大学物理角动量

合集下载

角动量 角动量守恒定律大学物理

角动量 角动量守恒定律大学物理

对定轴转动的刚体 Miin 0 ,合外力矩
M
Miex
d dt
(
mi
ri
2
)
d(J
dt
)
d( J )
dL
M
dt dt
第3章 守恒定律
12
大学物
理学
第二版
t2 t1
Mdt
L2
L1
t2 t1
Mdt
L2
L1
当转轴给定时,作用在物体上的冲量 矩等于角动量的增量.——定轴转动的角 动量定理
第3章 守恒定律
然长度处以
垂直于弹簧运动,当
弹簧与初始位置垂直时,弹簧长度
v
求此时滑块的速度.
v0
第3章 守恒定律
图 3.4
大学物 理学
第二版
【解】 由角动量和机械能守恒
结论:对于有心力问题,系统对力心处的 角动量守恒.
第3章 守恒定律
大学物
理学
第二版
三、角动量守恒定律的应用
(1)常平架回转仪(陀螺仪) (2)直升飞机尾翼
质点角动量定理的推导
L r p r mv
dL
d
(r
p)
r
dp
dr
p
dt dt dr v,v p 0
dt dL
dt
r
dp
r
F
dt
dt
dt
第3章 守恒定律
4
大学物
理学
第二版
dL
M
dt
作用于质点的合外力对参考点 O 的力 矩,等于质点对该点 O 的角动量随时间的 变化率.
13
大学物
理学
第二版
对定轴转动的刚体,受合外力矩M,

大学物理 角动量 角动量守恒定律

大学物理 角动量 角动量守恒定律

z L mv

r
注意
L r mv
角动量 L在直角坐标系中各坐标轴的分量:
1. 质点的角动量与质点对固定点的矢径有关;同一质 点对不同的固定点角动量不同。 2. 讲角动量必须指明对哪一个固定点而言。
Lx ypz zp y Ly zpx xpz
角动量的单位:
例2.17 一质量为 m的质点t=0时位于 ( x1 , y1 )处,速度为 v0 v x 0 i v y 0 j ,质点受到恒力 f = f i 的作用,(1) 求t=0时相对于坐标原点的角动量以及作用于质点上的力 的力矩(2)求2s后相对于原点的角动量的变化中木块在水平面内只受指向O点的 弹性有心力,故木块对O点的角动量守恒,设 v 2 与OB方向成θ角,则有
l0 (m M ) v1 l (m M ) v2 sin
在由A→B的过程中,子弹、木块系统机械能守恒
1 1 1 2 2 (m M ) v1 (m M ) v2 k (l l0 ) 2 2 2 2
( x1mv y 0 y1mv x 0 )k
作用在质点上的力的力矩为
M 0 r0 f ( x1i y1 j ) ( f i )
y1 f k
t t (2) L Mdt (r f )dt t0 t0 f f f 2 a i x x1 vx 0t t m m 2m
k (l l0 ) 2 m2 2 v2 v0 (m M ) 2 mM
arcsin
l0 mv0
2 l m 2 v0 k (l l0 ) 2 (m M )
例 . 在光滑的水平桌面上有一小孔O,一细绳穿过小孔,其一端系 一小球放在桌面上,另一端用手缓慢拉绳,开始时小球绕孔运动, 半径为 r1 ,速率为 v1 ,当半径变为 r2 时,求小球的速率 v2?

大学物理-角动量定理和角动量守恒定律

大学物理-角动量定理和角动量守恒定律
当系统所受外力矩为零时,系统内各物体角动量 之和保持不变。
系统内物体之间的相互作用力矩不会改变系统的 总角动量。
角动量守恒的应用举例
天体运动
行星绕太阳公转、卫星绕地球运 行等天体运动中,角动量守恒定
律是重要的理论基础。
陀螺仪
陀螺仪利用角动量守恒原理,通过 高速旋转来保持方向稳定,广泛应 用于导航、制导和控制系统。
机械系统
在机械系统中,如旋转机械、齿轮 传动等,角动量守恒定律用于分析 系统的动态平衡和稳定性。
04 角动量定理与守恒定律的 实际意义
在天文学中的应用
描述行星和卫星的运动
角动量定理和守恒定律在天文学中用于描述行星和卫星围绕中心天体的运动。 这些定律帮助科学家理解天体的旋转和轨道运动,以及它们之间的相互作用。
预测天文现象
通过应用角动量定理和守恒定律,科学家可以预测天文现象,如行星的轨道变 化、卫星的旋转等。这些预测有助于更好地理解宇宙的演化。
在航天工程中的应用
航天器姿态控制
角动量定理和守恒定律在航天工程中用于控制航天器的姿态 。通过合理地布置航天器上的动量轮,可以调整航天器的角 动量,实现姿态的稳定和控制。
L = m × v × r,其中L是 角动量,m是质量,v是 速度,r是转动半径。
角动量单位
在国际单位制中,角动量 的单位是千克·米²/秒 (kg·m²/s)。
角动量定理表述
角动量定理
01
对于一个封闭系统,其总角动量保持不变,即系统内力的力矩
之和为零。
表述形式
02
dL/dt = ΣM = 0,其中dL/dt表示角动量的时间变化率,ΣM表
角动量守恒的应用
角动量守恒定律在许多物理现 象中都有应用,如行星运动、 陀螺仪等。

【大学物理】§5.2 角动量定理

【大学物理】§5.2 角动量定理

棒上段、下段对轴O角动量方向相反
-l/2
O
线密度: 取质元:

m 2l
mdx 2l
dm dx
mv0 2l
质元角动量:
dm
v0
x
dL dm v0 x
xdx
3l/2
设垂直向外为正方向,总角动量:
L
3l 2 mv0 xdx 2l 0

mv0 xdx 2l -l 2


m2
ro m
m1
m 解:在地面参考系中,选取 m1 、 2 和滑轮为研究对 象,分别运用牛顿定律和刚体定轴转动定律得:
10
T1
N
a
T2
T2
o
向里+
Ny
m1
m2 g
m2
m2 g
Nx
a
m1 g
T1
列方程如下:
可求解
m1 g - T1 m1a T2 - m2 g m2 a 1 (T1 - T2 ) r mr 2 2 a r
11
第五章 角动量 角动量守恒 习题课
例.已知:两平行圆柱在水平面内转动,
m1 , R1
, 10 ;
m2 , R2
, 20
求:接触且无相对滑动时
1 ?
10
m1
2 ?
20
1 2
.o1
R1
.o2
R2
m2
o1.
o2.
12
解一:因摩擦力为内力,外力过轴 ,外力矩为零,则: J1 + J2 系统角动量守恒 ,以顺时针方向为正:

1 m1 m2 m r 2
(4)

大学物理4-2刚体的角动量 转动动能 转动惯量

大学物理4-2刚体的角动量 转动动能 转动惯量
J ri2mi r2dm
刚体绕定轴的角动量表达式:
Lz J
刚体的转动动能
2. 刚体的转动动能
刚体的转动动能应该是组成刚体的各个质点
的动能之设和刚。体中第i个质点的质量为 , mi
速度为 v,i 则该质点的动能为:
1 2
mivi2
刚体做定轴转动时,各质点的角速度相同。
设质点
mi
离轴的垂直距离为
vi ri
ri ,则它的线速度
因此整个刚体的动能
EK
12mivi2
1 2
ri2mi 2
刚体的转动动能
式中 式写为
是m刚iri体2 对转轴的转动惯量
EK
1 2
J 2
,所J以上
上式中的动能是刚体因转动而具有的动能,因 此叫刚体的转动动能。
转动惯量的计算
3. 转动惯量的计算
按转动惯量的定义: J ri2mi
刚体的质量可认为是连续分布的,所以上式可 写成积分形式
J r2dm 要求: 细棒、薄圆盘、圆环
dl 其中质元dm可表示为 dm ds
dv
r —为质元到转轴的距离
转动惯量的计算
刚体运动:
平动: 平动动能 1 mv2 线动量 mv
2
定轴转动:转动动能 1 J 2 角动量 J
2
质量是刚体平动时惯性大小的量度。 转动惯量是刚体转动时惯性大小的量度。 补:平行轴定理、垂直轴定理(适用于薄平面刚体)。
Li Ri pi Ri mivi
因 vi Ri ,所以 L的i 大小为
Li mi Rivi
方向如图所示。
z
L
Li Liz
ri
O Ri mi
刚体的角动量

大学物理3_3 角动量 角动量守恒定律

大学物理3_3 角动量 角动量守恒定律


R 、 h1 、h2 和 v1 各值代入,得
2 6.13公里/ 秒
3 – 3 角动量 角动量守恒定律 第三章 刚体的转动 例3-8 两个转动惯量分别为 J1 和 J2 的圆盘 A和 B. A 是机器上的飞轮, B 是用以改变飞轮转速的离合器 圆盘. 开始时, 他们分别以角速度ω 1 和ω 2 绕水平轴 转动. 然后,两圆盘在沿水平轴方向力的作用下.啮合 为一体, 其角速度为 ω, 求 齿轮啮合后两圆盘的角速度. 解: 系统角动量守恒
( L mR )
2

LdL m gR cosd
3 – 3 角动量 角动量守恒定律
第三章 刚体的转动
LdL m gR cosd
2 3
由题设条件积分上式

L
0
LdL m gR
2
32
3


0
cosd
12
L mR (2 g sin )
L mR
2
2g 12 ( sin ) R
3 – 3 角动量 角动量守恒定律
第三章 刚体的转动
力的时间累积效应 力矩的时间累积效应 角动量定理.

冲量、动量、动量定理. 冲量矩、角动量、
刚体定轴转动运动状态的描述 L J Ek J 2 2 0, p 0 0, p 0
质点的角动量定理和角动量守恒定律 质点运动状态的描述 p mv Ek mv 2 2
2
航天器调姿
1

3 – 3 角动量 角动量守恒定律 第三章 刚体的转动 例3-6 如图所示,有一质量为 m1 、长度为 l 的均质细 棒,原先静止地平放在水平桌面上,它可绕通过其端点O 且与桌面垂直的固定轴转动,另有一质量为 m2 的水平运动 的小滑块,从棒的侧面沿垂直于棒的方向与棒的另一端A 相碰撞,并被棒反向弹回,设碰撞时间极短。已知小滑块 碰撞前、后的速率分别为 和 u ,桌面与细棒的滑动摩 擦系数为 。求:(1)从碰撞到细棒停止运动所需的时 间;(2)从碰撞到细棒停止运动,细棒转过的圈数。

大学物理-刚体绕定轴转动的角动量

大学物理-刚体绕定轴转动的角动量

M J
p mivi
角动量
L J
角动量定理 M d(J)
dt
质点的运动规律与刚体的定轴转动规律的比较(续)
质点的运动
动量守恒 力的功 动能
Fi 0时
mivi 恒量
Aab
b
F
dr
a
Ek
1 2
mv
2
动能定理
A
1 2
mv
2 2
1 2
mv12
重力势能
Ep mgh
机械能守恒
A外 A非保内 0时
进动特性的技术应用
翻转
外力
C
外力
进动
C
炮弹飞行姿态的控制:炮弹在飞行时,空气阻力对炮弹质心 的力矩会使炮弹在空中翻转;若在炮筒内壁上刻出了螺旋线 (称之为来复线),当炮弹由于发射药的爆炸所产生的强大 推力推出炮筒时,炮弹还同时绕自己的对称轴高速旋转。由 于这种自转作用,它在飞行过程中受到的空气阻力将不能使 它翻转,而只能使它绕着质心前进的方向进动。
pA pB
pA A
Bp B
s
s
O
x
结论:静止流体中任意两等高点的压强相等,即压强差为零。 若整个流体沿水平方向加速运动? 加速运动为a,压强差为?
2. 高度相差为 h 的两点的压强差(不可压缩的流体)
选取研究对象,受力分析:(侧面?)
沿 y 方向:
p C
Y C s
pB s pC s mg may
已知:p0=1.013×105 Pa , 0 1.29kg / m3
解 由等温气压公式
p
p e(0g / p0 ) y 0
0g 1.25104 m1
p0
p1 1.0 105 e1.251043.6103 0.64 105 Pa

《大学物理》34刚体定轴转动的角动量定理角动量守恒定律.

《大学物理》34刚体定轴转动的角动量定理角动量守恒定律.
矩为零故角动量守恒。
设子弹射入后杆起摆的角速度为ω,则有:
1 m v 0 a ( ML2 ma 2 ) 3
子弹射入后一起摆动的过程只有重力做功,故系统机 械能守恒。
1 1 L 2 2 2 ( ML ma ) mga (1 cos60 ) Mg (1 cos60 ) 2 3 2
1
2.刚体的角动量定理及守恒定律
刚体所受合外力矩与角加速度关系为
d M J J dt
利用角动量表示
dJ dL M dt dt
刚体绕定轴转动时,作用于刚体的合外力矩等于刚 体绕此轴的角动量对时间的变化率。这是刚体角动 量定理的一种形式。
当合外力矩为零时
d J dL M dt dt
如果质点所受合外力矩为零,则质点的角动量保持不变, 这就是质点的角动量守恒定律。
1. 质点角动量定理及守恒定律
例:我国第一颗人造地球卫星沿椭圆轨道绕地球运动,地心为该椭圆 的一个焦点。已知地球半径 R ,卫星的近地点到地面距离 l ,卫星的远 地点到地面距离 l 。若卫星在近地点速率为 v1 ,求它在远地点速率 v2 。
3.4刚体定轴转动的角动量定理 角动量守恒定律
一、冲量矩 角动量 1.冲量矩
定义:力矩与力矩作用时间的乘积称为冲量矩。
数学表达:
M dt
0
t
2.角动量
整个刚体的角动量就是刚体上每一个质元的角动 量——即每个质元的动量对转轴之矩的和。
2.1质点的角动量
o
r
v
o
L
m

L
r
m
J 恒量
如果物体所受合外力矩为零,或不受外力矩的作用, 物体的角动量保持不变,这就是角动量守恒定律。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

③在直角坐标系中,角动量在各坐标轴的分量为:
i jk
r L
rr
pr
x
y
z
px py pz
Lx ( ypz zpy ) Ly (zpx xpz ) Lz ( xpy ypx ) ④角动量的单位为: kg ∙ m2/s
二、质点系对固定点的角动量
质点系的角动量是各个质点对同一固定参 照点的角动量的矢量和。
r M
r dL
dt
对此式分离变量积分
tr
rr
t0 Mdt L L0
比较
r F
r dp
dt
—角动量定理的微分形式
—角动量定理的积分形式
t
r Fdt
pr
pr 0
t0
与动量定理在形式、结构上一致。
在应用角动量定理时,一定要注意等式两边的 力矩和角动量必须都是对同一固定点。
四、力矩
r M
rr
r F
m r o r0
其力矩为零。
则小球对o 点的角动量守恒。
初态 末态 角动量守恒 所以 或
mv0r0 mr020
mvr mr2
mr 2 mr020
8.0
7.83km/s
行星对椭圆轨道的另一焦点角动量是否守恒?
例题 :
用绳系一小球使它在光滑的水平面上做匀速
率圆周运动,其半径为 r0 ,角速度为ω0 。 现通过圆心处的小孔缓慢地往下拉绳使半径
逐渐减小。(1)求当半径缩为 r 时的角速度。
(2)这一过程中绳子对木块的拉力所做的功vr 。
解:以小孔 o 为原点 绳对小球的拉力为有心力,
掠面速度都相等,都相应存在一个守恒量,这就是 角动量。因此我们引入角动量的概念。
我们已经看到,角动量概念与线动量类似, 但它是描述质点绕某一固定参照点的转动状态的物 理量。
也有时称其为动量矩。
定义: 角动量
r L
rr
mvr
(矢量)
r L 的大小为 :r
L rmv sin
θ为 rr和 m的vr 夹角,
教学基本要求
一 理解质点对固定点的角动量、力 矩的概念。
二 理解角动量守恒定律及适应条件, 并能用该定律分析计算有关的问题。
5.1 质点的角动量定理
一、质点的角动量(Angular momentum of particl )
在自然界中经常会遇到质点围绕着一定的中心 运转的情况。例如,行星绕太阳的公转,人造卫星 绕地球转动,电子绕原子核转动以及刚体的转动等 等。
夹角: π
对C点的合外力矩不为零,角动量不守恒。
例题 一颗地球卫星,近地点181km,速率 8.0km/s,远地点327km,求该点的卫星速率。
解: 角动量守恒
r

近地点 远地点
r
vr1 v2
r
rr1 r2
r v1
r1
o
vr2 rr2
则 mv2r2 mv1r1
v2
r1 r2
v1
6370 181 6370 327
r
M rF sin
其中θ为
rr和ห้องสมุดไป่ตู้
r F的夹角
M rF sin
rF
M Fr sin
rF
力对某一固定点
的力矩的大小等于此
力和力臂的乘积。
r
r M
0 rr
r F
r
rr
F
F
讨论
关于力矩
①力矩的单位为: N∙m ②在直角坐标系中,力矩在各坐标轴的分量为:
r M
rr
r F
i x
jk yz
Fx Fy Fz
此时动量
pr mvr
因速度的方向一直在改变而不守恒,
但质点的位矢与动量的矢量积 rr mvr 是一个常矢量
它的大小为 mvr , 方向始终垂直于纸面向外。 rr mvr 就是质点的角动量,
因此角动量保持守恒。 显然,位矢 rr 的掠面速度vr / 2在圆周上各点相等。
但在两种情况下,相对于某点 O的位矢的
M
x
yFz
zFy
M y zFx xFz
M
z
xFy
yFx
上式也称为力对轴的力矩。
③有心力对力心的力矩为零。
始终指向某一固定点的力叫有心力,该固定点为力心。
五、角动量守恒定律
law of conservetion of Angular momentum
由:
r M
r dL
r 若 M 0
dt
则有:
在这些问题中,动量定理及其守恒定律未必适 用,这时若采用角动量概念讨论问题就比较方便。
角动量与动量一样,是一个重要概念。
引例 ①对于作匀速直线运动的质点,既可以用动量也
可用角动量的概念进行描述。
设质点沿 AB 作匀速直线运 动,在相等的时间间隔Δt 内,走 过的距离 ΔS = vΔt 都相等。
处引位选矢择Orr 为。原rr 点在,单从位O时到间质内点扫 过的面积,称为掠面速度。
由于各三角形具有公共高线 OH ,
因此掠面速度相等:
dS
1 vt OH 2
1 vr sin
1 r 2
常量
dt
t
2
2
式中
v sin
r
ω 相当于质点绕O点转动的角速度。
由上式可得: mvr sin 常量
写成矢量式: rr pr rr mvr 常量
②再来看有心力场的简单情形。
质点在向心力的作用下作匀速圆周运动
r L 常矢量
若质点或质点系所受外力对某固定参照点的矩 的矢量和为零,则质点对该固定点的角动量守恒。
—角动量守恒定律
例如:质点在有心力作用下角动量守恒。
例 题 : 质 量 为m的 圆 锥 摆 摆 球 , 以 速 率υ运 动 时 , 对O参 考 点 的 角 动 量 是 否 守恒 ? 对C参 考 点 的 角动量是否守恒?
l c
T
m R o υ
mg
解:摆球受力如图
1 以O为
重力矩 M
参考点
R
mg
M Rmg 逆时针
张力矩
M RT
M RT sin 900 θ RT cosθ Rmg 顺时针
对O点的合力矩为零,角动量守恒。
2 以C为参考点
重力矩:
M l mg
张力矩
M lmgsinθ M l T 0
rr
L Li i
三、角动量定理
类比质点的动量定理
dpr
d
mvr
m dvr
r F
dt dt
dt
考查质点角动量
r L
rr
mvr
的变化率:
r dL
d(rr
mvr)
rr
d (mvr )
drr
mvr
dt dt
dt dt
rr
r F
vr
mvr
rr
r F

rr
r F
r M
─力矩
于是有
r M
r dL
dt
可见: 引起转动状态改变的原 因是由于力矩的作用
r L
的方向为
rr

mvr的右旋。
r L
0
rr
mvr
讨论
关于角动量
①角动量与位矢有关,
谈到角动量时必须指明是对哪一参照点而言。
②当质点作圆周运动时,θ= π / 2
角动量大小为:
L mvr mr2
当质点作一般平面运动时, 角动量为:
i
r L
rr
pr
x
jk
r
y 0 ( xpy ypx )k
px py 0
相关文档
最新文档