大学物理动量与角动量练习题与答案
大学物理习题及解答(运动学、动量及能量)

1-1.质点在Oxy 平面内运动,其运动方程为j t i t r )219(22-+=。
求:(1)质点的轨迹方程;(2)s .t 01=时的速度及切向和法向加速度。
1-2.一质点具有恒定加速度j i a 46+=,在0=t 时,其速度为零,位置矢量i r 100=。
求:(1)在任意时刻的速度和位置矢量;(2)质点在oxy 平面上的轨迹方程,并画出轨迹的示意图。
1-3. 一质点在半径为m .r 100=的圆周上运动,其角位置为342t +=θ。
(1)求在s .t 02=时质点的法向加速度和切向加速度。
(2)当切向加速度的大小恰等于总加速度大小的一半时,θ值为多少?(3)t 为多少时,法向加速度和切向加速度的值相等?题3解: (1)由于342t +=θ,则角速度212t dt d ==θω,在t = 2 s 时,法向加速度和切向加速度的数值分别为 222s 2t n s m 1030.2-=⋅⨯==ωr a22s t t s m 80.4d d -=⋅==t r a ω(2)当2t 2n t 212a a a a +==时,有2n 2t 3a a=,即 22212)24(3)r t (tr = s 29.0s 321==t此时刻的角位置为 rad.t 153423=+=θ (3)要使t n a a =,则有2212)24()t (r tr =s .t 550=3-1如图所示,在水平地面上,有一横截面2m 20.0=S 的直角弯管,管中有流速为1s m 0.3-⋅=v 的水通过,求弯管所受力的大小和方向。
解:在t ∆时间内,从管一端流入(或流出)水的质量为t vS m ∆=∆ρ,弯曲部分AB 的水的动量的增量则为()()A B A B v v t vS v v m p -∆=-∆=∆ρ依据动量定理p I ∆=,得到管壁对这部分水的平均冲力()A B v v I F -=∆=Sv t ρ从而可得水流对管壁作用力的大小为N 105.2232⨯-=-=-='Sv F F ρ作用力的方向则沿直角平分线指向弯管外侧。
《大学物理I》作业-No.03 角动量与角动量守恒-A-参考答案

《大学物理I 》作业 No.03 角动量 角动量守恒定律 (A 卷)班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、选择题[ ]1、一质点沿直线做匀速率运动时,(A) 其动量一定守恒,角动量一定为零。
(B) 其动量一定守恒,角动量不一定为零。
(C) 其动量不一定守恒,角动量一定为零。
(D) 其动量不一定守恒,角动量不一定为零。
答案:B答案解析:质点作匀速直线运动,很显然运动过程中其速度不变,动量不变,即动量守恒;根据角动量的定义v m r L⨯=,质点的角动量因参考点(轴)而异。
本题中,只要参考点(轴)位于质点运动轨迹上,质点对其的角动量即为零,其余位置均不会为零。
故(B)是正确答案。
[ ]2. 两个均质圆盘A 和B 密度分别为A ρ和B ρ,若A ρ>B ρ,两圆盘质量与厚度相同,如两盘对通过盘心且垂直于盘面的轴的转动惯量各为A J 和B J ,则 (A) A J >B J(B) B J >A J(C) A J =B J(D) A J 、B J 哪个大,不能确定答案:B答案解析:设A 、B 联盘厚度为d ,半径分别为A R 和B R ,由题意,二者质量相等,即B B A A d R d R ρπρπ22=因为B A ρρ>,所以22B A R R <,由转动惯量221mR J =,则B A J J <。
[ ]3.对于绕定轴转动的刚体,如果它的角速度很大,则 (A) 作用在刚体上的力一定很大 (B) 作用在刚体上的外力矩一定很大(C) 作用在刚体上的力和力矩都很大 (D) 难以判断外力和力矩的大小答案:D 答案解析:由刚体质心运动定律和刚体定轴转动定律知:物体所受的合外力和合外力矩只影响物体运动的加速度和角加速度,因此无法通过刚体运动的角速度来判断外力矩的大小,正如无法通过速度来判断物体所受外力的大小一样。
动量与角动量习题解答

动量与角动量习题解答(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第三章 动量与动量守恒定律习题一选择题1. 一辆洒水车正在马路上工作,要使车匀速直线行驶,则车受到的合外力:( )A. 必为零;B. 必不为零,合力方向与行进方向相同;C. 必不为零,合力方向与行进方向相反;D. 必不为零,合力方向是任意的。
解:答案是C 。
简要提示:根据动量定理,合力F 的冲量F d t = d p = d (m v )=md v +v d m =v d m 。
因d m <0,所以F 的方向与车行进速度v 的方向相反。
2. 两大小和质量均相同的小球,一为弹性球,另一为非弹性球,它们从同一高度落下与地面碰撞时,则有:()A. 地面给予两球的冲量相同;B. 地面给予弹性球的冲量较大;C. 地面给予非弹性球的冲量较大; A. 无法确定反冲量谁大谁小。
解:答案是B 。
简要提示:)(12v v -=m I3. 质量为m 的铁锤竖直向下打在桩上而静止,设打击时间为∆t ,打击前锤的速率为v ,则打击时铁锤受到的合外力大小应为:()A .mg tm +∆vB .mgC .mg tm -∆vD .tm ∆v解:答案是D 。
简要提示:v m t F =∆⋅4. 将一长木板安上轮子放在光滑平面上,两质量不同的人从板的两端以相同速率相向行走,则板的运动状况是:()选择题4图3A. 静止不动;B. 朝质量大的人行走的方向移动;C. 朝质量小的人行走的方向移动;D.无法确定。
解:答案是B 。
简要提示:取m 1的运动方向为正方向,由动量守恒:02211='+-v v v M m m ,得:M m m /)(21v v --='如果m 1> m 2,则v ′< 0。
5. 一只猴子用绳子拉着一个和它质量相同的石头,在一水平的无摩擦的地面上运动,开始时猴子和石头都保持静止,然后猴子以相对绳子的速度u 拉绳,则石头的速率为:() A. u B. u /2 C. u /4 D. 0解:答案是B 。
《大学物理AI》作业 No.03 角动量、角动量守恒(参考解答)

为为零零。;((bc))不不正正确确; ;角当动参量考还点与不参在考运点动的直选线择上有时关,,质只点要相参对考于点参不考选点在的运位动矢直r 是线在上变,化角动的量,就因可此能角不动
量
L
r
mv
也是会变化的;(d)不正确;作匀速率圆周运动的物体,其合外力指向圆心,属于有心
力,以圆心为参考点,质点的角动量守恒,角动量大小和方向都不改变。
端的水平轴在竖直平面内自由摆动,现将棒由水平位置静止释放,求:
(1)细棒和小球绕 A 端的水平轴的转动惯量,
A
B
(2)当下摆至 角时,细棒的角速度。
m
解:(1) J
J1
J2
ml 2
1 ml 2 3
4 ml 2 3
(2)根据转动定理: M
J
d dt
J
d d
d dt
J
d d
1、理解质点、质点系、定轴转动刚体的角动量的定义及其物理意义; 2、理解转动惯量、力矩的概念,会进行相关计算; 3、熟练掌握刚体定轴转动定律,会计算涉及转动的力学问题; 4、理解角冲量(冲量矩)概念,掌握质点、质点系、定轴转动刚体的角动量定理,熟练进行有关计算; 5、掌握角动量守恒的条件,熟练应用角动量守恒定律求解有关问题。
大学物理练习题3((角)动量与能量守恒定律)

大学物理练习题3:“力学—(角)动量与能量守恒定律”一、填空题1、一个质量为10kg 的物体以4m/s 的速度落到砂地后经0.1s 停下来,则在这一过程中物体对砂地的平均作用力大小为 。
2、t F x 430+=(式中x F 的单位为N ,t 的单位为s )的合外力作用在质量为kg m 10=的物体上,则:(1)在开始s 2内,力x F 的冲量大小为: ;(2)若物体的初速度1110-⋅=s m v ,方向与x F 相同,则当力x F 的冲量s N I ⋅=300时,物体的速度大小为: 。
3、一质量为kg 1、长为m 0.1的均匀细棒,支点在棒的上端点,开始时棒自由悬挂。
现以100N 的力打击它的下端点,打击时间为0.02s 时。
若打击前棒是静止的,则打击时棒的角动量大小变化为 ,打击后瞬间棒的角速度为 。
4、某质点最初静止,受到外力作用后开始运动,该力的冲量是100.4-⋅⋅s m kg ,同时间内该力作功4.00J ,则该质点的质量是 ,力撤走后其速率为 。
5、设一质量为kg 1的小球,沿x 轴正向运动,其运动方程为122-=t x ,则在时间s t 11=到s t 32=内,合外力对小球的功为 ;合外力对小球作用的冲量大小为 。
6、一个力F 作用在质量为 1.0 kg 的质点上,使之沿x 轴运动。
已知在此力作用下质点的运动学方程为3243t t t x +-= (SI)。
则在0到4 s 的时间间隔内,力F 的冲量大小I = ,力F 对质点所作的功W = 。
7、设作用在质量为 2 kg 上的物体上的力x F x 6=(式中x F 的单位为N ,x 的单位为m )。
若物体由静止出发沿直线运动,则物体从0=x 运动到m x 2=过程中该力作的功=W ,m x 2=时物体的速率=v 。
8、已知质量kg 2=m 物体在一光滑路面上作直线运动,且0=t 时,0=x ,0=ν。
若该物体受力为x F 43+=(式中F 的单位为N ,x 的单位为m ),则该物体速率ν随 x 的函数关系=)(x ν ;物体从0=x 运动到2=x m 过程中该力作的功=W 。
大学物理04角动量守恒习题解答

刚体力学-角动量习题
第1页
一、选择题
1. 已知地球的质量为m,太阳的质量为M,地心与日心的距离为R
,引力常数为G,则地球绕太阳作圆周运动的角动量为 [ A ]
m( l )2 2
0
ml 2 3
mx2
O
1l m m
2
第9页
三、计算题
1. 如图所示,一质量为M的均匀细棒,长为l,上端可绕水平轴O自 由转动,现有一质量为m的子弹,水平射入其下端A而不穿出,此 后棒摆到水平位置后又下落。棒的转动惯量J= Ml2/3 ,如不计空气 阻力并设 mM。求 (1)子弹射入棒前的速度v0; (2) 当棒转到与水平位置的夹角为30时,A点的速度及加速度。
(A) 只有(1)是正确的。 (B) (1)、(2)正确,(3)、(4)错误 (C) (1)、(2)、(3)都正确,(4)错误。 (D) (1)、(2)、(3)、(4)都正确。
解 对上述每一句话进行分析: (1)正确 √ (2)正确 √
(3)错误 × (4)错误 ×
第5页
一、选择题
5. 关于力矩有以下几种说法: (1) 对某个定轴而言,内力矩不会改变刚体的角动量。
所受的合外力矩的大小M =
大小β= 2g 3l 。
3 2
mgl
,此时该系统角加速度的
解 M 2mg l mg l 3 mgl
2 22
M J
2m
o
mg
大学物理试卷答案角动量守恒

是RA和RB.设卫星对应的角动量分别是LA、LB,动能分别是
EKA、EKB,则应有
(A) LB > LA,EKA > EKB. (B) LB > LA,EKA = EKB.
RB RA
BO
A
(C) LB = LA,EKA = EKB.
(D) LB < LA,EKA = EKB.
(E) LB = LA,EKA < EKB.
该物体距圆盘中心O的距离为r0,并以角速度 0绕盘心O
作圆周运动.现向下拉绳,当质点A的径向距离由r0减少
到1 r 功.2
0
时,向下拉的速度为v,求下拉过程中拉力所作的
O
r0 A 0
v
11、解:角动量守恒 mv0r0mvr ① 2分
v' 为
r
1 2
r0时小球的横向速度.
拉力作功 W12mvB 2 12mv02
A2的速度v2=__6_._3_k__m _/__s____.
卫星
A2
l2
地球中心R
O
l1 A1
9.如图所示,钢球A和B质量相等,正被
绳牵着以w0=4 rad/s的角速度绕竖直轴转动,
二球与轴的距离都为r1=15 cm.现在把轴 A
B
上环C下移,使得两球离轴的距离缩减为
r钢2=球5 的cm角.速则度w=___3_6_ra_d_/_s__.
某小一 和时夹刻角,弹.簧长度l =0.5 m. 求该时刻滑块速度的大
v
l
l0
v0
• 12、解:由角动量守恒和机械能守恒可得
•
mv0l0mvlsin
2分
•
1 2m v0 21 2m v21 2k(ll0)2
《大学物理AI》作业 No.03 角动量、角动量守恒定律

lv 12
(B)
2v 3l
(C)
3v 4l
(D)
3v l
解:小球与细杆碰撞过程中对 o 点的合外力矩为零,根据角动量守恒定律有:
⎛1 ⎞ mvl = ⎜ ml 2 + ml 2 ⎟ω ⎝3 ⎠ 3v ω = 碰撞后的转动角速度为 4l
选C
3. 质量为 m 的小孩站在转动,转动惯量为 J。平台和小孩开始时静止。当小孩突然以相对于地面为 v 的速率在台边缘沿逆时针转向走动时,此平台相对地面旋转的角速度和旋转方向分别为 2 2 v⎞ v ⎞ [ ] (A) ω = mR ⎛ (B) ω = mR ⎛ ⎜ ⎟ ,顺时针 ⎜ ⎟ ,逆时针 J ⎝R⎠ J ⎝R⎠
2r
2m r m
m
β
m
mg − T2 = ma 2 T1 − mg = ma1
T 2 × 2 r − T1 × r =
绳和圆盘间无相对滑动有
9 mr 2 β 2
v a2
v T2
v T1
a 2 = 2rβ a1 = rβ
β=
2g 19r
v a1
v mg v mg
联立以上方程,可以解出盘的角加速度的大小:
选A
v
R
m
O
J
4.一水平圆盘可绕通过其中心的固定铅直轴转动,盘上站着一个人,初始时整个系统处 于静止状态,当此人在盘上随意走动时,若忽略轴的摩擦,则此系统 [ ] (A) 动量守恒 (B) 机械能守恒 (C) 对转轴的角动量守恒 (D) 动量、机械能和角动量都守恒 (E) 动量、机械能和角动量都不守恒 解:此系统所受的合外力矩为零,故对转轴的角动量守恒。 选C 5.关于力矩有以下几种说法: (1) 对某个定轴而言,内力矩不会改变刚体的角动量 (2) 作用力和反作用力对同一轴的力矩之和必为零 (3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一 定相等 在上述说法中, [ ] (A) 只有(2)是正确的 (B) (1)、(2)是正确的 (C) (2)、(3)是正确的 (D) (1)、(2)、(3)都是正确的 解:内力成对出现,对同一轴,一对内力的力矩大小相等,方向相反,内力矩之和为零, 不会改变刚体的角动量。质量相等,形状和大小不同的两个物体,转动惯量不同,在相 同力矩作用下,角加速度大小不等。 选B 二、填空题 1.如图所示,一轻绳绕于半径为 r 的飞轮边缘,并以质量为 m 的物体
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题[ A ] 1.(基础训练2)一质量为m 0的斜面原来静止于水平光滑平面上,将一质量为m 的木块轻轻放于斜面上,如图3-11.如果此后木块能静止于斜面上,则斜面将(A) 保持静止. (B) 向右加速运动.(C) 向右匀速运动. (D) 向左加速运动.提示:假设斜面以V 向右运动。
由水平方向动量守恒得0(cos )0m V m V v θ+-= ,而0v =,得0V =[C ]2.(基础训练3)如图3-12所示,圆锥摆的摆球质量为m ,速率为v ,圆半径为R ,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为(A) 2m v . (B) 22)/()2(v v R mg m π+(C) v /Rmg π.(D) 0.[ B ]3. (自测提高2)质量为20 g 的子弹,以400 m/s 的速率沿图3-15入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为 (A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s .提示:对摆线顶部所在点角动量守恒。
2sin 30()mv l M m lV ︒=+;其中m 为子弹质量,M 为摆球质量,l 为 摆线长度。
[D ]4.(自测提高4)用一根细线吊一重物,重物质量为5 kg ,重物下面再系一根同样的细线,细线只能经受70 N 的拉力.现在突然向下拉一下下面的线.设力最大值为50 N ,则(A)下面的线先断. (B)上面的线先断. (C)两根线一起断. (D)两根线都不断.提示:下面的细线能承受的拉力大于所施加的最大力,所以下面的细线不断。
对重物用动量定理:0'''=--⎰⎰⎰++dt T mgdt dt T t t t t t 下上't 为下拉力作用时间,由于't t >>,因此,上面的细线也不断。
二、填空题5.(基础训练8)静水中停泊着两只质量皆为0m 的小船.第一只船在左边,其上站一质量为m 的人,该人以水平向右速度v从第一只船上跳到其右边的第二只船上,然后又以同样的速率v 水平向左地跳回到第一只船上.此后 (1) 第一只船运动的速度为v1=图3-11图3-1502m v m m -+。
(2) 第二只船运动的速度为v2=02m v m 。
(水的阻力不计,所有速度都相对地面而言)提示:第一跳 010mv m v '+= 02()mv m m v '=+ 第二跳 0101()mv m v m m v '-+=+ 0202()m m v mv m v '+=-+6.(基础训练11)将一质量为m 的小球,系于轻绳的一端,绳的另一端穿过光滑水平桌面上的小孔用手拉住.先使小球以角速度ω1在桌面上做半径为r 1的圆周运动,然后缓慢将绳下拉,使半径缩小为r 2,在此过程中小球的动能增量是 22211121(1)2r m r r ω-。
7.(自测提高6) 质量为m 的小球自高为y 0处沿水平方向以速率v 0抛出,与地面碰撞后跳起的最大高度为21y 0,水平速率为1v 0,如图3-17.(1)地面对小球的竖直冲量的大小为(1+ (2)地面对小球的水平冲量的大小为01mv 。
8.(自测提高7)一物体质量M =2 kg ,在合外力(32)F t i =+ (SI )的作用下,从静止开始运动,式中i 为方向一定的单位矢量, 则当t=1 s 时物体的速度1v=2(/)i m s 。
提示:用动量定理计算。
110()0Fdt mv mv =∆=-⎰9.(自测提高8)两球质量分别为m 1=2.0 g ,m 2=5.0 g ,在光滑的水平桌面上运动.用直角坐标OXY 描述其运动,两者速度分别为i 101=v cm/s ,)0.50.3(2j i+=v cm/s .若碰撞后两球合为一体,则碰撞后两球速度v 的大小v = 6.14 m/s ,v与x 轴的夹角α=112212()mv m v m m v +=+,得255(/)7v i j m s =+25 6.14(/)7m s ⎛⎫=+= ⎪⎝⎭,535.57arctg α⎛⎫== ⎪ y 21y 图3-1710.(自测提高9)如图3-20所示,质量为m 的小球,自距离斜面高度为h 处自由下落到倾角为30°的光滑固定斜面上。
设碰撞是完全弹性的,则小球对斜面的冲量的大小为,方向为垂直斜面提示:碰撞过程中斜面对小球的冲量21I mv mv =- 212v v v ===2cos30I mv =而小球对斜面的冲量方向垂直斜面向下。
三、计算题11.(基础训练14)一炮弹发射后在其运行轨道上的最高点h =19.6 m 处炸裂成质量相等的两块.其中一块在爆炸后1秒钟落到爆炸点正下方的地面上.设此处与发射点的距离S 1=1000 m ,问另一块落地点与发射地点间的距离是多少?(空气阻力不计,g =9.8 m/s 2)解:因第一块爆炸后落在其正下方的地面上,说明它的速度方向是沿竖直方向的. 利用 2t g t h '+'=211v , 式中t '为第一块在爆炸后落到地面的时间. 可解得v 1 =14.7 m/s ,竖直向下.取y 轴正向向上, 有v 1y =-14.7 m/s设炮弹到最高点时(v y =0),经历的时间为t ,则有S 1 = v x t (1) h=221gt (2) 由(1)及(2)得 t =2 s , v x =500 m/s 以2v表示爆炸后第二块的速度,由爆炸前后的动量守恒得x v v m m x =221(3) 0==+y y m m m v v v 1y 22121 (4)解出 v 2x =2v x =1000 m/s , v 2y =-v 1y =14.7 m/s再由斜抛公式 x 2= S 1 +v 2x t 2 (5) y 2=h +v 2y t 2-22gt 21 (6) 落地时 y2 =0,可得 t 2 =4 s , t 2=-1 s (舍去) 故 x 2=5000 m12.(基础训练15)质量为m 的小球与桌面相碰撞,碰撞前、后小球的速率都是v ,入射方向和出射方向与桌面法线的夹角都是α,如图3-15所示。
若小球与桌面作用的时间为∆t ,求小球对桌面的平均冲力。
解:由动量定理()()tN mg dt mv ∆+=∆⎰N 为桌面对小球的作用力,mg 为小球所受重力。
沿y 轴方向的分量形式为()()cos (cos )2cos tN mg dt N mg t mv mv mv ααα∆-=-∆=--=⎰图3-20图3-15tmv mg t mv N ∆≅+∆=ααcos 2cos 2 小球对桌面的平均冲力为tmv N N ∆-=-=αcos 2'13.(自测提高12)如图3-23示,有两个长方形的物体A 和B 紧靠着静止放在光滑的水平桌面上,已知m A =2 kg ,m B =3kg .现有一质量m =100 g 的子弹以速率v 0=800 m/s 水平射入长方体A ,经t = 0.01 s ,又射入长方体B ,最后停留在长方体B 内未射出.设子弹射入A 时所受的摩擦力为F= 3×103 N ,求: (1) 子弹在射入A 的过程中,B 受到A 的作用力的大小.(2) 当子弹留在B 中时,A 和B 的速度大小. 解:从0t =s 到0.01t =s 对A 、B 用动量定理()0A B F t m m v ∆=+-代入题给数据得子弹出A 入B 瞬时A 、B 共同速度大小为v =6m/s 。
从0t =s 到0.01t =s 对子弹用动量定理,10F t mv mv -∆=-代入题给数据得子弹出A 入B 瞬时速度大小为1v =500m/s 。
(1)从0t =s 到0.01t =s 对B 用动量定理,0B f t m v ∆=-代入题给数据得子弹在射入A 的过程中,B 受到A 的作用力的大小1800f N =。
(2)子弹出A 入B 瞬时A 、B 共同速度大小即为子弹留在B 中时,A 的速度大小即 6/A v v m s ==。
用动量守恒定律可求得子弹留在B 中,子弹和B 的共同速度大小1()B B mv m v m m V +=+代入题给数据得子弹和B 的共同速度大小为V =22m/s 。
即 22/B v V m s ==。
14.(自测提高14)一质量为m 的匀质链条,长为L ,手持其上端,使下端离桌面的高度为h 。
现使链条自静止释放落于桌面,试计算链条落到桌面上的长度为l 时,桌面对链条的作用力。
图3-23解:如图所示,以落在桌面上的那部分链条l m 为研究对象,则有 l m g F N +=(F 为dt 时间内下落的链条元dx 对它的冲力,N 为桌面的支持力)l m m l l Lλ==(mL λ=为链条的质量线密度)此时在空中的链条的速度大小v =在dt 时间内,有dm dx λ=链条元落在桌面上,它受到地面反作用力'F 和重力dmg 作用,'F F = F d m g对dx 用动量定理mFdt dmv dxv L==(32)l m mN F m g F lg l h g L L=+=+=+方向向上。
附加题:15.(自测提高13)有一水平运动的皮带将砂子从一处运到另一处,砂子经一竖直的静止漏斗落到皮带上,皮带以恒定的速率v 水平地运动.忽略机件各部位的摩擦及皮带另一端的其它影响,试问:(1) 若每秒有质量为q m =d M /d t 的砂子落到皮带上,要维持皮带以恒定速率v 运动,需要多大的功率?(2) 若q m =20 kg/s ,v =1.5 m/s ,水平牵引力多大?所需功率多大?解:(1) 设d t 时间内有质量为dM 的砂子落到传送带上,在带的摩擦力F 的作用下速度0增加到v 而随带一起运动。
对dM 砂子用动量定理:d d (-0)F t M v =∴ m F q ==⋅dMvv dt由牛顿第三定律,带受到砂子的作用力也等于F ,方向向后,由于带作匀速运动,电动机拖动皮带的力也是F,于是皮带所需的功率为:2m P Fv q ==v(2) 当q m =d M/d t=20 kg/s ,v =1.5 m/s 时,水平牵引力大小F =v q m =30 N所需功率为 P=v 2q m =45 W。