盈亏问题计算公式+例题分析(打印版)

合集下载

盈亏问题解题思路详解(附盈亏问题公式)

盈亏问题解题思路详解(附盈亏问题公式)

盈亏问题解题思路详解(附盈亏问题公式)解题思路:盈亏问题的解法要点是先求两次分配中分配者每份所得物品数量的差,再求两次分配中的总差额,用前一个差去除后一个差,就得到分配者的人数,进而再求得物品数。

解题规律:总差额÷每人差额=人数。

一般解法:(盈数+亏数)÷两次每份分配之差=份数、(大盈-小盈)÷两次分配之差=份数、(大亏--小亏)÷两次分配之差=份数,再求总数量。

每次分的数量*份数+盈=总数量或。

每次分的数量*份数-亏=总数量。

物品数可由其中一种分法的份数和盈亏数求出。

其它(高级):盈亏临界点——交易所股票交易量的基数点,超过这一点就会实现盈利,反之则亏损。

盈亏临界点计算的基本模型设以P代表利润,V代表销量,SP代表单价、VC代表单位变动成本,FC代表固定成本,BE代表盈亏临界点,根据利润计算公式可求得盈亏临界点的基本模型为:盈亏临界点的计算,可以采用实物和金额两种计算形式:1.按实物单位计算:其中,单位产设某产品单位售价为10元,单位变动成本为6元,相关固定成本为8000元,则盈亏临界点的销售量(实物单位)=8000÷(10-6)=2000(件)。

品贡献毛益=单位产品销售收入-单位变动成本2.按金额综合计算:盈亏临界点的销售量(用金额表现)=固定成本÷贡献毛益率其中,贡献毛益率=贡献毛益/销售收入附盈亏问题公式:(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差/大分-小分)=人数。

(2)两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差/大分-小分)=人数。

(3)两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差/大分-小分)=人数。

(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差/大分-小分)=人数。

(5)一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每人分配数的差/大分-小分)=人数。

盈亏问题公式及例题

盈亏问题公式及例题

盈亏问题公式及例题
盈亏问题是指在经营或交易过程中,根据成本和收入的差额判断是否盈利或亏损的问题。

以下是盈亏问题的公式和例题:
1. 盈利公式:盈利 = 收入 - 成本
例题:某商店有一件商品的成本为100元,售价为150元,
计算该商品的盈利金额。

解答:盈利 = 收入 - 成本 = 150元 - 100元 = 50元。

该商品
的盈利金额为50元。

2. 盈利率公式:盈利率 = (盈利金额 / 成本) * 100%
例题:某公司某产品的成本为80元,售价为100元,求该
产品的盈利率。

解答:盈利金额 = 收入 - 成本 = 100元 - 80元 = 20元。

盈利
率 = (20元 / 80元) * 100% = 25%。

该产品的盈利率为25%。

3. 亏损公式:亏损 = 成本 - 收入
例题:某人以120元的价格购买了一件商品,但在出售时只
能以100元的价格出售,计算该人的亏损金额。

解答:亏损 = 成本 - 收入 = 120元 - 100元 = 20元。

该人的
亏损金额为20元。

4. 亏损率公式:亏损率 = (亏损金额 / 成本) * 100%
例题:某商店某商品的成本为200元,售价为150元,计算
该商品的亏损率。

解答:亏损金额 = 成本 - 收入 = 200元 - 150元 = 50元。


损率 = (50元 /200元) * 100% = 25%。

该商品的亏损率为25%。

这些例题只是盈亏问题的常见形式,实际应用中可能会涉及更复杂的情况,但是根据以上公式可以解决大部分盈亏问题。

小学数学盈亏问题公式及例题讲解

小学数学盈亏问题公式及例题讲解

小学数学盈亏问题公式及例题讲解数学表达上准确简洁、逻辑上抽象普适、形式上灵活多变,是宇宙交际的理想工具.下面是为大家收集的数学盈亏问题公式及例题讲解,供大家参考。

盈亏问题公式(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差)=人数。

例如,“小朋友分桃子,每人10个少9个,每人8个多7个。

问:有多少个小朋友和多少个桃子?”解(7+9)÷(10-8)=16÷2=8(个)………………人数10×8-9=80-9=71(个)………………………桃子或8×8+7=64+7=71(个)(答略)(2)两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差)=人数。

例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。

问:有士兵多少人?有子弹多少发?”解(680-200)÷(50-45)=480÷5=96(人)45×96+680=5000(发)或50×96+200=5000(发)(答略)(3)两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差)=人数。

例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。

有多少学生和多少本本子?”解(90-8)÷(10-8)=82÷2=41(人)10×41-90=320(本)(答略)(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差)=人数。

(例略)观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。

随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。

我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。

盈亏问题的经典例题

盈亏问题的经典例题

盈亏问题经典例题一、基础盈亏问题1. 幼儿园老师给小朋友分糖果,每人分5 颗,则多10 颗;每人分7 颗,则少8 颗。

问有多少个小朋友?多少颗糖果?-解析:根据盈亏问题公式,(盈+亏)÷两次分配之差=份数。

这里小朋友的人数为(10 + 8)÷(7 - 5)=9(个)。

糖果数为9×5 + 10 = 55(颗)。

2. 把一些书分给学生,如果每人分3 本,则余8 本;如果每人分5 本,则缺2 本。

问有多少学生?多少本书?-解析:(8 + 2)÷(5 - 3)=5(个)学生,书有5×3 + 8 = 23(本)。

3. 学校分配宿舍,每个房间住3 人,则多出20 人;每个房间住5 人,恰好住满。

问有多少间宿舍?有多少人?-解析:20÷(5 - 3)=10(间)宿舍,人数为10×5 = 50(人)。

二、复杂盈亏问题1. 少先队员去植树,如果每人挖5 个树坑,还有3 个树坑没人挖;如果其中两人各挖4 个树坑,其余每人挖 6 个树坑,就恰好挖完所有的树坑。

问共有多少少先队员?一共要挖多少个树坑?-解析:设少先队员有x 人。

5x + 3 = 2×4 + (x - 2)×6,解得x = 7。

树坑数为5×7 + 3 = 38(个)。

2. 用绳子测量井深,把绳子三折来量,井外余2 米;把绳子四折来量,还差1 米到井口。

求井深和绳长。

-解析:设井深为x 米。

3(x + 2) = 4(x - 1),解得x = 10。

绳长为3×(10 +3. 一些苹果分给若干人,每人5 个余10 个苹果;如果人数增加到3 倍还少5 人,那么每人分 2 个苹果还缺8 个。

问有多少苹果?多少人?-解析:设原来有x 人。

5x + 10 = (3x - 5)×2 - 8,解得x = 28。

苹果数为5×28 + 10 = 150(个)。

盈亏问题应用题大全及讲解

盈亏问题应用题大全及讲解

盈亏问题应用题大全及讲解
盈亏问题是中考数学里面比较重要的一个知识点,能够考察学生们准确高效地使用运算符和操作,加强学生的逻辑思维能力和解决实际问题的能力。

盈亏问题主要有两种形式:完全盈亏和部分盈亏。

完全盈亏指物品的总量、单价和总价三者之间的关系;而部分盈亏指物品的只知其中的部分,需要用逻辑思维找出其余部分的方法。

应用题大全及讲解:
1、完全盈亏题:(1)某糖果店一次性购入10kg糖果,每kg售价3元,则共花费多少钱?
答案:花费30元,计算公式:10kg * 3元/kg = 30元。

(2)小王以125元买了书籍12本,每本书的单价为20元,则小王有多少元剩余?
答案:小王剩余5元,计算公式:125元 - 12 * 20元 = 5元。

2、部分盈亏题:(1)一公斤橘子,售价5元,3斤4两半就售出50元,求单价?
答案:单价3.3元,计算公式:50÷(3斤4两半)= 3.3元/1斤;或将3斤4两半换算成1斤,即6斤8两,50÷6.8=7.35元/1斤,而一斤橘子售价5元,因此7.35-5=3.35元,即3.3元。

(2)A、B两人所买的图书合计共3斤4两,A买了2斤,比B多买了1斤,若A的价钱与B的价钱相等,每斤的单价是多少?
答案:每斤的单价为17.5元,计算公式:A和B共3斤4两,即6斤8两,若A的价钱与B的价钱相等,则A和B所买的书籍总价应相同,即A和B的价格总和为17.5×6.8=119元,即A和B每斤各
119/6.8=17.5元。

以上就是盈亏问题涉及到的知识点和应用题讲解,要想在数学考试中取得好成绩,需要学生把相关知识点和题型熟练掌握,勤加练习,熟练掌握解题技巧和方法。

小学数学盈亏问题公式及例题讲解

小学数学盈亏问题公式及例题讲解

小学数学盈亏问题公式及例题讲解数学表达上准确、上抽象普适、形式上灵活多,是宇宙交的理想工具.下面是大家收集的数学盈公式及例解,供大家参考。

盈公式一次有余(盈),一次不(),可用公式:(盈+ )÷(两次每人分配数的差)=人数。

例如,“小朋友分桃子,每人10个少9个,每人8个多7个。

:有多少个小朋友和多少个桃子?〞解(7+9)÷(10-8)=16÷2=8(个)⋯⋯⋯⋯⋯⋯人数10×8-9=80-9=71(个)⋯⋯⋯⋯⋯⋯⋯⋯⋯桃子8×8+7=64+7=71(个)(答略)(2)两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差)=人数。

例如,“士兵背子作行,每人背45,多680 ;假设每人背50,多200。

:有士兵多少人 ?有子多少?〞(680-200)÷(50-45)=480÷5=96(人)45×96+680=5000()第1 页50×96+200=5000(发)(答略)两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差)=人数。

例如,“将一批本子发给学生,每人发10本,差90本;假设每人发8本,那么仍差8本。

有多少学生和多少本本子?〞(90-8)÷(10-8)=82÷2=41(人)10×41-90=320(本)(答略)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差 )=人数。

(例略)一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每人分配数的差)=人数。

以上是查字典数学网为大家准备的数学盈亏问题公式及例题讲解,希望对大家有所帮助。

第2 页。

小学数学盈亏问题公式大全

小学数学盈亏问题公式大全

小学数学盈亏问题公式大全
盈亏问题公式大全
(1)一次有余 (盈),一次不够 (亏),可用公式:
(盈+亏)(两次每人分派数的差 )=人数。

比如,小朋友分桃子,每人10个少 9个,每人 8个多 7个。

问:有多少个小朋友和多少个桃子?
解 (7+9)(10-8)=162
=8(个)人数
108-9=80-9=71(个)桃子
或 88+7=64+7=71(个)(答略 )
(2)两次都有余 (盈),可用公式:
小学数学盈亏问题公式大全:(大盈 -小盈 )(两次每人分派数的差 )=人数。

比如,士兵背子弹作行军训练,每人背 45 发,多 680 发;若每人背 50 发,则还多 200 发。

问:有士兵多少人 ?有子弹多少发 ?
解 (680-200)(50-45)=4805
=96(人 )
4596+680=5000(发)
或 5096+200=5000(发)(答略 )
(3)两次都不够 (亏),可用公式:
(大亏 -小亏 )(两次每人分派数的差 )=人数。

比如,将一批簿本发给学生,每人发10 本,差 90 本;若每人发 8 本,则仍差 8 本。

有多少学生和多少本簿本 ?
解 (90-8)(10-8)=822
=41(人 )
1041-90=320(本)(答略 )
(4)一次不够 (亏),另一次恰好分完,可用公式:
亏 (两次每人分派数的差 )=人数。

(例略 )
(5)一次有余 (盈),另一次恰好分完,可用公式:
盈 (两次每人分派数的差 )=人数。

(例略 )。

行测数量盈亏和牛吃草问题-非常好的思路和解析-附练习题

行测数量盈亏和牛吃草问题-非常好的思路和解析-附练习题

【盈亏问题公式】(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差)=人数。

(2)两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差)=人数。

(3)两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差)=人数。

(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差)=人数。

(5)一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每人分配数的差)=人数。

例1:一个植树小组去栽树,如果每人栽3棵,还剩下15棵树苗;如果每人栽5棵,就缺少9棵树苗。

求这个小组有多少人?一共有多少棵树苗?分析:已知如果每人栽3棵,还剩下15棵树苗,也就是说还有15棵树苗没有栽上,树苗余下了;又知如果每人栽5棵,就缺少9棵树苗,这就是说,树苗不够了。

按照第一种方案去栽,树苗余下了,若按照第二种方案去栽,树苗不足了。

一个是余下一个是不足,这两个方案之间相差多少棵呢?相差(15+9=)24棵,也就是说,如果按照第二种方案去栽的话,可以比第一种方案多栽24棵树。

为什么能多栽24棵树呢?因为每个人多栽(5-3=)2棵。

由于每一个人多栽2棵树,一共多栽24棵树,即“2棵树”对应于“1个人”。

这样,小组的人数可以求得。

随之,树苗的棵数也可以求得。

计算:(1)小组的人数:(15+9)÷(5-3)=24÷2=12(人)(2)树苗的棵数:3×12+15=51(棵)答:这个小组有12人,一共有51棵树苗。

在解题时,常常要找两个“差”。

一个是总棵数之差,即第一种方案同第二种方案所栽树苗的总差数;另一个是单量之差,即每个人所栽树苗的差。

有了这两个差即可求出结果。

因此,这种解题的思路也可以称作“根据两个差求未知数”。

例2:悦悦每天早晨7点30分从家出发上学去,如果每分钟走45米,则迟到4分钟到校;如果每分钟走75米,则可以提前4分钟到校。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学运算:盈亏问题计算公式把若干物体平均分给一定数量得对象,并不就是每次都能正好分完。

如果物体还有剩余,就叫盈;如果物体不够分,就叫亏。

凡就是研究盈与亏这一类算法得应用题就叫盈亏问题。

盈亏问题得常见题型为给出某物体得两种分配标准与结果,来求物体数量与参与分配得对象数量。

由于每次分配都可能出现刚好分完、多余或不足这三种情况,那么就会有多种结果得组合,这里以一道典型得盈亏问题对三种情况得几种组合加以说明。

注意:公司中两次每人分配数得差也就就是大分减小分一、基础盈亏问题1、一盈一亏(不够)【一次有余(盈),一次不够(亏)】可用公式:(盈+亏)÷(两次每人分配数得差)=人数。

例如,“小朋友分桃子,每人10个少9个,每人8个多7个。

问:有多少个小朋友与多少个桃子?”解:(7+9)÷(10-8)=16÷2=8(个)………………人数10×8-9=80-9=71(个)………………………桃子或8×8+7=64+7=71(个)(答略)测试:如果每人分9 个苹果,就剩下10 个苹果;如果每人分12 个苹果,就少20 个苹果。

2、两次皆盈(余),可用公式:(大盈-小盈)÷(两次每人分配数得差)=人数。

例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。

问:有士兵多少人?有子弹多少发?”解:(680-200)÷(50-45)=480÷5=96(人)45×96+680=5000(发)或50×96+200=5000(发)(答略)测试:如果每人分8 个苹果,就剩下20 个苹果;如果每人分7 个苹果,就剩下30 个苹果。

3、两次皆亏(不够),可用公式:(大亏-小亏)÷(两次每人分配数得差)=人数。

例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。

有多少学生与多少本本子?”解:(90-8)÷(10-8)=82÷2=41(人)10×41-90=320(本)(答略)测试:如果每人分11 个苹果,就少10 个苹果;如果每人分13 个苹果,就少30 个苹果。

4、一盈一尽(刚好分完),可用公式:盈÷(两次每人分配数得差)=人数。

测试:如果每人分6 个苹果,就剩下40 个苹果;如果每人分10 个苹果,就刚好分完。

5、一亏一尽(刚好分完),可用公式:亏÷(两次每人分配数得差)=人数。

测试:如果每人分14 个苹果,就少40 个苹果;如果每人分10 个苹果,就刚好分完。

由上面得问题,我们归纳出盈亏问题得公式:【提示】解决这类问题得关键就是要抓住两次分配时盈亏总量得变化,经过比对后,再来进行计算。

【例题1】某班去划船,如果每只船坐4 人,就会少3 只船;如果每只船坐6 人,还有2 人留在岸边。

问有多少个同学? ()A、30B、31C、32D、33解析:此题答案为C。

设小船有x 只,根据人数不变列方程:4(x+3)=6x+2,解得x=5。

所以有同学6×5+2=32 人。

盈亏问题例题讲解:1、老师拿来一批树苗,分给一些同学去栽,每人每次分给一棵,一轮一轮往下分,当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。

问参加栽树得有多少名同学?原有树苗多少棵?【分析】:当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。

通过这一句话,我们可以知道参加种树得同学一共有12+8=20人,加上再拿来得8棵,一共有20*10=200棵。

所以,原有树苗=200-8=192棵。

解答:有同学12+8=20名,原有树苗20*10-8=192棵。

2、少先队员去植树,如果每人挖5个树坑,还有3个树坑没人挖;如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有得树坑。

请问,共有多少名少先队员?共挖了多少树坑?【分析】:这就是一个典型得盈亏问题,关键在于要将第二句话“如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有得树坑”统一一下。

即:应该统一成每人挖6个树坑,形成统一得标准。

那么它就相当于每人挖6个树坑,就要差(6-4)*2=4个树坑。

这样,盈亏总数就就是3+4=7,所以,有少先队员7/(6-5)=7名,共挖了5*7+3=38个坑。

解答:盈亏总数等于3+(6-4)*2=7,少先队员有7/(6-5)=7名,共挖了5*7+3=38个树坑。

3、学校安排学生到会议室听报告。

如果每3人坐一条长椅,那么剩下48人没有坐;若每5人坐一条长椅,则刚好空出两条长椅。

问听报告得学生有多少人?【分析】:典型盈亏问题。

盈亏总数48+5*2=58,所以,长椅得数量就等于58/(5-3)=29条。

那么,听报告得人数等于29*3+48=135人。

解答:长椅有(48+5*2)/(5-3)=29条,听报告得学生有29*3+48=135人。

4、钢笔与圆珠笔每支相差1元2角,小明带得钱买5支钢笔差1元5角,买8支圆珠笔多6角。

问小明带了多少钱?【分析】:在盈亏问题中,我们得到得计算公式就是指同一对象得。

而现在分别就是圆珠笔与钢笔两种东西。

因此,我们要利用盈亏问题得公式计算就必须将它转化成为同一对象--钢笔或者圆珠笔。

小明带得钱买5支钢笔差1元5角,我们可以将它转化成买5支圆珠笔,因为我们知道钢笔与圆珠笔每支相差1元2角,把买5支钢笔改买5支圆珠笔,就要省下6元钱,也就就是比原来差1元5角,反而可以多出6元-1元5角=4元5角。

这样我们就将原来得问题转化成了:小明带得钱买5支圆珠笔多4元5角,买8支圆珠笔多6角。

问小明带了多少钱?那么,盈亏总数=4元5角-6角=3元9角,每支圆珠笔价钱=3元9角/(8-5)=1元3角。

所以,小明共有8*1元3角+6角=11元。

解答:买5支钢笔差1元5角,相当于买5支圆珠笔多4元5角,每支圆珠笔得价钱=(4元5角-6角)/8-5)=1元3角。

小明带了8*1元3角+6角=11元。

5、幼儿园将一筐苹果分给小朋友。

如果分给大班得小朋友每人5个则余10个;如果分给小班得小朋友每人8个则缺2个。

已知大班比小班多3个小朋友,问这筐苹果共有多少个?【分析】:与上一题类似,需要转化成两次对同一对象。

解答:分给大班得小朋友每人5个则余10个,大班比小班多3个小朋友,相当于分给小班得小朋友每人5个则余10+3*5=25个,盈亏总数=25+2=27,小班人数=27/(8-5)=9人,苹果有9*5+25=70个。

6、某校到了一批新生,如果每个寝室安排8个人,要用33个寝室;如果每个寝室少安排2个人,寝室就要增加10个,问这批学生可能有多少人?【分析】:如果每个寝室安排8个人,要用33个寝室,那么人数肯定多于32*8=256人,但不超过33*8=264人;如果每个寝室少安排2个人,寝室就要增加10个,即如果每个寝室安排6个人,要用43个寝室,那么人数肯定多于42*6=252人,但不超过43*6=258人;两次比较,人数应该多于256人,不超过258人。

所以,这批学生可能有257或258人。

解答:8*32=256,6*42=252,256>252,人数超过256人;8*33=264,6*43=258,258<264,人数不超过258人。

这批学生可能有257或258人。

7、幼儿园老师给小朋友分糖果。

若每人分8块,还剩10块;若每人分9块,最后一人分不到9块,但至少可分到一块。

那么糖果最多有多少块?【分析】:最后一人分不到9块,那么最多可以分到8块,即若每人分9块,还差1块。

根据盈亏计算公式,人数有(1+10)/(9-8)=11人,糖果最多有9*11-1=98块;最后一人分不到9块,但至少可分到一块,即最少就是最后一人差8块,根据盈亏计算公式,人数有(8+10)/(9-8)=18人,糖果最多有9*18-8=154块;所以,这批糖果最多有154块。

解答:9-1=8,人数最多有(10+8)/(9-8)=18人,糖果最多18*9-8=154快。

8、有48本书分给两组小朋友,已知第二组比第一组多5人。

如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够。

如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够。

问第二组有多少人?【分析】:如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够。

说明第一组人数少于48/4=12人,多于48/5=9、、、、、、3,即9人;如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够。

说明第二组人数少于48/3=16人,多于48/4=12人;因为已知第二组比第一组多5人,所以,第一组只能就是10人,第二组15人。

解答:48/4=12,48/5=9、、、、、、5,48/3=16,第一组少于12人,多于9人;第二组少于16人,多于12人。

因为已知第二组比第一组多5人,所以,第二组有15人。

9、在若干盒卡片,每盒中卡片数一样多。

把这些卡片分给一些小朋友,如果只分一盒,每人均至少可得7张,但若都分8张则还缺少5张。

现在把所有卡片都分完,每人都分到60张,而且还多出4张。

问共有小朋友多少人?【分析】:60/7=8、、、、、、4,60/8=7、、、、、、4,说明卡片得盒数就是8盒,“若都分8张则还缺少5张”,即如果我们在每盒中加5张(8盒共加40张),每人就可以得到8*8=64张,现在实际每人得到60张,即每人需要退出4张,其中要有4张就是每人60张后多下来得,还有40张就是我们一开始借来得要还出去,即要退出44张,4/4==11,说明有11人。

解答:60/7=8、、、、、、4,60/8=7、、、、、、4,卡片有8盒,小朋友人数有(4+5*8)/4=11人。

10、用绳测井深,把绳三折,井外余2米,把绳四折,还差1米不到井口,那么井深多少米?绳长多少米?【分析】:典型盈亏问题。

盈亏总数=3*2+4*1=10米。

解答:井深=(3*2+4*1)/(4-3)=10米,绳长=(10+2)*3=36米。

11、有两根同样长得绳子,第一根平均剪成5段,第二根平均剪成7段,第一根剪成得每段比第二根剪成得每段长2米。

原来每根绳子长多少米?【分析】:第一根剪成得每段比第二根剪成得每段长2米。

那么,如果同样就是5段得话,第二种就要比第一种少5*2=10米,现在第二种7段与第一种5段一样长,说明第二种得两段长就是10米,也就就是说每一段为10/2=5米。

所以,绳子长为5*7=35米。

解答:原来每根绳子长为7*(2*5/2)=35米。

12、有一个班得同学去划船。

她们算了一下,如果增加1条船,正好每条船坐6人;如果减少1条船,正好每条船坐9个人。

相关文档
最新文档