6种最常用恒流源电路的分析与比较
电源电路图详解

用电路元件符号表示电路连接的图,叫电路图。
电路图是人们为研究、工程规划的需要,用物理电学标准化的符号绘制的一种表示各元器件组成及器件关系的原理布局图,可以得知组件间的工作原理,为分析性能、安装电子、电器产品提供规划方案。
电路图是电子工程师必学的基本技能之一,本文集合了稳压电源、DCDC转换电源、开关电源、充电电路、恒流源相关的经典电路资料,为工程师提供最新鲜的电路图参考资料,超全超详细,只能帮你到这了!一、稳压电源1、3~25V电压可调稳压电路图此稳压电源可调范围在~25V之间任意调节,输出电流大,并采用可调稳压管式电路,从而得到满意平稳的输出电压。
工作原理:经整流滤波后直流电压由R1提供给调整管的基极,使调整管导通,在V1导通时电压经过RP、R2使V2导通,接着V3也导通,这时V1、V2、 V3的发射极和集电极电压不再变化(其作用完全与稳压管一样)。
调节RP,可得到平稳的输出电压,R1、RP、R2与R3比值决定本电路输出的电压值。
元器件选择:变压器T选用80W~100W,输入AC220V,输出双绕组AC28V。
FU1选用1A,FU2选用3A~5A。
VD1、VD2选用 6A02。
RP选用1W左右普通电位器,阻值为250K~330K,C1选用3300µF/35V电解电容,C2、C3选用µF独石电容,C4选用470µF/35V电解电容。
R1选用180~220Ω/~1W,R2、R4、R5选用10KΩ、1/8W。
V1选用2N3055,V2选用 3DG180或2SC3953,V3选用3CG12或3CG80。
2、10A3~15V稳压可调电源电路图无论检修电脑还是电子制作都离不开稳压电源,下面介绍一款直流电压从3V到15V 连续可调的稳压电源,最大电流可达10A,该电路用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,使稳压精度更高,如果没有特殊要求,基本能满足正常维修使用,电路见下图。
直流恒流源电路的原理

直流恒流源电路的原理《直流恒流源电路的原理》1. 引言嘿,你有没有想过,那些需要稳定电流的设备,比如LED灯,是怎么确保电流一直稳定不变的呢?今天呀,咱们就来扒一扒直流恒流源电路的原理,从基础概念到实际应用,从常见问题到未来发展,全方位地把这个原理搞个明明白白。
这篇文章呢,就像是一场探索之旅,我们会先了解它的基础理论,再看看它是怎么工作的,还会讲讲它在生活和高端技术中的应用,以及大家可能会有的一些误解,最后再给大家补充点有趣的相关知识,一起展望下未来。
2. 核心原理2.1基本概念与理论背景直流恒流源电路,说白了,就是一个能输出恒定电流的电路。
这背后的理论基础就和欧姆定律有关啦。
欧姆定律大家应该都有点印象吧,就是I = V / R(电流等于电压除以电阻)。
在直流电路里,要想让电流恒定,那就得在电压或者电阻上做文章。
直流恒流源电路的发展历程也是挺有趣的,早期人们为了给一些对电流要求比较稳定的设备供电,就开始琢磨怎么做出这种恒流的电路,慢慢地经过不断改进和技术发展,就有了现在各种各样的直流恒流源电路。
它的核心概念呢,就是不管负载怎么变化,电路输出的电流始终保持不变。
比如说,就像一个水龙头,不管你接水的桶大小(类比负载)怎么变,水的流量(类比电流)总是固定不变的。
2.2运行机制与过程分析那它是怎么做到这一点的呢?这里面就涉及到几个关键的部分。
首先有一个基准电压源,这个就像是一个标准的高度标杆。
然后有一个电流检测电阻,它的作用就像是一个小侦察兵,时刻检测着电路中的电流大小。
还有一个放大器,这个放大器就像是一个大力士,当检测到的电流和基准电压源设定的电流有偏差的时候,放大器就会放大这个偏差信号。
举个例子吧,假如基准电压源设定的电流是1A,检测电阻发现电流变成了0.9A,这个偏差信号就被放大器放大。
然后呢,这个放大后的信号会去调整电路中的一个调整管,这个调整管就像是一个阀门。
如果电流小了,调整管就会让更多的电流通过,就像把阀门开大一点;如果电流大了,调整管就会减少电流通过,就像把阀门关小一点。
几种镜像恒流源电路分析!

在改进型差动放大器中,用恒流源取代射极电阻RE, 既为差动放大电路设置了合适的静态 工作电流,又大大增强了共模负反馈作用,使电路具有了更强的抑制共模信号的能力,且
一
不需要很高的电源电压,所以,恒流源和差动放大电路简直是 对绝配!
恒流源既可以为放大电路提供合适的静态电流,也可以作为有源负载取代高阻值的电阻, 从而增大放大电路的电压放大倍数。 这种用法在集成运放电路中有非常广泛的应用,本文 将介绍常见的恒流源电路以及作为有源负载的应用。
广播百科001 — 100期 广播百科101 — 200期 广电术语词旷( 一 ) 广电术语词汇(二)
来源:电子工程专辑
集成运放是 一 个多级放大电路,因而需要多路恒流源电路分别给各级提供合适的静态电 流。 可以利用 一个基准电流去获得多个不同的输出电流,以适应各级的需要。
图 4所示电路是在比例恒流源基础上得到的多路恒流源电路,IR为基准电流,IC1 、 IC2和 IC3为三路输出电流。 由千各管的b-e间电压 UBE数值大致相等,因此可得近似关系
一、 镜像恒流源电路 如圉 1所示为镜像恒流源电路,它由两只特性完全相同的管子VTO和VT1构成,由于VTO管 的c、 b极连接,因此UCEO=UBEO, 即 VTO处于放大状态,集电极电流ICO=�O*IBO。 另 外,管子VTO和VT1的b-e 分别连接,所以它们的基极电流1B0=1B1=1B。 设电流放大系数 �0= 阳=�'则两管集电极电流ICO=IC1=IC=�*IB。 可见,由于电路的这种特殊接法,使 两管集电极IC1和ICO呈镜像关系,故称此电路为镜像恒流源 (IR为基准电流,IC1为输出 电流)。
IEOReO�IE1Re1�1E2Re2�1E3Re3 (2-6)
常用的恒流电路

常用的恒流电路
恒流电路是一种控制电流大小不受负载变化影响的电路。
在实际电路中,常用的恒流电路有电流源电路和晶体管恒流源电路。
一、电流源电路
1. 晶体管基本电流源电路
晶体管基本电流源电路是一种简单的恒流电路,由一个固定电阻和晶体管组成。
其原理是通过晶体管的基极和发射极之间的电压来控制电流。
当输入信号的电压改变时,电流也会相应地改变。
2. 晶体管双向恒流源电路
晶体管双向恒流源电路是一种具有双向输出的恒流电路,其原理是使用两个晶体管和一个电阻网络实现。
当输入信号的电压改变时,输出电流也会相应地改变。
二、晶体管恒流源电路
晶体管恒流源电路是一种高精度、高稳定性的恒流电路,其原理是通
过负反馈控制器将输出电流保持在恒定的值。
该电路通常由一个晶体管、一个稳压电路、一个电阻和一个电容组成。
总之,恒流电路在实际应用中有着广泛的用途,如LED驱动、电机控制、高精度电源等。
通过采用适当的电路设计和元件选择,可以实现高效、稳定的恒流输出,从而为实际应用提供可靠的支持。
LED串并方式及恒压源恒流源的选择分析

LED串并方式及恒压源、恒流源的选择分析第一局部:根底分析篇考虑选用什么样的LED驱动器,以及LED作为负载采用的串并联方式,合理的配合设计,才能保证LED正常工作。
例如,驱动28盏LED时,可以设想的连接方法有六种。
一种是先串联14个LED〔LED串〕然后并联两条这样串联而成的LED串〔14串联×2并联〕。
除此之外,还有7串联×4并联、4串联×7并联、2串联×14并联、28串联×1并联、1串联×28并联等连接方式。
终究哪种连接方法最正确呢?【附:通常情况下,很多的朋友拿到LED电源,不知道怎么样区分恒压源和恒流源。
拿到一个LED电源,查看铭牌,找到输出电压这个关键参数:如果它的电压标称是一个恒定值,那么是恒压源。
如果是一个范围值,那么是恒流源。
例如:有一个电源它的输出电压是12V,我们那么确定这个是恒压源,如果它标称的是30-70V呢,那么这个电源一定是够恒流源。
】1、LED采用全部串联方式要求LED驱动器输出较高的电压〔如图1〕。
当LED的一致性差异较大时,分配在不同的LED两端电压不同,通过每颗LED的电流一样,LED的亮度一致。
图1图2当某一颗LED品质不良短路时,如果采用稳压式驱动〔如常用的阻容降压方式〕,由于驱动器输出电压不变,那么分配在剩余的LED两端电压将升高,驱动器输出电流将增大,导致容易损坏余下的所有LED。
如采用恒流式LED驱动,当某一颗LED品质不良短路时,由于驱动器输出电流保持不变,不影响余下所有LED正常工作。
当某一颗LED品质不良断开后,串联在一起的LED将全部不亮。
解决的方法是在每个LED两端并联一个稳压管,当然稳压管的导通电压需要比LED的导通电压高,否那么LED就不亮了。
2、LED采用全部并联方式要求LED驱动器输出较大的电流,负载电压较低〔如图3〕。
分配在所有LED 两端电压一样,当LED的一致性差异较大时,而通过每颗LED的电流不一致,LED的亮度也不同。
最常用的简易恒流源用两只同型三极管

最常用的简易恒流源用两只同型三极管,利用三极管相对稳定的be电压作为基准,电流数值为:I = Vbe/R1。
这种恒流源优点是简单易行,而且电流的数值可以自由控制,也没有使用特殊的元件,有利于降低产品的成本。
缺点是不同型号的管子,其be电压不是一个固定值,即使是相同型号,也有一定的个体差异。
同时不同的工作电流下,这个电压也会有一定的波动。
因此不适合精密的恒流需求。
为了能够精确输出电流,通常使用一个运放作为反馈,同时使用场效应管避免三极管的be电流导致的误差。
如果电流不需要特别精确,其中的场效应管也可以用三极管代替。
电流计算公式I = Vin/R1这个电路可以认为是恒流源的标准电路,除了足够的精度和可调性之外,使用的元件也都是很普遍的,易于搭建和调试。
只不过其中的Vin还需要用户额外提供。
从以上两个电路可以看出,恒流源有个定式,就是利用一个电压基准,在电阻上形成固定电流。
有了这个定式,恒流源的搭建就可以扩展到所有可以提供这个“电压基准”的器件上。
最简单的电压基准最简单的电压基准,就是稳压二极管,利用稳压二极管和一只三极管,可以搭建一个更简易的恒流源。
电流计算公式为:I = (Vd-Vbe)/R1TL431TL431是另外一个常用的电压基准,利用TL431搭建的恒流源,其中的三极管替换为场效应管可以得到更好的精度。
TL431的其他信息请参考《TL431的内部结构图》和《TL431的几种基本用法》电流计算公式为:I = 2.5/R1三端稳压事实上,所有的三端稳压,都是很不错的电压源,而且三端稳压的精度已经很高,需要的维持电流也很小。
利用三端稳压构成恒流源,也有非常好的性价比。
这种结构的恒流源,不适合太小的电流,因为这个时候,三端稳压自身的维持电流会导致较大的误差。
电流计算公式为:I = V/R1,其中V是三端稳压的稳压数值。
实际的电路中,有一些特殊的结构,也可以提供很好的恒流特性,最典型的就是一个很高的电压通过一个电阻在一个低压设备上形成电流,这个恒流源的精度,取决于高压的精确度和低压设备本身导致的电压波动。
恒流源电路原理

恒流源电路的基本原理恒流源电路是一种能够输出恒定电流的电路,它可以在不同负载情况下保持输出电流不变。
在很多应用中,需要稳定的电流源来驱动负载,例如LED驱动、激光器驱动、传感器等。
恒流源电路通过控制输出端的电压或者通过调节内部元件参数来实现稳定输出。
恒流源的分类恒流源可以分为两类:主动恒流源和被动恒流源。
1.主动恒流源:主动恒流源使用放大器等主动元件来实现稳定的输出电流。
其中最常见的就是使用晶体管作为控制元件,通过调节晶体管的工作状态来维持输出电流不变。
2.被动恒流源:被动恒流源则是利用二极管、二极管连接、MOSFET等被动元件构成的特殊网络来实现稳定输出。
这种类型的恒流源通常比较简单且成本较低,但是精度相对较低。
下面我们以主动恒流源为例进行详细讲解。
主动恒流源原理主要思想是通过对晶体管工作状态的控制,使得输出电流保持不变。
基本电路结构主动恒流源的基本电路结构如下图所示:恒流源电路恒流源电路其中,Q1和Q2是两个晶体管,R1和R2是两个电阻。
Vcc为电源电压。
工作原理主动恒流源的工作原理可以分为两个阶段:建立阶段和稳定阶段。
1.建立阶段:在建立阶段,首先假设Q1处于导通状态。
此时Q1的集电极与基极之间的电压为Vce_sat(饱和区压降),根据欧姆定律可知R1上产生一个与输出电流I相等的电压降。
由于Q2处于截止状态,所以其集电极上没有任何压降。
因此,根据基尔霍夫定律可知,Vcc等于R2上的电压加上Q2的集、基之间的饱和区压降Vbe_sat。
2.稳定阶段:在稳定阶段,通过反馈机制使得输出端口维持恒定的工作状态。
当输入端口发生变化时,比如负载发生变化,会导致输出电流发生变化。
此时,由于电流镜的存在,Q1和Q2之间的电流比例保持不变。
通过调节R1和R2的比例可以实现对输出电流的控制。
常见的主动恒流源电路常见的主动恒流源电路有多种形式,如Wilson镜、Widlar镜和母极驱动镜等。
下面分别介绍这几种常见的主动恒流源电路。
恒流源电路设计方法

恒流源电路设计方法1.基于电流镜的恒流源电路设计方法:基于电流镜的恒流源电路是一种常见的实现方式,它通过将负载电流转化为电压信号控制电流源输出的电流,来实现恒流输出的稳定性。
首先,写出恒流源电路基本的分析方程式:Vin = I*Rin,其中Vin 为输入电压,Rin为输入电阻,I为恒流源输出的电流。
其次,选择电流镜的工作模式。
常见的电流镜工作模式有共射和共基模式。
在选择工作模式时需要考虑输出电流的稳定性和电压的要求。
通常情况下,共射模式更常用。
然后,根据电流源电压和目标输出电流的关系,确定电流镜的尺寸。
根据电流镜的工作模式,计算电流源电压和目标输出电流的关系,并选择合适的电流镜尺寸。
最后,根据系统的要求调整电流源电路的参数。
根据具体的负载电流需求和电源电压,确定输入电压和输入电阻的数值。
通过调整输入电压和输入电阻,可以得到所需的恒流源输出电流。
2.基于反馈的恒流源电路设计方法:基于反馈的恒流源电路是另一种常见的实现方式,它通过负反馈将输出电流与参考电流进行比较,并根据比较结果调整输入电压或输入电流,从而实现稳定的恒流输出。
首先,确定参考电流的数值。
参考电流的数值应根据具体的需求来确定,通常需要通过试验或计算来得到合适的数值。
其次,选择比较器。
比较器的作用是将输出电流与参考电流进行比较,并将比较结果输出。
然后,设计反馈回路。
反馈回路的作用是根据比较结果调整输入电压或输入电流,以保持输出电流稳定。
最后,根据系统的要求调整电流源电路的参数。
根据具体的负载电流需求和电源电压,确定输入电压或输入电流的数值。
通过调整输入电压或输入电流,可以得到所需的恒流源输出电流。
总之,恒流源电路设计的关键是根据具体的需求选择合适的实现方式,并根据系统的要求调整电流源电路的参数。
通过合理的设计和参数调整,可以实现稳定的恒流输出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
恒流电路有很多场合不仅需要场合输出阻抗为零的恒流源,也需要输入阻抗为无限大的恒流源,以下是几种单极性恒流电路:
类型1:
特征:使用运放,高精度
输出电流:Iout=Vref/Rs
类型2:
特征:使用并联稳压器,简单且高精度
输出电流:Iout=Vref/Rs
检测电压:根据Vref不同(1.25V或2.5V)
类型3:
特征:使用晶体管,简单,低精度
输出电流:Iout=Vbe/Rs
检测电压:约0.6V
类型4:
特征:减少类型3的Vbe的温度变化,低、中等精度,低电压检测输出电流:Iout=Vref/Rs
检测电压:约0.1V~0.6V
类型5:
特征:使用JEFT,超低噪声
输出电流:由JEFT决定
检测电压:与JEFT有关
其中类型1为基本电路,工作时,输入电压Vref与输出电流成比例的检测电压
Vs(Vs=Rs×Iout)相等,如图5所示,
图5
注:Is=IB+Iout=Iout(1+1/h FE)其中1/h FE为误差
若输出级使用晶体管则电流检测时会产生基极电流分量这一误差,当这种情况不允许时,可采用图6所示那样采用FET管
图6
Is=Iout-I G
类型2,这是使用运放与Vref(2.5V)一体化的并联稳压器电路,由于这种电路的Vref高达2.5V,所以电源利用范围较窄
类型3,这是用晶体管代替运放的电路,由于使用晶体管的Vbe(约0.6V)替代Vref的电路,因此,Vbe的温度变化毫无改变地呈现在输出中,从而的不到期望的精度
类型4,这是利用对管补偿Vbe随温度变化的电路,由于检测电压也低于0.1V左右,应此,电源利用范围很宽
类型5,这是利用J-FET的电路,改变R gs可使输出电流达到漏极饱和电流I DSS,由于噪声也很小,因此,在噪声成为问题时使用这种电路也有一定价值,在该电路中不接R GS,则电流值变成I DSS,这样,J-FET接成二极管形式就变成了“恒流二极管”
以上电路都是电流吸收型电路,但除了类型2以外,若改变Vref极性与使用的半导体元件,则可以变成电流吐出型电路。