以推导出,一个光放大器产生的以dBm计的自发辐射噪声功率:PASE = -58 + NFi + Gi(dBm)(1) 其中:NFi为光放大器噪声系数(dB);Gi为光放大器的增益(dB)。

(2)、复用通路光接收机输入端的信噪比①、系统模型包括N个级联光放大器的WDM系统模型如下图所示图中:L1、L2、… Ln-1分别是第1、2、… n-1个区段的衰减(dB);G1、G2、… Gn分别是第1、2、… n个光放大器的增益(dB)。

②、各光放大器产生的ASE噪声功率利用已经推导出的公式,首先分别计算出每个光放大器产生的ASE噪声功率PASEi (dBm)。

光纤的损耗和色散

光纤的损耗和色散

具体机理:在黑夜里向空中照射,可以看到 一束光束,人们也曾看到过夜空中的探照 灯发出粗大的光柱。为什么我们会看到这 些光柱呢?这是因为有许多烟雾,灰尘等 微小颗粒浮游于大气之中,光照射在这些 颗粒上,产生了散射,就射向了四面八方, 这个现象是由瑞利首先发现的,所以人们 把这种散射称为瑞利散射。 瑞利散射是怎样产生的呢?原来组成物质的 分子、原子、电子是以某些固有的频率在 振动,并能释放出波长与该振动频率相应 的光。
二 散射损耗
是指光通过密度或折射率不均匀的物质时,除了 在光的传播方向以外,在其它方向也可以看到 光,这种现象叫做散射。
原因:光纤的材料,形状,散射率分布等的 缺陷或不均匀。 散射损耗主要由材料微观密度不均匀引起的 瑞利(Rayleigh)散射和由光纤结构缺陷(如 气泡)引起的散射产生的。 结构缺陷散射产 生的损耗与波长无关。
• 3.色散平坦光纤(DFF)
有效利用带宽,最好使光纤在整个光纤通信的长波段 ( 1.3um-1.6um)都保持低损耗和低色散。
4. 色散补偿光纤(DCF)
利用一段光纤来消除光纤中由于色散的存在使得光脉 冲信号发生展宽和畸变。能够起这种均衡作用的光纤 称为色散补偿光纤。
作业
1.什么是损耗?光纤中存在哪些损耗?这些损 耗是由什么因素引起的? 2.什么是色散?光纤中存在哪些色散? 3. 光纤中的信号变化是由哪些因素引起的?这 些因素各导致信号如何变化?
2.非零色散光纤(NZDF)
• 当在一根光纤上同时传输多波长光信号再采用光 放大器时,DSF光纤就会在零色散波长区出现严 重的非线形效应,这样就限制了WDM技术的应用。 • 为了提高多波长WDM系统的传输质量,就考虑 零色散点移动,移到一个低色散区,保证WDM系 统的应用。 • NZDF是指光纤的工作波长移到1.54~1.565μm 范围,不是在1.55um的零色散点内,在此区域内 的色散值较小,约为1.0~4.0PS/km· wm。此范围 内色散和损耗都比较小,而且可采用波分复用技 术。

光纤衰减计算公式

光纤衰减计算公式

冗余度 光通道衰 (1dB) 耗 0.5 0.5 0.5 0.5
23.18 26.06 22.95 25.85
2012年蚌埠山南新 本次工程单元均为
光缆衰耗系数(dB
光分路器插损(dB
备注 FTTH FTTH FTTH FTTH
OLT PON口 光模ቤተ መጻሕፍቲ ባይዱ类 型
Class Class Class Class C+ C+ B+ B+
注:超过28dB用C+模块,28dB以下用B+模块
参见:财企[2012]16号文件
2011AHGS0458-05Y(17) 2012年蚌埠山南新村等32个小区接入工程(铁通合作建设) 本次工程单元均为12芯光缆分纤箱(含1:4分光器)(265×340×120mm); 光缆衰耗系数(dB/km):取定0.45dB,活动连接头损耗:取定0.5dB,冗余度取1dB; 光分路器插损(dB):1:32取定17.2dB,1:16取定13.9dB,1:8取定10.7dB,1:4取定7.4dB。
OLT-最远 光跳纤点 端ONU/光 光分路器 光跳纤点 光缆及熔 分光模式 分光器类型 数 分纤箱距 衰耗 衰耗 接衰耗 离 1:8+1:4 3.52 1.584 二级 8 18.1 3 1:16+1:4 2.80 1.26 二级 8 21.3 3 1:32 4.99 2.25 一级 3 17.2 3 1:64 4.99 2.25 一级 3 20.1 3

实验七光纤损耗特性(衰减系数)测量(插入法)

实验七光纤损耗特性(衰减系数)测量(插入法)

实验七 光纤损耗特性(衰减系数)测量(插入法)实验七 光纤损耗特性(衰减系数)测量(插入法)一 实验目的1 了解光纤的损耗特性2 了解损耗特性的测量方法及原理二 实验原理及框图光在光纤中传播时,平均光功率沿光纤长度按照指数规律减少,即()10/100L P L P α)()(= (7.1)其中一个重要的参数是α(λ),它表示在波长λ处的衰减系数。

其定义为单位长度光纤引起的光功率衰减,单位是dB/km 。

当长度为L 时,()()()()km dB P L P L /0lg 10-=λα (7.2) 应用上式时,要特别注意两点:①假定光纤沿轴向是均匀的,即α与轴向位置无关。

②对多模光纤,必须达到平衡模分布。

只有满足这样的条件,测得的衰减系数才能线性相加。

插入法测试原理如下。

首先将参考系统连在注入系统和接收系统之间,测出功率P 1;然后将待测光纤连到注入系统和接收系统之间,测出功率P 2,则被测光纤段的总衰减A 由下式给出()()[]λλ21/log 10P P A = (dB) (6.12)实验平台中我们可以采用插入法测量光纤的损耗,实验框图如7.2所示:实验七光纤损耗特性(衰减系数)测量(插入法)测试步骤为:1、如图7.2(a)所示,搭建数字光发模块甲,输入方波,此时用光功率计测试S点(即光发送机的ST连接头)的输出功率P1,此值定为光纤的入射功率。

2、按图7.2(b)连接好待测光纤,将S点输出的光信号输入扰模器,经过待测光纤后,测出光功率P2,光纤的总损耗A=P2−P1(dBm),然后就可粗略的估算出每公里光纤的损耗值。

注:此实验的开设必须具备扰模器和2公里以上的光纤(需另外配置)。

截断法测光纤损耗

截断法测光纤损耗

七、截断法测光纤损耗
1.工作原理
光耦合进多模光纤时会激励起很多模式,各个模式所携带的光能量不同,传输时的损耗也不同,模式之间还有能量转换,只有经过一个相当长的时间以后才能达到一种相对稳定的状态,此时称为稳态模式。

对于多模光纤的测试,只有达到稳态模式分布以后才有意义。

要达到稳态分布,可以借助扰模器:采用强烈的几何振动,使多模光纤不需要很长的距离就能迅速达到稳态分布。

2.测试框图
3.计算公式
a=10/L× lg 输出功率/输入功率 (dB/KM)
a:损耗系数
测试结果
当光纤被长绕即测得衰减值为:—2.84DBM ,输出功率:0.630MW
当光纤直测得衰减值:-9.19DB ,输出功率:0.103MW
计算结果:a=10/L*lg0.630/0.130=3.254db/km 光源扰模器光功率计近端远端L 待测光纤。

光纤衰减系数

光纤衰减系数

光纤衰减系数
光纤衰减系数是光纤传输系统中最重要的指标之一。

它是指光纤在传输过程中发射光封装所损失的光信号能量与初始光信号能量的比值。

它代表了有关光纤传输系统的性能,通常用单位dB/km来表示。

光纤衰减系数与各种因素相关,包括发射材料、器件密度、波长、信号强度和总长度等等。

由于光纤衰减与波长有关,所以在不同波长上,光纤衰减系数也不同。

考虑到技术上的需要,现在市场上主要使用的是850nm,1300nm和1550nm等三种主流波长。

光纤衰减系数是根据不同所处位置和材料而不同的,但一般情况下,单模光纤的衰减系数大约在0.2~0.5dB/km之间,而多模光纤的衰减系数大约在3~6dB/km之间。

当然,由于纤
芯材料、夹层技术不同,光纤衰减系数也可以达到0.15dB/km以下,也可以达到10dB/km以上。

另外,光纤传输是受环境影响的,如温度、湿度等,都会影响光纤衰减系数。

因此,光纤衰减系数对光纤传输系统至关重要,它有助于了解光纤传输系统的性能,它也有助于我们正确设计和评估光纤传输系统,并采取有效的技术措施来改善系统性能。

光纤的传输特性

光纤的传输特性

光纤的传输特性光纤的传输特性主要包括光纤的损耗特性,色散特性和非线性效应。

光纤的损耗特性*************************************************************概念:光波在光纤中传输,随着传输距离的增加光功率逐渐下降。

衡量光纤损耗特性的参数:光纤的衰减系数〔损耗系数〕,定义为单位长度光纤引起的光功率衰减,单位为dB/km。

其表达式为:式中求得波长在λ 处的衰减系数; Pi 表示输入光纤的功率, Po 表示输出光功率, L 为光纤的长度。

(1)光纤的损耗特性曲线•μμm的损耗为0.2dB/km以下,接近了光纤损耗的理论极限。

总的损耗随波长变化的曲线,叫做光纤的损耗特性曲线—损耗谱。

•从图中可以看到三个低损耗“窗口”:850nm波段—短波长波段、1310nm波段和1550nm波段—长波长波段。

目前光纤通信系统主要工作在1310nm波段和1550nm波段上。

(2)光纤的损耗因素光纤损耗的原因主要有吸收损耗和散射损耗,还有来自光纤结构的不完善。

这些损耗又可以归纳以下几种:1、光纤的吸收损耗光纤材料和杂质对光能的吸收而引起的,把光能以热能的形式消耗于光纤中,是光纤损耗中重要的损耗。

包括:本征吸收损耗;杂质离子引起的损耗;原子缺陷吸收损耗。

2、光纤的散射损耗光纤内部的散射,会减小传输的功率,产生损耗。

散射中最重要的是瑞利散射,它是由光纤材料内部的密度和成份变化而引起的。

物质的密度不均匀,进而使折射率不均匀,这种不均匀在冷却过程中被固定下来,它的尺寸比光波波长要小。

光在传输时遇到这些比光波波长小,带有随机起伏的不均匀物质时,改变了传输方向,产生散射,引起损耗。

另外,光纤中含有的氧化物浓度不均匀以及掺杂不均匀也会引起散射,产生损耗。

3、波导散射损耗交界面随机的畸变或粗糙引起的模式转换或模式耦合所产生的散射。

在光纤中传输的各种模式衰减不同,长距离的模式变换过程中,衰减小的模式变成衰减大的模式,连续的变换和反变换后,虽然各模式的损失会平衡起来,但模式总体产生额外的损耗,即由于模式的转换产生了附加损耗,这种附加的损耗就是波导散射损耗。

光纤衰减系数的测量、LED的P-I特性测量

光纤衰减系数的测量、LED的P-I特性测量
垂直张开度 水平张开度
实验内容与步骤
一、码型变换
(一)实验内容
1、了解光纤通信采用的线路码型及CMI码的特点。
2、了解CMI码的编解码实现方法。
3、分析CMI编解码器电路的各个测量点的波形。
4、比较CLK时钟、NRZ码及CMI码的异同。
(二)实验步骤
1、接好电源,打开交流电源,按下直流电源开关K1、K2,发光二极管D5—D14循环点亮,电路即正常工作。按下“复缆中传输的线路码通常为三电平的“三阶高密度双极性码,即HDB3码”,它是一种传号以正负极性交替发送的码型。在数字光纤通信中由于光源不可能发射负的光脉冲,因而不能采用HDB3码,只能采用“0”“1”二电平。
2、CMI码的编码规则是怎样的,CMI编解码器输入信码与输出信码的码型、码速各是怎样的?
2、按下“CMI”键后再按下“确认”键,向系统下达进行CMI编解码器实验的命令,并将K702跳线置于CMI处。用CLK时钟送入NRZ码到CMI编码,用示波器测出编码电路测量点TP110和TP114的波形。测量各点波形时示波器应接地,示波器探头的接地线要与GND接地点保持接触良好。
3、用示波器测出解码电路各测试点TP504和TP507的波形。
80
90
100
P
1.797μW
2.141μW
2.568μW
2.951μW
3.492μW
分析:实验数据值与标定值相近,但是有一定的误差,可能原因是仪器的老化。
思考题解答
1.讨论截断损耗测试法的误差有哪些?
答:(1)测量长度时可能测量不精确;
(2)光功率计、扰模器等仪器存在一定的噪声和干扰。
2.分析平均光发送功率的测试误差来源。
编码器输入32Kb/s的单极性的信码,输出64Kb/s的CMI码。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档