高等数学:第十二章函数无穷级数(高等教育出版社)
Calculus第Ⅱ册教学设计

Calculus第Ⅱ册教学设计一、教学目标本课程旨在让学生掌握以下内容: - 了解无限级数和纯数列的概念 - 掌握级数的判敛方法 - 学会比较判别法,极限比较法和积分比较法 - 掌握收敛性的一些基本性质 - 学会对常见函数进行幂级数展开二、教学内容本课程将分为以下几个部分:1. 第十二章无限级数和纯数列•无限级数和级数的收敛性•纯数列及其极限•无穷级数的加法、乘法和绝对收敛2. 第十三章级数的判敛方法•柯西收敛准则•比较判别法•极限比较法•积分比较法•对数级数和p级数的探讨3. 第十四章收敛性的性质和应用•收敛级数的性质•正项级数的判敛法•绝对收敛级数的判敛法•反常级数及其收敛性•常数项级数和交错级数的探讨4. 第十五章幂级数•幂级数及其收敛区间•幂级数的求和及其应用•常见函数的幂级数展开•泰勒公式及其应用三、教学方法本课程采用以下教学方法: - 讲授基本概念和理论 - 通过习题演示和解析加深学生的理解 - 展示和讲解具体的例题 - 组织学生参与课堂互动 - 培养学生的独立思考能力和解决问题的能力四、教学重点和难点•第十二章和第十三章的基本理论和方法,如极限比较法和柯西收敛准则的掌握•第十五章的幂级数及其应用五、教学评估•日常考核:每周布置习题,通过小测验进行检验•期中考试:针对本学期课程进行考核•期末考试:对整个学期的课程进行考核,包括分析和计算题六、教学参考书•《高等数学》(第七版),同济大学数学系编著,高等教育出版社•《微积分学教程》(第二版),汤家凤、马国明编著,高等教育出版社以上为本课程的教学设计。
希望通过这门课程,学生们能够深入理解学习微积分的重要性,并在此基础上开展更多有意义的研究,为社会做出更多有益的贡献。
高等数学无穷级数

一、问题的提出
1. 计算圆的面积
R
正六边形的面积
a1
正十二边形的面积
a1 a2
正 3 形的2面n积
a1 a2 an
即 A a1 a2 an
2.
1 3
3 10
3 100
3 1000
3 10n
二、级数的概念
1. 级数的定义:
一般项
un u1 u2 u3 un
n1
(常数项)无穷级数
无穷级数
从18世纪以来,无穷级数就被认为是微积分的一个不可缺少的部分,是高等数学的重要内容,同时也 是有力的数学工具,在表示函数、研究函数性质等方面有巨大作用,在自然科学和工程技术领域有着广泛的 应用
本章主要内容包括常数项级数和两类重要的函数项级数——幂级数和三角级数,主要围绕三个问题展 开讨论:①级数的收敛性判定问题,②把已知函数表示成级数问题,③级数求和问题。
根据级数收敛的必要条件,
1
开式的成立范围——即连续区间,也即只要去
3; 4
但在一般项趋于 0 的级数中为什么有的收敛有的却发散,
F由ouf(rxie) r单级调数减少知第一次分叉:
开式的成立范围——即连续区间,也即只要去
上满足Dirichlet 条件
②根据公式计算Fourier系数
4 Fourier系数,利用函数的奇偶性可简化Fourier系数计算,
例 1 讨论等比级数(几何级数)
aq n a aq aq2 aqn (a 0)
n0
的收敛性.
解 如果q 1时
sn a aq aq2 aqn1
a aq n a aqn ,
1 q
1q 1q
当q 1时,
lim qn 0
课程标准

《高等数学》课程标准《高等数学》课程是本科非数学类各理科专业的重要专业基础课,在大学教育及高素质人才的培养过程中占有十分重要的地位。
随着时代的发展、科学的进步、经济的腾飞,数学科学已与自然科学、社会科学并列为三大基础科学,数学地位的巨大变化必将影响到高等数学课程在整个高等教育中的地位与作用。
同时,《高等数学》课程还担负着培养学生严谨的思维、求实的作风、创新的意识等任务。
因此,《高等数学》不仅要向学生传授数学知识,更要注重培养学生的数学修养。
但是,不同学科和专业对高等数学知识的需求不同,同时,为了满足我校学生将来考研的需要,根据专业需求的特点和考研《数学一》至《数学三》的要求,将《高等数学》课程划分为如下三个层次。
《高等数学I》(第一层次)一、课程说明:《高等数学I》由微积分、线性代数和概率论与数理统计三部分构成,本课程是物理教育专业和计算机等专业的一门必修的基础课程,也可供将来考研时需要考《数学一》的其它专业同学选修。
课程总学时为276学时,分四个学期行课,其中,第一学期78学时,4学分,第二学期90学时,5学分,第三学期54个学时,3学分,第四学期54个学时,3学分,共15学分。
1.参考专业:物理教育和计算机等专业。
2.课程类别:专业基础课3.参考教材与参考书目教材:1 《高等数学》第六版,同济大学高等数学教研室编,高等教育出版社,2007年。
2 居余马等编著,线性代数(第2版),北京,清华大学出版社,2002年9月第2版3 盛骤等,概率论与数理统计(第二版),北京:高等教育出版社,1989。
参考书目:1 四川大学数学系高等数学教研室编,高等数学(第一、二、三、四册),北京,高等教育出版社,1997。
2 同济大学应用数学系编,线性代数(第4版)北京,高等教育出版社,2003年7月。
3 高世泽,概率统计引论,重庆:重庆大学出版社,2000年。
4.课程教学方法与手段以教师讲授为主,学生自学为辅的教学方式进行教学,课堂上的教学以启发式的方式进行讲授,学生作适当的课内练习。
高等数学 第十二章 级数

12)1()(x f 0x x =)(00x f a =!)(0)(k x f a k k =ππππ11()cos d (0,1,2,),()sin d (1,2,)ππn n a f x nx x n b f x nx x n --====⎰⎰. 34求收敛半径定理,幂级数展开定理,1 为了叙述方便,称前者为有限加而无穷个数相加只是我们不可能用有限加法的方法来完成另外,有限加法中的结合律和交换律在我们在研究无限累加时,是以有限加法(部一般情况下,这个和的数值不易求得,教科书1 ,B .)级数的求和问题. +-+-=1111x0)11()11(=+-+-= x 1)11()11(1=-----= x x x -=+-+--=1)1111(1 ,于是12x =. 柯西指出:以上解法犯∑∞=--11)1(n n2 ∑∞=1n nu0lim ≠∞→n n u ∑∞=1n nup2 1π3sin4n nn ∞=∑ π303sin π44nnn ⎛⎫<< ⎪⎝⎭13π4nn ∞=⎛⎫ ⎪⎝⎭∑1π3sin4n nn ∞=∑ 11π3sin341π43sin 4n n n n ++=< 1π3sin4n n n ∞=∑ 3 ∑∞=1n nu0lim ≠∞→n n u 0lim =∞→n n u∑∞=1n nu∑∞=1n nu∑∞=1n nu∑∞=1n nu∑∞=1n nu0lim ≠∞→n n u3 ∑∞=---+-11)11()1(n n n n1111211)11()1(1+>-++=--+=--+--n n n n n n n n∑∑∞=∞==+01111n n nn ∑∞=---+-11)11()1(n n n n0112limlim =-++=∞→∞→n n u n n n0)2)(11()1(2)12(2)2()11(1>++--+--++-+=-+---+=-+n n n n n n n n n n n n u u n n4 ∑∞=⎪⎪⎭⎫ ⎝⎛+--21111n n n∑∑∑∞=∞=∞==-=⎪⎪⎭⎫ ⎝⎛+--22112121111n n k k n n n 11k k ∞=∑∑∞=⎪⎪⎭⎫⎝⎛+--21111n n n 4 0n n n a x ∞=∑nn n a a 1lim+∞→R ),(R R -R x ±=nn n a a 1lim +∞→0x x -5 ∑∞=⎪⎭⎫⎝⎛151n nx n111155nnnn n x x n n ∞∞==⎛⎫= ⎪⋅⎝⎭∑∑ 11511lim lim lim lim1(1)55(1)551n n n n n n n na n na n n n ++→∞→∞→∞→∞⋅====+⋅⋅+⎛⎫⋅+ ⎪⎝⎭5=R )5,5(-5=x ∑∞=11n n 5-=n ∑∞=-1)1(n n n)5,5[-6 2111(1)(21)!n n n x n -∞+=--∑2221(21)!1limlim lim 0(21)!2(21)n n n n nu n x x x u n n n +→∞→∞→∞-===⋅+++∞=R ),(+∞-∞7 11(1)(1)nn n x n∞-=--∑ 1-=x t ∑∞=--11)1(n nn nt 1111lim 1lim lim1=+=+=∞→∞→+∞→nn n a a n n n n n1=R )1,1(-1-=t ∑∑∞=∞=--=--1111)1()1(n n n n n n 1=t ∑∞=--111)1(n n n ∑∞=--11)1(n nn nt ]1,1(-]2,0( 5 )(x f )(x f 0lim ()0n n R x →∞=)(x f)1()2()3()4()5( 8 2()12xf x x x=+-x ⎪⎭⎫⎝⎛+--=+-=x x x x x x f 2111131)21)(1()(+++++=-n x x x x2111)11(<<-x+-++-+-=+n n x x x x x )2(842121132⎪⎭⎫ ⎝⎛<<-2121x∑∞=-+=)2)1(1()(n n n nx x f ⎪⎭⎫ ⎝⎛<<-2121xn n 9 x x f ln )(=2-x2()ln[2(2)]ln 2ln 12x f x x -⎛⎫=+-=++⎪⎝⎭22-=x t )1ln(221ln t x +=⎪⎭⎫ ⎝⎛-++-++-+-=-nn t nt t t t 1432)1(432t <-1(1) 2312322(2)(2)(1)(2)ln 12222322n nnx x x x x n -------⎛⎫+=-++++ ⎪⋅⋅⋅⎝⎭ x <0(≤)4+⋅--++-+---+=-n nn n x x x x x 2)2()1(2)2(312)2(21222ln ln 13322x <0(≤)4 10 ∑∞=+++12)2)(1(n n n n x1)3)(2()2)(1(lim=++++=∞→n n n n R n 1±=x ]1,1[-.∑∞=+++=12)2)(1()(n n n n x x S∑∞=++='111)(n n n x x S ∑∞==''1)(n nx x S∑∞=-=11n n x x x xxx S -=''1)()11(<<-x ⎰⎰---=-=''='-'x xx x x xxx x S S x S 00)1ln(d 1d )()0()()11(<<-x 0)0(='S )1ln()(x x x S ---=')11(<<-x⎰⎰---='=-x xx x x x x S S x S 0d )]1ln([d )()0()(⎰--+---=x x xx x x x 02d 1)1ln(2 )1ln()1(22x x x x --+-= )11(<<-x 0)0(='S)1ln()1(2)(2x x x x x S --+-= )11(<<-x11 ∑∞=+02!12n nx n n 0)1)(12(32lim !12)!1(32lim 2232=+++=+++∞→+∞→x n n n x n n xn n n n n n),(+∞-∞∑∞=+=2!12)(n nx n n x S2212200021()d d e !!!n nx x n x n n n n x x S x x x x x x n n n +∞∞∞===+====∑∑∑⎰⎰()2220()()d (e )e (12)x x x S x S x x x x ''===+⎰222021()e (12)!n x n n S x x x n ∞=+==+∑),(+∞-∞∈x )1(10)1)(2(2+++n n x n )2(11nx n n 2!12+1)3(106 )(x f )(x f )(x f )(x f )(x f [π,π]-n a n b ∑∞=++1)sin cos (2n n n nx b nx a a )(x f )(x f [π,π]-n a n b)(x f x )(x f )(x f )(x f 2)()()(-++=x f x f x f∑∞=++=1)sin cos (2)(n n n nx b nx a a x f )(x f12 +-+-=!6!4!21cos 642x x x x 13246357cos isin 1i 2!4!6!3!5!7!θθθθθθθθθ⎛⎫⎛⎫+=-+-++-+-+⎪ ⎪⎝⎭⎝⎭23456i i 1i 2!3!4!5!6!θθθθθθ=+--++--,2i 1=-3i i =-4i 1=5i i =23456i (i )(i )(i )(i )(i )cos isin 1i e 2!3!4!5!6!θθθθθθθθθ+=+++++++=i cos isin e θθθ+=14 10年,每年向球300?假设存储30003000B p B 元. r t nntn r p B ⎪⎭⎫⎝⎛+=1ntn r B p ⎪⎭⎫⎝⎛+=1, re rt B p =e ertrt B p B -==.10300万元,第一次付款是在签约当%5113=(百万元), 2205.013+=33205.13=10905.13=1029131 1.05333324.3211.05 1.05 1.051 1.05⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦=++++=≈-, 2432300?%5 13= 20.053e-=),30.0523(e )-=),0.050.0520.05333e 3(e )3(e )---=++++,0.05ex -=0.05361.51e -=≈-(百万元).( √ ) )(x f )(x f 能展开成0x x -的幂级)(x f( ⨯ ) )(x f )(x f 时,)(x f,0lim =∞→n n u ∑∞=1n nu收敛; ( ⨯ )0lim =∞→n n u 正项级数∑∞=1n n u 0lim =∞→n n u ∑∞=11n n 01lim =∞→n n ∑∞=11n n(),11∑∞=-n n na ,0lim =∞→n n a ∑∞=-1)1(n n n a ⨯),2,1(1=≥+n u u n n∑∞=1n na0lim =∞→n n a 1lim1<+∞→n nn a a1lim1n n na a +→∞≤ 1lim 1>=+∞→λn n n a a1lim 1<=+∞→nn n a a q∑∞=+1)4(n n nx a2-=x 2=x4+=x t ∑∞=1n nn ta 2-=x 2=t ∑∞=1n nn ta 2-2(,2)∪(2,)-∞-+∞2=x 6=t ∑∞=+1)4(n n nx a∑∞=1n nn x1<x 1≤x11<≤-x 11≤<-x 11lim lim1=+=∞→+∞→n na a n nn n 1)1,1(-1=x ∑∞=11n n 1-=x ∑∞=-1)1(n n n )1,1[-∑∑∑∞=∞=∞=111,,n nn nn ncb a n n nc b a <<),2,1( =n∑∞=1n nb∑∞=1n na∑∞=1n nb∑∞=1n nc∑∞=1n na∑∞=1n nc∑∞=1n nb∑∞=1n na∑∞=1n nc∑∞=1n nb∑∞=1n na∑∞=1n nc∑∞=1n nb)(x f ∑∞=-100)()(!)(n n n x x n x f)(x f 0)(!)(lim 00)(=-∞→n n n x x n x f ∑∞=-100)()(!)(n n n x x n x f)(x f 0)(!)(lim00)(=-∞→n n n x x n x fe x = 212!!n x x x x n +++++∈R ;=x sin 35211(1)3!5!(21)!n n x x x x x n ---+-+-+∈-R ;=x cos 2421(1)2!4!(2)!nnx x x x n -+-+-+∈R ;=+)1ln(x ]1,1()1(32132-∈+-+-+-+x nx x x x nn ;mx )1(+=)1,1(!)1()1(!2)1(12-∈++--++-++x x n n m m m x m m mx n;∑∞=1n nnx aR ,则∑∞=12n n n x a 的收敛半径为R ;∑∞=1n nnx aR ,则∑∞=1n n n x a 的收敛区间为),(R R -.21nn n a x∞=∑R x <<20⇒R x R <<-,所以,∑∞=12n n n x a 的收敛R)(x f 2π[π,π]-的表达式为{1,π0,()1,0π,x x f x x x --≤<=+≤<则)(x f πx = 1π+ .ππlim ()lim(1)1πx x f x x --→→=+=+, ππlim ()lim(12π)1πx x f x x ++→→=-+=+, πlim ()1π(π)(2ππ)(π)x f x f f f →=+=-=-= ,)(x f πx =)(x f πx =处收敛于(π)f =1π+ .∑∞=+1)1(n nxn n 的收敛域与和函数;∑∞=+1)1(n nxn n =∑∞=-+11)1(n n nxn x=∑∞=++0)1)(2(n nxn n x,)(x s ∑∞=++0)1)(2(n nxn n 1-11)(x u 0()d x s x x ⎰00(2)(1)d x nn n n x x ∞=++∑⎰∑∞=++01)2(n n x n()d x u x x ⎰100(2)d x n n n x x ∞+=+∑⎰∑∞=+02n n xxx -12)(x u )1(2'-x x 22)1()1(2x x x x -+-22)1(2x x x -- )(x s ])(['x u ])1(2[22'--x x x 3)1(2x -∑∞=+1)1(n n x n n )(x xs 3)1(2x x- )1,1(-∈x ∑∞=-11n n nx∑∞=+1212n nn x)(x s ∑∞=-11n n nx()d x s x x ⎰101d x n n nx x ∞-=∑⎰∑∞=1n n x xx-1 )(x s )1('-xx2)1(1x -∑∞=-11n n nx 2)1(1x - )1,1(-∈x∑∞=+1212n n n x ∑∞=++112121n n n x x)(x u ∑∞=++11212n n n x='])([x u )12(112'+∑∞=+n n n x ∑∞=12n nx 221x x - )(x u 0()d x u x x '⎰220d 1xx x x -⎰201d 1x x x -⎰0d x x ⎰x x x --+11ln 21∑∞=+1212n n n x ∑∞=++112121n n n x x 111ln 21--+x xx xx f 1)(=3-x x x f 1)(=3)3(1+-x 331131-+⋅xx+11)1,1()1(12-∈+-+-+-x x x x nnx x f 1)(=331131-+⋅x 31]33)1()33(331[2 +⎪⎭⎫⎝⎛--+--+--nn x x x ∑∞=+--01)3(3)1(n nn n x )1,1(33-∈-x )6,0(∈xx sin π6x +x sin ππsin[()]66x +-3π1πsin()cos()2626x x +-+ )6sin(π+x 35211πππ()()()π666()(1)63!5!(21)!n n x x x x x n --++++-+-+-+∈-R ,πcos()6x +242πππ()()()6661(1)2!4!(2)!nnx x x x n +++-+-+-+∈R ,x sin 3π1πsin()cos()2626x x +-+ 234πππ()()()13π131666()22622!23!24!x x x x +++-+++⋅--⋅+22111ππ()()1366(1)(1)2(2)!2(21)!n n n n x x x n n ---+++-⋅+-⋅+∈-R .{0,()π,f x x =-π0,0π,x x -≤<≤<将)(x f 在[π,π]-上展成傅里叶级数,傅叶级数在0=x0a ππ1()d πf x x -⎰π01(π)d πx x -⎰2π011(π)π2x x -π2n a ππ1()cos d πf x nx x -⎰π01(π)cos d πx nx x -⎰π1(π)d(sin )πx nx n -⎰π01(π)sin πx nx n -π01sin d πnx x n ⎰π021cos πnx n -20,21,2,2,πn k n k n =-⎧⎪⎨=⎪⎩ n b ππ1()sin d πf x nx x -⎰π01(π)sin d πx nx x -⎰π01(π)d(cos )πx nx n --⎰π01(π)cos πx nx n -π01cos d πnx x n ⎰0cos 1n n1 )(x f)(x f π421211[cos(21)sin(21)sin 2](21)π212k k x k x kx k k k ∞=-+-+--∑ )(lim 0x f x +→0lim(π)x x +→-π)(lim 0x f x -→ 0=x π2∑∞=-211n n n11-n n 1)1(1--n n 23)1(1-n∑∞=-223)1(1n n ∑∞=1231n n312p =>p ∑∞=-211n n n11πtan 2n n n ∞+=∑nn n a aq 1lim +∞→=21π(1)tan2limπtan 2n n n n n +→∞++⋅⋅21π(1)2limπ2n n n n n +→∞++⋅⋅n n n 21lim +∞→2111πtan2n n n ∞+=∑∑∞=+-111)1(n nnn n u ∞→lim 11lim+∞→n n1+n u 21+n 11+n n u∑∞=+-111)1(n nn1000 n B ∞→n%)51(10001+⨯=a n %)51(%)51(10001+++⨯=-n n a a1221223323211211000(15%)(15%),(15%)1000(15%)(15%),(15%)1000(15%)(15%),(15%)1000(15%)(15%),n n n n n n n n n a a a a a a a a --------=⨯+++⎧⎪+=⨯+++⎪+=⨯+++⎨⎪⎪+=⨯+++⎩n a 1112%)51(]%)51(%)51(%)51[(1000--++++++++⨯n n an n %)51(1000%)51(1]%)51(1%)[51(10001+⨯++-+-+⨯- ]1%)51(-+nn n a ∞→lim ∞,n B ]1%)51(-+n元,当∞→n。
高等数学-无穷级数ppt

根据级数项的性质,无穷级数可分为正项级数、交错级数和任意 项级数。
收敛与发散性质பைடு நூலகம்
收敛性质
如果无穷级数的部分和数列有极限, 则称该无穷级数收敛,此时极限值称 为级数的和。
发散性质
如果无穷级数的部分和数列没有极限 ,或者极限为无穷大,则称该无穷级 数发散。
绝对收敛与条件收敛
绝对收敛
如果无穷级数的每一项的绝对值所构 成的级数收敛,则称原级数为绝对收 敛。
在量子力学中,波函数通常表示为无穷级数形式,用于 描述微观粒子的状态和行为。
电磁学中的场强计算
通过无穷级数的展开,可以计算电磁场中各点的场强分 布,进而分析电磁现象。
在工程学中的应用,如信号处理、控制系统设计等
信号处理中的滤波
在信号处理领域,利用无穷级数设计的滤波器可以对 信号进行平滑处理、降噪等操作。
要点二
洛朗级数展开
将函数f(z)在圆环域D内展开成双边幂级数形式,即f(z) = ... + a-2/z^2 + a-1/z + a0 + a1z + a2z^2 + ...,其中an是 洛朗系数,可通过计算f(z)在D内的各阶导数求得。
泰勒级数与洛朗级数的比较
适用范围不同
泰勒级数适用于在一点处展开 的情况,而洛朗级数适用于在 圆环域内展开的情况。
控制系统设计中的稳定性分析
在控制系统设计中,通过无穷级数的稳定性分析方法 ,可以判断控制系统的稳定性并进行相应的优化设计 。
THANK YOU
感谢聆听
幂级数展开
幂级数是指形如$sum_{n=0}^{infty} a_n x^n$的级数,其 中$a_n$为常数。幂级数在收敛域内可以逐项求导和逐项积 分,具有连续性和可微性。
高等数学同济第七版第十二章课后习题答案

…I I
半径为 I,收敛区间为(-1 J).
(4)lim %" = lim —= 0 ,故收敛半在为+8,收敛区间是(-8 , ♦ 8 ). …14 | …2 (门♦ I)
第十二童无穷级数
221
由此可知.对任意给定的正数£ .取正整数 A m 岫十,当〃 >投时,对一切正整数 p, 都有 S--
力 < £ ,按柯西收敛原理.该级数收敛•
(4)本题与(2)类同.因 4 =丁\ + (
故对 3/1 ♦ 1 \3n +2 3n + 3) 3〃 ♦ I An
% = + .不论/!取什么正整数.取 p = 〃时.就有 1〃.,・h1 =%八+U..2 ।…+
219
解(D 此级数为公比 g =-5 的等比级数.因|°| < 1 ,故该级数收敛.
(2)此级数的部分和
即该级数发散.
lim sA = + oc , 冬■一
(3)此级数的一股项% =*,有 要条 忖% = lim(y), = 1 ,不满足级数收敛的必
件,故该级数发散. (4)此级数为公比 4 二方的等比级数,因|q| > 1 ,故该级数发散. (5)此级数的一般项% =3.二注意到与£ 上分别是公比”;
•
・a
散,故各项乘;志的级数 Ej 也发放,由比较审敛法知原级数 s 二二■? 发散.
1 解法二 因=1,而 y 1 发故.故由极限形式的比较审敛法知原 … I 2 1n
级数发散 (2) u = Lt: >二而 f L 发散.由比较审敛法知原级数 ・
1 > n2 n n2 n Sf”
222
一• 《高等数学》(第七版)下册习咫全解
高等数学下册第十二章 无穷级数

边形, 设 a0 表示
这个和逼近于圆的面积 A . 即
DMU
第一节 常数项级数
定义 给定一个数列 u1 , u2 , u3 , , un , 将各项依
次相加, 简记为 un , 即
n1
称为无穷级数, 其中第 n 项 un 叫做级数的一般项,
级数的前 n 项和
称为级数的部分和. 收敛 , 并称 S 为级数的和.
xx0
f
(x)
A
xnk
x0
(xnk
x0 )
(k )
f (xnk ) A
例如 lim n2 ((1 1)2n e2 )
n
n
(1 lim
x0
1
)
2 x
x
x2
e2
2 ln(1 1 )
ex x
lim
x0
x2
e2
e (e 2
2 ln(1 1 )2 xx
1)
lim
x0
x2
DMU
第一节 常数项级数
5)两边夹法则
n1
莱布尼茨定理: 如果交错级数 (-1)n-1un满足条件 :
n1
(1)un un1(n 1, 2,3, );
(2)lim n
un
0,
则级数收敛,且其和s u1 ,
其余项rn的绝对值 rn un1.
DMU
第三节 一般常数项级数的收敛判别法
用莱布尼茨 判别法判别下列级数的敛散性:
1) 1 1 1 1 (1)n1 1 n1 1
有和函数
它的发散域是 ( , 1 ] 及 [1, ), 或写作 x 1.
又如, 级数
所以级数的收敛域仅为
DMU
级数发散 ;
高等数学(复旦大学版)第十二章 无穷级数

第十二章 无穷级数无穷级数是数与函数的一种重要表达形式,也是微积分理论研究与实际应用中极其有力的工具. 无穷级数在表达函数、研究函数的性质、计算函数值以及求解微分方程等方面都有着重要的应用. 研究级数及其和,可以说是研究数列及其极限的另一种形式,但无论在研究极限的存在性还是在计算这种极限的时候,这种形式都显示出很大的优越性. 本章先讨论数项级数,介绍无穷级数的一些基本内容,然后讨论函数项级数,并着重讨论如何将函数展开成幂级数与三角级数的问题.第一节 常数项级数的概念和性质教学目的:1、理解无穷级数的概念;2、理解级数的收敛或发散的概念;3、掌握等比级数和p 级数等特殊级数的敛散性;4、了解无穷级数的基本性质。
教学重点:级数收敛或发散的判定 教学难点:级数收敛或发散的判定 教学内容:一、常数项级数的概念定义1 给定数列{}n u ,则称12n u u u ++++L L为常数项无穷级数,简称级数,记做1n n u ¥=å,即121n n n u u u u ¥==++++åL L式子中每一项都是常数,称作常数项级数,第n 项称为级数的一般项(或通项)。
级数1n n u ¥=å的前n 项和称为级数的部分和,记做n s ,即12n n s u u u =+++L级数的所有前n 项部分和n s 构成一个数列{}n s ,称此数列为级数1n n u ¥=å的部分和数列。
定义2 若级数1n n u ¥=å的部分和数列{}n s 收敛于s ,则称级数1n n u ¥=å收敛,或称1nn u ¥=å为收敛级数,称s 为这个级数的和,记作121n n n s u u u u ¥==++++=åL L而12n n n n r s s u u ++=-=++L称为级数的余项,显然有lim lim()0n n nnr s s =-=若{}n s 是发散数列,则称级数1n n u ¥=å发散,此时这个级数没有和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
g
t 2知
t
2s g
设 tk 表示第 k 次小球落地的时间, 则小球运动的时间为
T t1 2t2 2t3
2 g
1
2
1 2
(
1 2)2
(此式计算用到 后面的例1)
2 1 2 2 1 2.63 ( s )
g
目录 上页 下页 返回 结束
ln n 1 n
(ln 2 ln1) (ln3 ln 2) ln(n 1) ln n
ln(n 1) ( n )
所以级数 (1) 发散 ;
技巧:
利用 “拆项” 求 和
目录 上页 下页 返回 结束
(2)
Sn
1 1 2
1 23
1 34
性质1. 若级数
收敛于 S , 即 S un , 则各项
n1
乘以常数 c 所得级数
也收敛 , 其和为 c S .
说明: 级数各项乘以非零常数后其敛散性不变 .
性质2. 设有两个收敛级数
S un,
vn
n1
n1
则级数 (un vn )也收敛, 其和为 S .
lim
n
un
0
并非级数收敛的充分条件.
例如, 调和级数
虽然
但此级数发散 .
事实上 , 假设调和级数收敛于 S , 则
但
S2n Sn
1 1 1 1
n1 n 2 n3
2n
n 2n
1 2
矛盾! 所以假设不真 .
目录 上页 下页 返回 结束
例3.判断级数的敛散性: 解: 考虑加括号后的级数
n1
目录 上页 下页 返回 结束
说明:
(1) 性质2 表明收敛级数可逐项相加或相减 .
(2) 若两级数中一个收敛一个发散 , 则 ( un vn )
必发散 . (用反证法可证)
n1
但若二级数都发散 ,
不一定发散.
例如, 取 un (1)2n , vn (1)2n1,
目录 上页 下页 返回 结束
第十二章 无穷级数
数项级数 无穷级数 幂级数
傅里叶级数 表示函数
无穷级数是研究函数的工具 研究性质 数值计算
第一节
第十二章
常数项级数的概念和性质
一、常数项级数的概念 二、无穷级数的基本性质 三、级数收敛的必要条件 *四、柯西审敛原理
目录 上页 下页 返回 结束
一、常数项级数的概念
引例1. 用圆内接正多边形面积逼近圆面积.
发散 , 从而原级数发散 .
目录 上页 下页 返回 结束
*四、柯西审敛原理
定理.
的充要条件是: 0, N N ,
当n N 时,对任意 p N , 有
证: 设所给级数部分和数列为 Sn (n 1, 2,), 因为
所以利用数列 Sn (n 1, 2,) 的柯西审敛原理(第一章
目录 上页 下页 返回 结束
三、级数收敛的必要条件
设收敛级数
则必有
证: un Sn Sn1
lim
n
un
lim
n
S
n
lim
n
Sn1
S
S
0
可见: 若级数的一般项不趋于0 , 则级数必发散 .
例如,
其一般项为
不趋于0, 因此这个级数发散.
目录 上页 下页 返回 结束
注意:
第六节上册55页) , 即得本定理的结论.
目录 上页 下页 返回 结束
例4. 利用柯西审敛原理判别级数
解: 对任意 p N , 有
目录 上页 下页 返回 结束
都有
当 n﹥N 时, 对任意 p N ,
由柯西审敛原理可知, 级数
第二节 目录 上页 下页 返回 结束
因此级数发散 ;
因此
Sn
a, 0,
n 为奇数 n 为偶数
从而
不存在 , 因此级数发散.
综合 1)、2)可知, q 1 时, 等比级数收敛 ;
q 1 时, 等比级数发散 .
目录 上页 下页 返回 结束
例2. 判别下列级数的敛散性:
解: (1)
Sn
ln 2 1
ln 3 2
ln 4 3
目录 上页 下页 返回 结束
例1. 讨论等比级数 (又称几何级数)
( q 称为公比 ) 的敛散性.
解: 1) 若
则部分和
因此级数收敛
,
其和为
a 1q
;
因此级数发散 .im Sn
n
a 1q
从而
lim
n
Sn
,
目录 上页 下页 返回 结束
2). 若
则 级数成为
性质3. 加上、去掉或改变有限项, 级数的敛散性不变。 性质4. 对收敛级数任意加括弧,仍收敛于原级数的和
(由数列与其子列的关系可证)
用反证法可证
推论: 若加括弧后的级数发散, 则原级数必发散.
注意: 收敛级数去括弧后所成的级数不一定收敛.
例如,(11) (11) 0 , 但
发散.
依次作圆内接正 内接正三角形面积, ak 表示边数 增加时增加的面积, 则圆内接正
边形,设 a0 表示
这个和逼近于圆的面积 A . 即
目录 上页 下页 返回 结束
引例2. 小球从 1 m 高处自由落下, 每次跳起的高度减
少一半,问小球是否会在某时刻停止运动? 说明道理.
由自由落体运动方程
s
1 2
n
1 (n 1)
1
1 2
1 2
1 3
1 3
1 4
1 n
n
1
1
1 1 1 ( n ) n 1
所以级数 (2) 收敛, 其和为 1 .
技巧:
利用 “拆项” 求 和
目录 上页 下页 返回 结束
二、无穷级数的基本性质
定义:给定一个数列 u1 , u2 , u3 , , un , 将各项依
次相加, 简记为 un , 即
n1
称上式为无穷级数,其中第 n 项 un 叫做级数的一般项,
级数的前 n 项和
称为级数的部分和. 收敛 , 并称 S 为级数的和, 记作
则称无穷级数
目录 上页 下页 返回 结束
则称无穷级数发散 . 当级数收敛时, 称差值 为级数的余项. 显然