高等数学重积分总结

合集下载

重积分的积分性质和计算规则

重积分的积分性质和计算规则

重积分的积分性质和计算规则重积分是高等数学中的一种重要概念,指对于一个二元函数而言,将其在一个二维区域上进行积分的过程。

与单积分类似,重积分也有其特定的积分性质和计算规则。

本文将详细介绍重积分的这些性质和规则,以帮助读者更好地理解和应用重积分的相关知识。

一、积分性质1. 线性性质:重积分具有线性性,即对于常数c与两个可积函数f(x,y)和g(x,y),有如下式子成立:∬ (c*f(x,y) + g(x,y)) dxdy = c * ∬ f(x,y) dxdy + ∬g(x,y)dxdy2. 可积性与非负性:如果函数f(x,y)在一个有限二维区域上是可积的,那么它在该区域上的积分一定存在;而如果函数g(x,y)在该区域上非负,则其积分也是非负的。

3. 积分次序可交换:如果二元函数f(x,y)在一个矩形区域上是可积的,则对于该区域内的任意两个积分限定,这两个积分的次序可以任意交换而不影响结果,即:∬ f(x,y) dxdy = ∬ ( ∬f(x,y)dy ) dx = ∬(∬f(x,y) dx)dy二、计算规则1. Fubini定理:Fubini定理是重积分中的一个重要定理,可以将对二元函数在一个区域上的重积分转化为两个一元函数相应区域上的积分,即:∬f(x,y)dxdy = ∫a∫b f(x,y)dxdy = ∫b∫a f(x,y)dydx = ∫a∫b f(x,y)dydx其中f(x,y)为被积函数,a和b分别为区域在x和y轴上的积分限。

2. 直角坐标系下的计算规则:在直角坐标系下,重积分可以用二重积分的形式表示,即:∬f(x,y)dxdy = ∫c∫d f(x,y)dxdy其中 c 和 d 分别为区域在x和y轴上的积分限,这个积分区域可以是矩形、梯形、三角形等形状。

在进行计算时,通常需先用对x或y的积分公式进行计算,再对另一个变量进行积分。

3. 极坐标系下的计算规则:在极坐标系下,重积分可以用二重积分的极坐标形式表示,即:∬f(x,y)dxdy = ∫α∫β f(r*cosθ,r*sinθ)rdrdθ其中α和β为对应极角的积分限,r是到极点的距离,θ是到x轴的角度。

高数大一知识点总结重积分

高数大一知识点总结重积分

高数大一知识点总结重积分高数大一知识点总结:重积分高等数学中的重积分是一种扩展了二重积分的概念,它在多变量函数的积分中扮演重要的角色。

本文将对高数大一课程中的重积分进行总结和讲解。

一、重积分的概念和性质重积分是定义在三维空间内的函数的积分,通常用来计算多变量函数在某个区域上的累积效应。

与二重积分类似,重积分可以通过分割区域,将其近似为无穷小的小区域,然后对每个小区域进行积分,再将这些积分进行累加而得到。

重积分的计算通常与坐标系的选择有关,常见的坐标系有直角坐标系、极坐标系和柱坐标系等。

根据实际问题的特点和对称性的分析,选择合适的坐标系可以简化计算过程。

在计算重积分时,需要注意积分顺序的选择。

根据题目给定的区域和函数的特点,可以选择先对哪个自变量进行积分,这样有助于简化计算,并得到准确的结果。

重积分具有一些重要的性质,例如线性性、划分性和保号性等。

这些性质在具体计算过程中可以灵活运用,简化计算和分析。

二、重积分的计算方法1. 直角坐标系下的重积分计算方法直角坐标系下的重积分计算通常通过多次积分来实现。

根据题目给定的区域和函数的特点,可以选择先对哪个自变量进行积分,再对另一个自变量进行积分。

通过逐步积分,最终可以得到准确的结果。

2. 极坐标系下的重积分计算方法极坐标系下的重积分计算常常适用于具有旋转对称性的问题。

在极坐标系下,将函数和区域表示成极坐标形式,通过选择合适的积分顺序和极角范围,可以简化计算过程,得到准确的结果。

3. 柱坐标系下的重积分计算方法柱坐标系下的重积分计算通常应用于具有柱对称性的问题。

在柱坐标系下,将函数和区域表示成柱坐标形式,通过选择合适的积分顺序和柱角范围,可以简化计算过程,得到准确的结果。

三、重积分的应用领域重积分在科学和工程领域有广泛的应用。

例如,在物理学中,用重积分可以计算物体的质量、质心和转动惯量等;在电磁学中,可以用重积分计算电荷、电场和电势等;在流体力学中,可以用重积分计算流体的质量、流速和流量等。

高等数学定积分及重积分的方法与技巧

高等数学定积分及重积分的方法与技巧

高等数学定积分及重积分的方法与技巧第一部分 定积分的计算一、定积分的计算例1 用定积分定义求极限. )0(21lim 1>++++∞→a nn a a a a n . 解 原式=∫∑=⋅=∞→1011lim a ani n x n n i dx =aa x a +=++11111. 例2 求极限 ∫+∞→121lim xx n n dx .解法1 由10≤≤x ,知nn x x x ≤+≤210,于是∫+≤1210x x n ∫≤1n x dx dx .而∫10nx ()∞→→+=+=+n n n x dx n 0111101,由夹逼准则得∫+∞→1021lim xx n n dx =0. 解法2 利用广义积分中值定理()()x g x f ba ∫()()∫=b ax g f dx x dx (其中()x g 在区间[]b a ,上不变号), ().1011112102≤≤+=+∫∫n n nn dx x dx xx x x由于11102≤+≤nx,即211nx+有界,()∞→→+=∫n n dx x n01110,故∫+∞→1021lim x x n n dx =0. 注 (1)当被积函数为()22,x a x R +或()22,a x x R −型可作相应变换.如对积分()∫++3122112xxdx,可设t x tan =;对积分()02202>−∫a dx x ax x a,由于()2222a x a x ax −−=−,可设t a a x sin =−.对积分dx e x ∫−−2ln 021,可设.sin t e x =−(2)()0,cos sin cos sin 2≠++=∫d c dt td t c tb t a I π的积分一般方法如下:将被积函数的分子拆项,[分子]=A[分母]+B[分母]′,可求出22dc bdac A ++=,22dc adbc B +−=. 则积分 ()220cos sin ln 2cos sin cos sin πππtd t c B A dt td t c t d t c B A I ++=+′++=∫.ln2dc B A +=π例3 求定积分()dx x x x ∫−1211arcsin分析 以上积分的被积函数中都含有根式,这是求原函数的障碍.可作适当变换,去掉根式. 解法1 ()dxx x x ∫−1211arcsin 2tx x t ==12121211212arcsin arcsin arcsin 21arcsin 2tt d t dt tt ==−∫∫.1632π=解法2 ()dx x x x∫−1211arcsin .163cos sin cos sin 2sin 2242242πππππ==⋅=∫u du u u uu u u x 小结 (定积分的换元法)定积分与不定积分的换元原则是类似的,但在作定积分换元()t x ϕ=时还应注意:(1)()t x ϕ=应为区间[]βα,上的单值且有连续导数的函数; (2)换限要伴随换元同时进行;(3)求出新的被尽函数的原函数后,无需再回代成原来变量,只要把相应的积分限代入计算即可.例4 计算下列定积分(1)∫+=2031cos sin sin πx x xdx I , dx xx xI ∫+=2032cos sin cos π;(2).1cos 226dx e xx ∫−−+ππ解 (1)∫+=2031cos sin sin πxx xdx I)(sin cos cos 2023du u u uu x −+−=∫ππ=.sin cos cos 223∫=+πI dx xx x故dx xx xx I I ∫++==203321cos sin cos sin 21π=()41cos cos sin sin 212022−=+−∫ππdx x x x x . (2)=I .1cos 226dx e x x ∫−−+ππ()dxe xdu e uu x x u ∫∫−−+=−+−=2262261cos 1cos ππππ+++=∫∫−−2222661cos 1cos 21ππππdx e x dx e x e I x x x.3252214365cos cos 21206226πππππ=×××===∫∫−xdxxdx这里用到了偶函数在对称取间上的积分公式以及公式:dx xdx n n∫∫=2020cos sin ππ()()()()()()=⋅×−×−−=×−×−−=偶数奇数n n n n n n n n n n ,22421331,1322431π小结 (1)常利用线性变换把原积分化为可抵消或可合并的易于积分的形式。

重积分知识点总结(一)

重积分知识点总结(一)

重积分知识点总结(一)前言重积分是高等数学中的重要知识点,是对多重积分进行研究的内容。

它在物理学、工程学和计算机科学等领域都有广泛的应用。

本文将针对重积分的知识点进行总结,以帮助读者更好地理解和掌握这部分知识。

正文一、重积分的定义与性质1.重积分的定义:对于二重积分来说,可以将其理解为将被积函数在某个有界闭区域上的“总体积”。

而对于三重积分来说,则是将被积函数在某个有界闭区域上的“总体积”。

2.交换积分次序:在某些情况下,交换积分次序可以简化重积分计算的复杂程度。

3.重积分的性质:包括线性性质、保号性质、次可加性质等。

这些性质在进行重积分计算时非常重要。

二、二重积分的计算方法1.二重积分的计算方法主要有面积法、直角坐标法和极坐标法。

在具体的计算过程中,可以根据题目要求和被积函数的形式选择合适的计算方法。

2.面积法:将被积函数看做是一片平面上每一点的贡献,通过对整个区域的累加求和来计算二重积分。

3.直角坐标法:根据被积函数在直角坐标系内的表达式,利用基本积分计算公式进行计算。

4.极坐标法:将被积函数用极坐标系表示,通过变量代换进行计算。

对于具有旋转对称性的问题,极坐标法可以简化计算过程。

三、三重积分的计算方法1.三重积分的计算方法主要有体积法、直角坐标法和柱坐标法。

在具体的计算过程中,同样需要根据题目要求和被积函数的形式选择合适的计算方法。

2.体积法:将被积函数看做是空间内每一点的贡献,通过对整个区域的累加求和来计算三重积分。

3.直角坐标法:根据被积函数在直角坐标系内的表达式,利用基本积分计算公式进行计算。

4.柱坐标法:将被积函数用柱坐标系表示,通过变量代换进行计算。

对于具有旋转对称性的问题,柱坐标法可以简化计算过程。

结尾重积分是数学中重要而复杂的知识点,在实际应用中具有广泛的价值。

通过本文的总结,希望读者们能够对重积分的定义、性质和计算方法有更深入的理解,从而更好地应对相关问题的解决和应用。

前言重积分是高等数学中的重要知识点,是对多重积分进行研究的内容。

高等数学-重积分的 计算 及应用

高等数学-重积分的 计算 及应用

D
例如计算: I x2d
D:
D
I y2d
D
I 1
(x2 y2 )d
a4
2D
4
14
x2 y2 a2
例6
d
D (a2 x2 y2 )3/ 2
其中 D : 0 x a ; 0 y a
y yx
a
解:如图D是关于直线 y x 对称。
D2
D1
r a
cos
原式 2
D1
o 4
D1 D2 D
x
连续, 所以
6
D (x y) d D2 (x y) d D1 (x y) d
4
dy
6
12 y
y2 (x y)d x
2
dy
4
4 y
y2 (x y)d x
2
2
54311 15
9
例2. 计算 x2 y2 4 d , 其中 D : x2 y2 9
F(0) 0
利用洛必达法则与导数定义,得
lim
t0
F
(t ) t4
lim
t 0
4 f (t) 4 t3
t
2
lim
t 0
f (t) t
f
(0)
f (0)
33
f (x, y, z) d v
x
D
z2 (x, y) f (x, y, z)dz dxdy
z1( x, y)
记作 dxdy z2 (x, y) f (x, y, z)dz
D
z1( x, y)
20
y D
dxd y
微元线密度≈
f (x, y, z) dxdy
方法2. 截面法 (“先二后一”)

高等数学重积分总结

高等数学重积分总结

高等数学重积分总结重积分是高等数学中的一个重要章节,包括了二重积分和三重积分。

本文将对重积分的相关概念、性质、计算方法等进行总结。

一、重积分的定义和性质重积分可以看作是对多元函数在一个区域内的积分,其中二重积分和三重积分分别对应了二元函数和三元函数。

对于一个区域D,其可以用极限值对角线的方法划分成n个微小的小区域Di,其中i的取值范围为1到n。

设函数f(x,y)在小区域Di上的面积为S,且S趋近于0,则重积分可以表示为:$$\iint_D f(x,y)dxdy=\lim_{\substack{n,m\to \infty}} \sum_{i=1}^n\sum_{j=1}^m f(x_{ij},y_{ij})\Delta S$$其中$\Delta S$为小区域Di的面积,$(x_{ij},y_{ij})$为小区域Di的任意一点。

与一元函数的积分类似,重积分也具有线性性、可加性、区间可减性和保号性等数学特征。

同时,由于重积分的定义,其也满足如下性质:1.积分与被积函数与积分区域的连续性,即对于在区域D上连续的函数f(x,y),有:2.积分与区域的可加性,即对于一个区域D可以分割成两个没有公共点的子区间,则:同时还有极坐标和柱面坐标下的重积分公式:对于极坐标,有:$$\iint_D f(x,y)dxdy=\iint_D f(rcos\theta,rsin\theta)rdrd\theta$$$$\iiint_W f(x,y,z)dxdydz=\int_a^b\int_{\varphi_1}^{\varphi_2}\int_{\rho_1}^{\rho_2} f(\rho cos\varphi,\rho sin\varphi, z)\rho d\rho d\varphi dz$$其中W为三维区域,$(\rho,\varphi,z)$为柱面坐标系。

三、重积分的计算方法对于重积分的具体计算,常用的有以下几种方法:1.累次积分法累次积分法就是将多重积分化为多个一元积分,以二重积分为例,若:$$\iint_D f(x,y)dxdy$$其中D为一个平面区域,那么可以先将y作为常数,对x进行积分,再将x作为常数,对y积分,即可得到:其中a、b、c、d为D中x、y坐标的极值。

重积分

重积分

重积分的理解引言:在高等数学中,重积分是多元函数积分学的内容,在一元函数积分学中我们知道定积分是某种确定形式的和的极限。

这种和的概念推广到定义在区域、曲线及曲面上多元函数的情形,便得到重积分、曲线积分及曲面积分的概念。

高等数学讨论的重积分主要包括二重积分和三重积分两部分,引起二重积分概念的过程是测量曲顶柱体体积的过程的反映,三重积分概念是作为二重积分概念的推广而引出的,但事实上三重积分也是某些具体现实过程的反映。

在本章中将介绍重积分的概念、计算法以及它们的一些应用。

重积分在各种知识领域中的应用非常广阔,我们将在理论力学,材料力学,水力学及其它一些工程学科中碰到它们。

摘要:重积分是大学高等数学学习过程中很重要的一部分,在一元函数积分学中,定积分的定义是将定义在区间[],a b 上的一元函数()f x 采用划分,近似,求和,取极限等四个步骤,得到某种确定形式的和的极限,这就是定积分()()ba f x d dx ⎰. 若将一元函数分别推广成平面区域和空间区域,这就得到了二重积分和三重积分的概念。

本篇论文主要讲述了重积分的性质,计算,应用以及所涉及的习题,这些事我对重积分学习的一个总结。

关键词:重积分,二重积分,三重积分,性质,应用二重积分的定义:设(),f x y 为有界闭区间D 上的有界函数,将D 任意划分为n 个小闭区域12,,...,n σσσ∆∆∆并以i σ∆表示第i 块闭区域的面积,在第i 块上任意取点(),i i ξη。

令λ为所有i σ∆的直径的最大值,若()01lim ,ni i i i f f λξησ→=∆∑.存在,则成(),f x y 在闭区间D 上可积,并把上述极限称为(),f x y 在D 上的二重积分,记为(),Df x y d σ⎰⎰.即(),Df xy d σ⎰⎰()01l i m ,ni ii i f λξησ→==∆∑.其中()1,ni i i i f ξησ=∆∑. 称为积分和,(),f x y . 称为被积函数,d σ称为面积元,(),f x y d σ称为被积表达式D 称为积分区域。

高等数学重积分(思维导图)

高等数学重积分(思维导图)

dA =
1
+
fx2
(x,

y)
+
fy2
(x,

y)dσ为曲面S的面积元素,以它为被积表达式 ​
在闭区域D上的积分,得A = ∬D ​
1
+
fx2
(x,

y)
+
fy2
(x,

y)dσ ​
曲面的面积
1
1
若薄片面密度为常量,则A= A​ ∬D ​ xdσ,y= A​ ∬D ​ ydσ
x= My ​ = ∬D ​ xμ(x, y)dσ ,y= Mx​ = ∬D ​ yμ(x, y)dσ ,其中
6.(二重积分的中值定理)设函数f(x,y)在闭区域D上连续,σ是D的面积,则在D上 至少存在一点(ξ,η),使得∬D​ f (x, y) dσ = f (η, ξ)σ
柱面坐标计算三重积分
三重积分的计算
0 ≤ ρ < +∞,0 ≤ θ ≤ 2π,−∞ < z < +∞,ρ=常数,即以z轴为轴的圆柱面;θ= 常数,即过z轴的半圆面;z=常数,即与xOy面平行的平面。dv=ρdρdθdz为柱面坐标

f
(x,
y)dx
b
∫a ​
dx
∫ φ2 ​(x)
φ1 ​(x) ​
f (x,
y)dy=
d
∫c ​
dy∫ ψ2​(y)
ψ1 ​(y) ​
f (x,
y)dx
极坐标计算二重积分
ρdρdρ
为极坐标中的面积元素,φ1


ห้องสมุดไป่ตู้
)

φ2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章二重积分【本章逻辑框架】【本章学习目标】⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。

⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。

熟练掌握直角坐标系和极坐标系下重积分的计算方法。

⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。

9.1 二重积分的概念与性质【学习方法导引】1.二重积分定义为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。

从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。

在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ∆∆∆的分法要任意,二是在每个小区域i σ∆上的点(,)i i i ξησ∈∆的取法也要任意。

有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。

2.明确二重积分的几何意义。

(1) 若在D 上(,)f x y ≥0,则(,)d Df x y σ⎰⎰表示以区域D 为底,以(,)f x y 为曲顶的曲顶柱体的体积。

特别地,当(,)f x y =1时,(,)d Df x y σ⎰⎰表示平面区域D 的面积。

(2) 若在D 上(,)f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(,)d Df x y σ⎰⎰的值是负的,其绝对值为该曲顶柱体的体积(3)若(,)f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d Df x y σ⎰⎰表示在这些子区域上曲顶柱体体积的代数和(即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积).3.二重积分的性质,即线性、区域可加性、有序性、估值不等式、二重积分中值定理都与一元定积分类似。

有序性常用于比较两个二重积分的大小,估值不等式常用于估计一个二重积分的取值范围,在用估值不等式对一个二重积分估值的时候,一般情形须按求函数(,)f x y 在闭区域D 上的最大值、最小值的方法求出其最大值与最小值,再应用估值不等式得到取值范围。

【主要概念梳理】1.二重积分的定义 设二元函数f(x,y)在闭区域D 上有定义且有界.分割 用任意两组曲线分割D 成n 个小区域12,,,n σσσ∆∆∆,同时用i σ∆表示它们的面积,1,2,,.i n =其中任意两小块i σ∆和()j i j σ∆≠除边界外无公共点。

i σ∆既表示第i 小块,又表示第i 小块的面积. 近似、求和 对任意点(,)i i i ξησ∈∆ ,作和式1(,).ni i i i f ξησ=∆∑取极限 若i λ为i σ∆的直径,记12max{,,,}n λλλλ=,若极限1lim (,)ni i i i f λξησ→=∆∑存在,且它不依赖于区域D 的分法,也不依赖于点(,)i i ξη的取法,称此极限为f (x,y )在D 上的二重积分. 记为1(,)d lim (,).niii Df x y f λσξη→==∑⎰⎰ 称f (x,y )为被积函数,D 为积分区域,x 、y 为积分变元,d σ为面积微元(或面积元素).2.二重积分(,)d Df x y σ⎰⎰的几何意义(1) 若在D 上f (x,y )≥0,则(,)d Df x y σ⎰⎰表示以区域D 为底,以f (x,y )为曲顶的曲顶柱体的体积.(2) 若在D 上f (x,y )≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(,)d Df x y σ⎰⎰ 的值是负的,其绝对值为该曲顶柱体的体积(3)若f (x,y )在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d Df x y σ⎰⎰表示在这些子区域上曲顶柱体体积的代数和(即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积).3.二重积分的存在定理3.1若f (x,y )在有界闭区域D 上连续,则f (x,y)在D 上的二重积分必存在(即f (x,y )在D 上必可积).3.2若有界函数f (x,y )在有界闭区域D 上除去有限个点或有限个光滑曲线外都连续,则f (x,y )在D 可积.4.二重积分的性质二重积分有与定积分类似的性质.假设下面各性质中所涉及的函数f (x ,y ),g(x,y)在区域 D 上都是可积的.性质1 有限个可积函数的代数和必定可积,且函数代数和的积分等于各函数积分的代数和,即[(,)(,)]d (,)d (,)d .DDDf x yg x y f x y g x y σσσ±=±⎰⎰⎰⎰⎰⎰性质2 被积函数中的常数因子可以提到积分号前面,即(,)d (,)d ().DDkf x y k f x y k σσ=⎰⎰⎰⎰为常数性质3 若D 可以分为两个区域D 1,D 2,它们除边界外无公共点,则12(,)d (,)d (,)d .DD D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰性质4 若在积分区域D 上有f (x ,y )=1,且用S (D )表示区域D 的面积,则d ().DS D σ=⎰⎰性质5 若在D 上处处有f (x ,y )≤g (x ,y ),则有(,)d (,)d .DDf x yg x y σσ≤⎰⎰⎰⎰推论(,)d (,)d .DDf x y f x y σσ≤⎰⎰⎰⎰性质6(估值定理) 若在D 上处处有m ≤f (x ,y )≤M ,且S (D )为区域D 的面积,则()(,)d ().DmS D f x y MS D σ≤≤⎰⎰性质7(二重积分中值定理) 设f (x ,y )在有界闭区域D 上连续,则在D 上存在一点(,)ξη,使(,)d (,)().Df x y f S D σξη=⎰⎰【基本问题导引】根据二重积分的几何意义或性质求解下列各题:1.2d Da xdy =⎰⎰ ,其中222{(,)|}D x y x y a =+≤2.设D 是由x 轴,y 轴与直线1x y +=所围成的区域,则21(),DI x y d σ=+⎰⎰32()DI x y d σ=+⎰⎰的大小关系是 .【巩固拓展提高】1.若f (x ,y )在有界闭区域D 上连续,且在D 的任一子区域D *上有*(,)d 0D f x y σ=⎰⎰,试证明在D 内恒有f (x ,y )=02.估计22(y )d DI x xy x xdy =+--⎰⎰的值,其中{(,)|02,01}.D x y x y =≤≤≤≤3.设f (x ,y )是有界闭区域D :222x y a +≤上的连续函数,则201lim (,)a Df x y dxdy a π→⎰⎰的值为多少?【数学思想方法】二重积分是一元函数定积分的推广与发展,它们都是某种形式的和的极限,即分割求和、取极限,故可用微元法的思想来理解二重积分的概念与性质。

9.2 在直角坐标系中二重积分的计算【学习方法导引】本章的重点是二重积分的计算问题,而直角坐标系中二重积分的 计算问题关键是如何确定积分区域及确定X 型区域还是Y 型区域,这也是本章的难点。

直角坐标系中二重积分计算的基本技巧:(1)在定积分计算中,如果D 的形状不能简单地用类似12()()x y x a x b ϕϕ≤≤⎧⎨≤≤⎩或12()()y x y c y dφφ≤≤⎧⎨≤≤⎩的形式来表示,则我们可以将D 分成若干块,并由积分性质12(,)d (,)d (,)d .DD D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰对右端各式进行计算。

(2)交换积分次序不仅要考虑到区域D 的形状,还要考虑被积函数 的特点。

如果按照某一积分次序的积分比较困难,若交换积分次序后,由于累次积分的积分函数(一元积分)形式发生变化,可能会使新的积分次序下的积分容易计算,从而完成积分的求解。

但是无论是先对x积分,再对y 积分,还是先对y 积分,再对x 积分最终计算的结果应该是相同的。

一般的处理方法是由积分限确定积分区域D ,并按照新的积分次序将二重积分化成二次积分。

具体步骤如下:①确定D 的边界曲线,画出D 的草图;②求出D 边界曲线的交点坐标;③将D 的边界曲线表示为x 或y 的单值函数; ④考虑是否要将D 分成几块; ⑤用x ,y 的不等式表示D .注:在积分次序选择时,应考虑以下几个方面的内容:(ⅰ)保证各层积分的原函数能够求出;(ⅱ)若D 为X 型(Y 型),先对x (y )积分;(ⅲ)若D 既为X 型又为Y 型,且满足(ⅰ)时,要使对D 的分块最少。

(3) 利用对称性等公式简化计算 设f (x ,y )在区域D 上连续,则 ①当区域D 关于x 轴对称若(,)(,)f x y f x y -=-,则(,)d Df x y σ⎰⎰=0;若(,)(,)f x y f x y -=,则(,)d Df x y σ⎰⎰=21(,)d D f x y σ⎰⎰,其中D 1为D 在x 轴上方部分。

②当区域D 关于y 轴对称若(,)(,)f x y f x y -=-,则(,)d Df x y σ⎰⎰=0;若(,)(,)f x y f x y -=,则(,)d Df x y σ⎰⎰=22(,)d D f x y σ⎰⎰,其中D 2为D 在y 轴右侧部分。

③当区域D 关于x 轴和y 轴都对称若(,)(,)f x y f x y -=-或(,)(,)f x y f x y -=-,则(,)d Df x y σ⎰⎰=0;若(,)(,)(,)f x y f x y f x y -=-=,则(,)d Df x y σ⎰⎰=41(,)d D f x y σ⎰⎰,其中D 1为D 在第一象限部分。

④轮换对称式设D 关于直线y x =对称,则(,)d Df x y σ⎰⎰=(,)d Df y x σ⎰⎰.【基本问题导引】一.判断题1.dxdy=Dxy ⎰⎰4122221dxdy,:4;:4,0,0D xy D x y D x y x y +≤+≤≥≥⎰⎰ ( )2. 若f 为连续函数,则21221012(,)(,)(,)x xydx f x y dy dx f x y dy dy f x y dx--+=⎰⎰⎰⎰⎰ ( )【主要概念梳理】直角坐标系中二重积分计算当被积函数f (x ,y )≥0且在D 上连续时,若D 为 X - 型区域 12()():x y x D a x b ϕϕ≤≤⎧⎨≤≤⎩则21()()(,)d d d (,)d bx Dax f x y x y x f x y y ϕϕ=⎰⎰⎰⎰若D 为Y –型区域12()():y x y D c y d ψψ≤≤⎧⎨≤≤⎩,则21()()(,)d d d (,)d dy D c y f x y x y y f x y x ψψ=⎰⎰⎰⎰说明:若积分区域既是X –型区域又是Y –2211()()()()(,)d d d (,)d d (,)d bx dy Dax cy f x y x y x f x y y y f x y xϕψϕψ==⎰⎰⎰⎰⎰⎰【巩固拓展提高】1.(1992)计算112111224.y y xxy I dy e dx dy e dx =+⎰⎰⎰2.设1()x xyf x e dy =⎰,计算10()f x dx ⎰.9.3 在极坐标系中二重积分的计算【学习方法导引】极坐标系中二重积分计算的基本技巧:(1)一般地,如果积分区域是圆域、扇形域或圆环形域,且被积函数为22(),f x y +(),yf x()x f y 等形式时,计算二重积分时,往往采用极坐标系来计算。

相关文档
最新文档