实验二-三极管放大电路仿真实验
模电实验2三极管共射极放大电路

T:9013(NPN);RP=10K;
R1=15K、R2=3K、Re=2K、
Rc=3K、RL=3K、Rs=5K1;
C1=10μF、C2=10μF、Ce=100μF。 CHENLI
13
三、实验电路图
VCC
Rw1 R5 C3
S R1 H C1
R3
ICQ
υs
K
R2
R4 Rw2
R6
C2υo
R
R7
L
Ri
共射极放大C电HE路NLI
三极管共射极放大电路
CHENLI
1
一、实验目的
1. 学习共射放大电路的设计方法、安装与调试技术; 2. 掌握放大器静态工作点的测量与调整方法,了解在不
同偏置条件下静态工作点对放大器性能的影响; 3. 学习放大电路的电压放大倍数、输入电阻、输出电阻
及频率特性等性能指标的测试方法; 4. 了解静态工作点与输出波形失真的关系,掌握最大不
调试电路如图所示。图中Rs 为已知外接电阻,用交流毫
伏表分别测出Us和Ui,然后根据下式可求得放大电路的
Ro14
CHENLI
15
四、实验内容
1. 静态工作点的调整和测量 2. RL=∞及RL=3K时,电压放大倍数的测量 3. 输入电阻和输出电阻的测量 4. 放大电路上限频率fH、下限频率fL的测量 5. 观察静态工作点对输出波形的影响
CHENLI
16
1. 静态工作点的调整和测量
1. 按所设计的放大器的元件参数焊接电路,根据电路原 理图仔细检查电路的完整性和焊接质量。
即UCE=1/2×UC或IC=1/2×ICS。 (ICS为集电极饱和电流,ICS≈UC/RC)。 这样便可获得较大输出动态范围。当放大器输出端
两级放大电路分析仿真实验报告

两级放大电路分析仿真实验报告器件参数器件参数 RB1=47.5K RBW=2M RB21=16K RB22=10K RC1=6K RC2=2K RE11=107 RE12=2K RE21=51 RE22=2K RL=3K C5=100 uF C1=10uFC2=10 uF C3=100 uF C4=10 uF T1三极管放大倍数ß1=200T21三极管放大倍数ß2=200电路图如下:电路图如下:电路设计指标分析:电压放大倍数大于等于500; 输入电阻大于等于20K Ώ; 电源电压12V ;最大输出不失真电压:5VP-P; 带宽100HZ~1M ;参数测量:输入电阻的测量:输入电阻的测量: RS=0 V o1=1.630 RS=10 K Ώ V o2=1.603V计算计算Ri=593.7 K Ώ输出电阻的测量:输出电阻的测量:RL 为开路为开路 V oo=1.643vRL=3K Ώ V ol=989.720mv计算计算 R0=1.99k Ώ电压放大倍数的测量:电压放大倍数的测量: 测试条件测试条件第一级放大输出第一级放大输出 第二级放大输出第二级放大输出 RL 为开路,为开路, RS=0,VI=3mVppV o1pp=48.427mV V o21pp=1.383V RL=3 K Ώ V o1pp=5.237 mVV o2=1.708Vp波形如下:波形如下:未加入负载RL 时仿真波形时仿真波形加入负载RL 时仿真波形时仿真波形带宽测量带宽测量静态工作点的测量:静态工作点的测量: VB1=4.013V VC1=4.378V VE1=3.228V VRE1=162.927 V VB2=4.743 V VC2=8.164 V VE2=3.953V VRE2=98.285 m V T1三极管放大倍数ß1=200T21三极管放大倍数ß2=200连接万用表电路如下:连接万用表电路如下:。
电路分析实验湖南工学院精品课程

表2.2.1 测量共射放大电路的静态工作点
电压表
测试数据
测试计算值
内阻/MΩ
UBQ/V
UCQ/V
UEQ/V
UBEQ/V
UCEQ/V
ICQ/mA
1
0.1
《模拟电子技术》实验项目
4、观察与调整 (1)打开信号发生器面板,设置输出1kHz、幅度50mV的正弦波。打开示波器面板, 进行设置,参考值为:Time base设置“0.2ms/div”、“Y/T”显示方式;Channel A设置 “10mV/div”、“AC”输入方式;Channel B设置“1V/div”、“AC”输入方式;Trigger 设置“Auto”触发方式。然后展开示波器面板。 (2)运行电路。观察输出电压uo的波形。分析波形为何出现失真? (3)设置负反馈电阻RE1为20,观察输出波形大小和失真的变化。 (4)增大输入信号us,使输出与无反馈时一样大,观察输出波形失真的改善。 此项实验建议设置示波器“屏幕满暂停”。
六、思考题 若实验中的三极管改用PNP型,电路应做哪些改动? 七、实验注意事项
1、输入信号不可太强,放大器的输出端不可短路; 2、注意仪表量程的切换, 3、插拔元件盒要双手竖直插入拔出,防止插脚折断。
《模拟电子技术》实验项目
实验二 三极管放大电路仿真实验 一、实验目的 1、熟悉EWB的仿真实验法,熟悉EWB中双踪示波器和信号发生器的设置和使用方法。 学习电压表的使用方法。 2、熟悉放大电路的基本测量方法,了解使放大电路不失真地放大信号应注意的问题。 3、加深理解共发射极放大电路的工作原理和性能、特点。 二、内容与方法 1、进入Windows环境并建立用户文件夹 2、创建实验电路 (1)启动EWB。 (2)按图2.2.1连接电路。
二极管和三极管实验报告

二极管和三极管实验报告篇一:实验二晶体二极管和三极管的简单测试实验二晶体二极管和三极管的简单测试一、实验目的1. 学习使用万用表检测晶体二极管和晶体三极管的好坏及判别管脚。
2. 加深巩固对元器件特性和参数的理解。
二、实验器材万用表: 500型一只二极管: 1N4001—1N4007型一只三极管: 9012(PNP型硅管)、9013(NPN型硅管)各一只质量差和坏的各类二极管、三极管若干只电阻:100K 一只三、实验原理内容及步骤晶体二极管和晶体三极管是电子电路和电子设备中的基本器件,为了能正确的加以选用,必须了解它们的特性、参数以及测试方法,这里介绍使用万用表检测的方法。
使用万用表对器件进行检测时,一般应使用该表的R×1K或R ×100档,用其它档位会造成晶体管损坏。
还应注意,指针式万用表欧姆档红表笔正端(+)接表内电池的负极,而黑表笔负端(-)接表内电池的正极。
(一)利用万用表测晶体二极管1、判别二极管的极性将万用表欧姆档的量程拨到R×1K、R×100档,并将两表笔分别接到二极管两端。
如图1—1所示。
如果二极管处于正向偏置,呈现低电阻,表针偏转大,此时万用表指示的电阻小于几千欧,若二极管处于反向偏置,呈现高电阻,表针偏转小,此时万用表指示的电阻将达几百千欧以上。
正向偏置时,黑表笔所接的那一端是二极管的正极。
图2—12、判别二极管好坏测得二极管的正向电阻相差越大越好,若测得正反向电阻均为无穷大,则表明二极管内部断路。
如果测得正、反向电阻均为零,此时表明二极管被击穿或短路。
(二)用万用表测发光二极管发光二极管和普通二极管一样具有单向导电性,正向导通时才能发光。
发光二极管在出厂时,一根引线做得比另一根引线长,通常,较长引线表示正极(+),另一根为负极(-)。
1、判别发光二极管的极性将万用表欧姆档的量程拨到R×10K档。
测量方法与测量普通二极管一样。
2、判别发光二极管的好坏将万用表欧姆档的量程拨到R×10K档。
模电实验报告 2 三极管共射放大电路

实验报告专业:物理系姓名:傅立承学号:日期:2014/5/19桌号:F3课程名称:模拟电子技术基础实验指导老师:蔡忠法成绩:________________实验名称:三极管共射放大电路一、实验目的1. 掌握共射放大电路的仿真方法。
2. 掌握放大电路的调试和测量方法。
3. 进一步熟悉示波器、函数信号发生器的使用。
二、实验器材1. 示波器、信号发生器、万用表2. 共射电路实验板三、实验内容1. 静态工作点的调整与测量2. 测量电压放大倍数3. 测量最大不失真输出电压4. 测量输入电阻5. 测量输出电阻6. 测量上限频率和下限频率7. 研究静态工作点对输出波形的影响四、实验电路与原理实验电路(仿真电路图):电路原理:1)三极管放大电路的静态工作点应置于直流负载线还是交流负载线的中点?为什么?如何实现?答;应置于交流负载线中点,可实现最大动态范围。
调节时先调至直流中点,再利用电位器调至交流中点。
2)静态工作点设置过高或过低时,放大电路会先出现饱和失真还是先出现截止失真?饱和失真与截止失真在形状上有何区别?区别是如何产生的?答;设置过高,先出现饱和失真,为‘‘削顶’‘失真;设置过低,先出现截止失真,为’‘缩顶’‘失真。
产生原因是理想三极管β恒定,特性曲线等间距。
实际上,工作点越低,β越小,间距越小;工作点越高,β越大,间距越大。
3)电路中,R7引入什么反馈?起什么作用?若R7被短路,Q点、A v、R i、R o如何变化?答;R7引入负反馈,可稳定静态工作点,Q点基本不变,A v变大,Ri变小,Ro不变。
五、实验步骤和实验结果1. 静态工作点的调整与测量实验步骤:1) 将直流稳压电源的输出调至12V;连接稳压电源与电路板的电源线和地线。
2) 调节偏置电位器,使放大电路的静态工作点满足设计要求(I CQ=1.5mA)。
3) 测出共射电路的静态工作点,记录测量值,并与理论估算值和仿真值进行比较。
实验结果记录:2. 测量电压放大倍数实验步骤:1) 从函数信号发生器输出1kHz的正弦波(幅度要小,有效值10mV),送示波器确认波形和幅值。
三极管两级放大电路实验

三极管两级放大电路实验一、实验目的(1)掌握多级放大电路性能指标的测量及与单级指标之间的关系。
(2)熟悉共集电极电路的特点和作为输出级的作用。
(3)掌握多级放大电路的设计方法。
二、实验原理(1)实验电路。
实验电路如图2.10所示。
第一级为共射放大电路,后级是共集放大电路,级间采用直接耦合,因此要注意前后级静态工作点互相影响的情况。
静态点调试时,可根据具体情祝做适当调整。
图2.10共集电路的特点是增益近似为1,输人电阻高,而输出电阻低,其应用非常广泛,可用作电路的输人级、输出级、中间级。
本电路中作为输出级,可增强放大电路的带负载能力。
(2)性能指标。
①电压增益Aⅴ.两级放大电路的总增益为共射和共集电路增益的乘积。
电压增益为Av =Aⅴ/Av₂= -β1(R lI Rⅰ2)×(1+β2)(Re2 II RL)/r be₁×[r be₂+(1+β2)(Re2 II RL)] (2.23)式中,Rⅰ₂为后级共集放大电路的输人电阻,有Rⅰ2=rbe+(1+β2)(R2||RL) (2.24)②输人电阻Rⅰ。
两级放大电路的输人电阻一般取决于第一级。
输人电阻为Rⅰ=rbe₁II R1 II R2 (2.25)如果第一级为共集放大电路,则输人电阻还与第二级有关。
③输出电阻R。
两级放大电路的输出电阻一般取决于最后一级。
如果末级为共集放大电路,则输出电阻还与倒数第二级有关。
两级放大电路的输出电阻为R₀=Rₑ₂||(Rᴄ+r be₂)/(1+β₂)三、实验设备与器件直流电源、数字万用表、数字示波器、低频波形发生器。
四、实验内容(1)测量静态工作点。
测量前后级的静态电流IcQ。
若静态工作点不合适,可适当调整R1、R2或Re1。
(2)测量交流性能指标。
参照单管共射电路的测量方法,波形发生器输出1kHz、20mVₚₚ正弦信号,接人放大器输人端Vⅰ,用示波器记录两级放大电路的输人和输出波形,测出电路的总增益、输人电阻和输出电阻。
实验二、三极管及其单级共射放大电路(一)

五 实验思考题: 1. 总结 Rc、RL 及静态工作点对放大器电压放大倍数的影响。
2. 讨论静态工作点变化对放大器输出波形的影响。
成绩评定:
指导教师签字: 年 月
日
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。
2.测量电压放大倍数 在放大器输入端加入频率为 l kHz,Ui ≈ 10 mV 的正弦信号,同时用示波器观察放大器输出电压 Uo 波形,在波形不失真的条件下用交流毫伏表测量下述三种情况下的 Uo 值,并用双踪示波器观察 Uo 和 Ui 的相位关系,记入表 2。 表2 Rc(kΩ) RL(kΩ) Uo(V) AV Ui / Uo 波形
Rw1 100KΩ 20KΩ
Rc 2.4KΩ C2 + 10μF
VCC +12V
+
C1 +
+
Re1
10μF 100Ω Re2 1KΩ
+
Rb12 Vi 20KΩ -
RL 2.4KΩ Ce 100μF -
Vo
图 1 单级共射放大电路
四 实验内容(表格): 1.测量电路在线性放大状态时的静态工作点 按图 1 所示电路, 接通直流电源前, 先将 Rw 调至最大, 函数信号发生器输出旋钮旋至零。 接通+12V 电源,调节 Rw,使 Ic = 2.0 mA(即 UE = 2.0 V) 。用数字万用表直流电压表档测量 UB、UE、Uc 及用 万用表Ω 档测量 RB11 值,并记入表 1。 表1 测量值 计算值 UB(V) UE (V) Uc (V) Rb11(kΩ) UBE(V) UCE(V) I ( c mA) IB(μA) β
实
验
报
模电仿真实验报告

模电仿真PSPICE实验报告班级:学号:姓名:学院:实验一晶体三极管共射放大电路一、实验目的1、学习共射放大电路的参数选取方法。
2、学习放大电路静态工作点的测量与调整,了解静态工作点对放大电路性能的影响。
3、学习放大电路的电压放大倍数和最大不失真输出电压的分析方法。
4、学习放大电路输入、输出电阻的测量方法以及频率特性的分析方法。
二、实验原理单级共射放大电路是放大电路的基本形式,为了获得不失真的放大输出,需设置合适的静态工作点,静态工作点过高或过低都会引起输出信号的失真。
通过改变放大电路的偏置电压,可以获得合适的静态工作点。
单级共射放大电路是一个低频小信号放大电路。
当输入信号的幅度过大时,即便有了合适的静态工作点同样会出现失真。
改变输入信号的幅值即可测量出最大不失真输出电压。
放大电路的输入输出电阻是衡量放大器性能的重要参数。
晶体三级管具体电流放大作用,用它可构成共射、共集、共基三种组态的基本放大电路。
在这三种电路工作过程中,静态工作点的选取是最重要的。
如果静态工作点调的太高或者太低,当输入端加入交流信号又超过了工作点电压时,则输出电压将会产生饱和失真或者截止失真。
要求:1、电源电压VCC=12V;2、静态工作电流ICQ=1.5mA;3、当RC=3KΩ,RL=∞时,要求VO(max)≥3V(峰值),Av≥100;4、β=100——200,C1=C2=10μF,Ce=100μF。
三、实验内容1.放大电路中偏置电路的设计(1)偏置电路形式的选择除了根据静态工作点稳定性的要求来选择偏置电路外,还应考虑放大电路的性能指标。
(2)分压式偏置电路静态工作点的稳定条件为了稳定静态工作点,必须满足下面两个条件。
条件一:I1>>IBQ工程上一般按下式选取I1=(5~10)IB 硅管I1=(10~20)IB 锗管由于锗管的ICBO 比硅管得大,使得锗管的ICBO 随温度变化时,对基极电位VB 的稳定性影响也大,所以用在锗管的放大电路中,I1应取大一些,即RB1,RB2取小一些。