实验二:系统稳定性和稳态性能分析
实验题目 二阶系统瞬态响应和稳定性

实验题目 二阶系统瞬态响应和稳定性一 实验要求1 了解和掌握典型二阶系统模拟电路的构成方法及二阶闭环系统的传递函数标准式;2 研究二阶闭环系统的结构参数――无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影响;3 观察和分析欠阻尼,临界阻尼和过阻尼二阶闭环系统在阶跃信号输入时的瞬态阶跃响应曲线,并记录欠阻尼二阶闭环系统的动态性能指标Mp 、tp 、ts 值,并与理论计算做对比。
二 实验原理1 二阶闭环系统模拟电路2 实验电路的系统框图3 理论计算开环传递函数:)1()(+=TS TiS K S G 闭环传递函数标准式:2222)(1)()(nn n S S S G S G s ωξωωφ++=+= 自然频率(无阻尼振荡频率):TiTK=n ω ; 阻尼比:KT Ti 21=ξsT i 1 TsK+1 R(s) C(s)超调量 :%10021⨯=--eP M ξξπ; 峰值时间: 21ξωπ-=n pt积分环节(A2单元)的积分时间常数 11*1i T R C S == 惯性环节(A3单元)的惯性时间常数 22*0.1T R C S == 可变电阻R=4k 时, K=100/4=25, 81.15=n ω , 316.0=ξ(欠阻尼)%12.35=P M , S n pt 21.012=-=ξωπ;R=40k 时,K=100/25=4, 5=n ω , 1=ξ(临界阻尼) R=100k 时,K=100/100=1, 16.3=n ω , 58.1=ξ(过阻尼)三 实验步骤1 用信号发生器(B1)的‘阶跃信号输出’ 和‘幅度控制电位器’构造输入信号(Ui )2 构造模拟电路:按实验指导书图3-1-7安置短路套及测孔联线,3 联接虚拟示波器(B3)的:示波器输入端CH1接到A6单元信号输出端OUT ,CH1选×1’。
(4)运行、观察、记录:① 运行LABACT 程序,选择自动控制菜单下的线性系统的时域分析下的二阶典型系统瞬态响应和稳定性实验项目,再选择开始实验.② 分别将(A7)中的直读式可变电阻调整到4K 、40K 、100K ,按下B1按钮,用示波器观察在三种增益K 下,A6输出端C(t)的系统阶跃响应.。
求二阶系统的稳态输出[5篇]
![求二阶系统的稳态输出[5篇]](https://img.taocdn.com/s3/m/db0b7908c381e53a580216fc700abb68a982ad21.png)
求二阶系统的稳态输出[5篇]以下是网友分享的关于求二阶系统的稳态输出的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。
第1篇实验十二二阶系统的稳态性能研究实验原理1. 对实验所使用的系统进行分析为系统建模时,需要考虑各个环节的时间常数,应远小于输入正负方波的周期,只有在响应已经非常近稳定的时候才能将此时的值认为是稳态值。
N(s)E ss当r(t)=1(t)、n(t)=0时,单位阶跃响应的误差为:1110 0.01s +1 210=lim (s∙∙) =lim =s →0s →01+随开环增益的增大,稳态误差渐渐变小。
当r(t)=0、n(t)=1(t)时,单位阶跃响应的误差为:E ss1111=lim (s∙∙) ==s →01+1+随开环增益的增大,稳态误差渐渐变小。
当r(t)=0、n(t)=1(t)时,扰动位于开环增益之前的时候,单位阶跃响应的误差为:10+R 10+R110+R E ss =lim (s∙∙) ==s →01+1+随开环增益的增大,稳态误差渐渐增大。
当r(t)=1(t)、n(t)=0,A 3(s)为积分环节时,单位阶跃响应的误差为:11E ss =lim (s∙∙s →01+10 0.01s +1 ×0.01s=lim =0 s →0实验目的1、进一步通过实验了解稳态误差与系统结构、参数及输入信号的关系:(1)了解不同典型输入信号对于同一个系统所产生的稳态误差;(2)了解一个典型输入信号对不同类型系统所产生的稳态误差;(3)研究系统的开环增益K 对稳态误差的影响。
2、了解扰动信号对系统类型和稳态误差的影响。
3、研究减小直至消除稳态误差的措施。
实验步骤阶跃响应的稳态误差:(1)当r(t)=1(t)、n(t)=0时,A 1(s),A 3(s)为惯性环节,A 2(s)为比例环节,观察系统的输出C(t)和稳态误差e ss ,并记录开环放大系数K的变化对二阶系统输出和稳态误差的影响。
典型系统动态性能和稳定性分析

典型系统动态性能和稳定性分析系统动态性能和稳定性是指在外部扰动下,系统的响应速度和稳态特性。
这是评估系统质量和优化系统设计的重要指标。
在典型系统设计中,系统通常被建模为一个传递函数,可以用来描述系统的输出响应,其输入是系统输入和一些可能存在的扰动。
传递函数常常是一个复杂的非线性方程,需要使用线性化技术进行分析。
系统动态性能和稳定性可以通过研究系统的极点和零点来评估。
极点是传递函数的根,它们对系统的稳定性和动态响应有很大的影响。
一个系统是稳定的,当且仅当其所有极点的实部都小于零。
如果系统有一个或多个极点实部为正,那么它是不稳定的,并且会发生震荡或失控的行为。
因此,一个良好的系统设计应确保其所有极点都在复平面的左半面。
另一方面,零点是传递函数的根,它们在系统的频率响应和零状态响应中起着重要作用。
零点是传递函数的一个参数,表示在某个频率下传递函数被抵消或消除。
零点分布的位置对于系统的稳定性和响应都有重要的影响。
如果系统有零点,它们会抵消或消除特定频率下的输入信号。
因此,一个良好的系统设计应该尽可能使其零点靠近频率对应的极点,以达到良好的过渡特性和稳态精度。
系统的动态性能和稳定性可以通过研究系统的传递函数和控制策略来优化。
传递函数中的极点和零点分布可以通过调整系统参数或控制器参数来影响。
此外,使用优化方法,如PID控制器优化或系统识别方法,也可以改善系统性能。
这些方法可以帮助设计人员分析和优化系统响应,并提高系统的稳定性和性能。
在实际应用中,为了确保系统响应的快速性和稳定性,设计人员还可以使用高级控制技术,如预测控制、自适应控制和模糊控制。
这些技术可以更精细地控制系统,并通过自适应和智能控制来改善系统性能。
总之,系统的动态性能和稳定性是系统质量的重要指标,设计人员可以通过研究系统的传递函数和控制策略,以及应用高级控制技术来优化系统性能,从而实现快速响应和精确控制。
自动控制原理实验二系统的动态性能与稳态研究

自动控制原理实验二系统的动态性能与稳态研究系统的动态性能与稳态是自动控制原理中的重要概念,对于系统的分析和设计具有重要意义。
本实验将通过实际的控制系统,研究动态性能与稳态的相关特性。
实验目的:1.理解系统的动态性能和稳态的概念。
2.通过实验研究不同参数对系统动态性能和稳态的影响。
3.掌握如何调节参数以改善系统的动态性能和稳态。
实验器材:1.控制系统实验装置。
2.控制器。
3.传感器。
4.计算机及相关软件。
实验步骤:1.将控制系统实验装置连接好,包括传感器和执行器。
2.设置基本的控制系统参数,如比例增益、积分时间和微分时间。
3.对系统进行稳态分析,记录输出信号的稳定值。
4.通过改变控制器的参数,观察系统的动态响应特性。
例如,改变比例增益,观察系统的超调量和调节时间的变化。
5.改变积分时间和微分时间,观察系统的超调量和调节时间的变化。
6.对不同参数组合进行实验,总结参数与系统性能之间的关系。
实验结果:通过实验可以得到一些重要的结论:1.比例增益的增大可以减小超调量,但同时也可能引起系统的震荡。
2.积分时间的增大可以减小偏差,但也可能导致系统的不稳定。
3.微分时间的增大可以提高系统的稳定性,但也可能引起系统的震荡。
实验结论:本实验通过实际的控制系统,研究了动态性能和稳态的相关特性。
通过改变控制器的参数,可以调节系统的动态性能和稳态。
在实际应用中,需要根据具体的控制要求,选择合适的参数组合,以达到系统的稳定性和性能要求。
实验结果对于掌握自动控制原理中的动态性能和稳态概念,以及参数调节方法具有重要意义。
自动控制原理实验 控制系统稳定性分析和时域响应分析

实验二 控制系统稳定性分析和时域响应分析一、实验目的与要求1、熟悉系统稳定性的Matlab 直接判定方法和图形化判定方法;2、掌握如何使用Matlab 进行控制系统的动态性能指标分析;3、掌握如何使用Matlab 进行控制系统的稳态性能指标分析。
二、实验类型设计三、实验原理及说明1. 稳定性分析 1)系统稳定的概念经典控制分析中,关于线性定常系统稳定性的概念是:若控制系统在初始条件和扰动共同作用下,其瞬态响应随时间的推移而逐渐衰减并趋于原点(原平衡工作点),则称该系统是稳定的,反之,如果控制系统受到扰动作用后,其瞬态响应随时间的推移而发散,输出呈持续震荡过程,或者输出无限偏离平衡状态,则称该系统是不稳定的。
2)系统特征多项式以线性连续系统为例,设其闭环传递函数为nn n n mm m m a s a s a s a b s b s b s b s D s M s ++++++++==----11101110......)()()(φ 式中,n n n n a s a s a s a s D ++++=--1110...)(称为系统特征多项式;0...)(1110=++++=--n n n n a s a s a s a s D 为系统特征方程。
3)系统稳定的判定对于线性连续系统,其稳定的充分必要条件是:描述该系统的微分方程的特征方程具有负实部,即全部根在左半复平面内,或者说系统的闭环传递函数的极点均位于左半s 平面内。
对于线性离散系统,其稳定的充分必要条件是:如果闭环系统的特征方程根或者闭环传递函数的极点为n λλλ,...,21,则当所有特征根的模都小于1时,即),...2,1(1n i i =<λ,该线性离散系统是稳定的,如果模的值大于1时,则该线性离散系统是不稳定的。
4)常用判定语句2.动态性能指标分析系统的单位阶跃响应不仅完整反映了系统的动态特性,而且反映了系统在单位阶跃信号输入下的稳定状态。
实验一_系统响应及系统稳定性实验报告

实验一_系统响应及系统稳定性实验报告一、实验目的本实验旨在通过研究系统响应及系统稳定性的实验,掌握系统的动态特性及如何评价系统的稳定性。
二、实验仪器和器材1.计算机2.MATLAB软件3.稳态平台三、实验原理系统的响应是指系统对输入信号的反应。
在控制系统中,动态性能是系统的重要指标之一,它描述了系统响应的速度和稳定性。
首先通过给定的输入信号,将其输入到待测系统中,并记录系统的输出信号。
然后,通过分析输入信号和输出信号的关系,得到系统的动态性能参数,如过渡过程的时间、超调量等。
系统的稳定性是指系统在受到外界扰动时,能够保持稳定状态、不产生过大的波动。
一般通过稳定度来衡量系统的稳定性,而稳定度又可分为绝对稳定和相对稳定两种情况。
在稳定度分析中,通常使用稳定图的方式进行。
四、实验步骤1.运行MATLAB软件,打开控制系统实验模块。
2.设计一个给定的输入信号。
3.将输入信号输入待测系统中,记录系统的输出信号。
4.分析输入信号和输出信号的关系,得到系统的动态性能参数,如过渡过程的时间、超调量等。
5.通过稳态平台绘制系统的稳定图,评价系统的稳定性。
五、实验结果与分析通过实验我们得到了系统的动态性能参数,并绘制了系统的稳定图。
根据动态性能参数和稳定图来评价系统的动态特性和稳定性。
六、实验总结通过本次实验,我们学习了如何评价系统的动态性能和稳定性。
同时,我们也发现系统的动态特性和稳定性对于控制系统的性能起到了重要的影响。
在实际的控制系统设计中,需要充分考虑系统的动态特性和稳定性,以保证系统的性能和可靠性。
通过本次实验,我们进一步加深了对系统的理解,为日后的控制系统设计与优化提供了参考。
自控实验报告实验二

自控实验报告实验二一、实验目的本次自控实验的目的在于深入理解和掌握控制系统的性能指标以及相关参数对系统性能的影响。
通过实验操作和数据分析,提高我们对自控原理的实际应用能力,培养解决实际问题的思维和方法。
二、实验设备本次实验所使用的设备主要包括:计算机一台、自控实验箱一套、示波器一台、信号发生器一台以及相关的连接导线若干。
三、实验原理在本次实验中,我们主要研究的是典型的控制系统,如一阶系统和二阶系统。
一阶系统的传递函数通常表示为 G(s) = K /(Ts + 1),其中 K 为增益,T 为时间常数。
二阶系统的传递函数则可以表示为 G(s) =ωn² /(s²+2ζωn s +ωn²),其中ωn 为无阻尼自然频率,ζ 为阻尼比。
通过改变系统的参数,如增益、时间常数、阻尼比等,观察系统的输出响应,从而分析系统的稳定性、快速性和准确性等性能指标。
四、实验内容与步骤1、一阶系统的阶跃响应实验按照实验电路图连接好实验设备。
设置不同的时间常数 T 和增益 K,通过信号发生器输入阶跃信号。
使用示波器观察并记录系统的输出响应。
2、二阶系统的阶跃响应实验同样按照电路图连接好设备。
改变阻尼比ζ 和无阻尼自然频率ωn,输入阶跃信号。
用示波器记录输出响应。
五、实验数据记录与分析1、一阶系统当时间常数 T = 1s,增益 K = 1 时,系统的输出响应呈现出一定的上升时间和稳态误差。
随着时间的推移,输出逐渐稳定在一个固定值。
当 T 增大为 2s,K 不变时,上升时间明显变长,系统的响应速度变慢,但稳态误差基本不变。
2、二阶系统当阻尼比ζ = 05,无阻尼自然频率ωn = 1rad/s 时,系统的输出响应呈现出较为平稳的过渡过程,没有明显的超调。
当ζ 减小为 02,ωn 不变时,系统出现了较大的超调,调整时间也相应变长。
通过对实验数据的分析,我们可以得出以下结论:对于一阶系统,时间常数 T 越大,系统的响应速度越慢;增益 K 主要影响系统的稳态误差。
自动控制原理课件:线性系统的稳定性和稳态特性分析

上述系统在干扰作用消失后,能够恢复到 原始的平衡状态,或者说系统的零输入响应具 有收敛性质,则系统为稳定的。
由此可得到线性系统稳定的充分必要条件: 系统特征方程的所有根(系统的所有闭环极点),均位于复数s平面的左半部.
系统给定误差传递函数为
Er (s) R(s)
1 1 G(s)
1
1 K (0.5s 1)
s(s 1)(3s 1)
Er
(s)
s(s
s(s 1)(3s 1) 1)(3s 1) K (0.5s
1)
R(s)
esr
lim
s0
sEr
(s)
lim s
s0
s(s 1)(3s 1)
1
s(s 1)(3s 1) K(0.5s 1) s
3.3 劳斯稳定判据 线性系统稳定与否,取决于特征根的实部是否均为负值(复数s平面
的左半部).但是求解高阶系统的特征方程是相当困难的.而劳斯判据,
避免解特征方程,只需对特征方程的系数进行代数运算,就可以判断系统
的稳定性,因此这种数据又称为代数稳定判据.
1.劳斯判据 将系统的特征方程写成如下标准形式
下面要讨论系统跟踪输入信号的精确度或抑制干扰信号的能 力.
这里讨论的稳态误差仅限于由系统结构、参数及输入信号的不 同而导致的稳态误差,不包含由于具体元件的灵敏性、温湿度影响所 带来的误差问题。
控制系统的输入包含给定输入和扰动量, 对应的控制系统的稳态误差也分为两类:
给定稳态误差
扰动稳态误差
Er (s) R(s) B(s) R(s) Er (s)Gc (s)Go (s)H(s)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二:系统稳定性和稳态性能分析
主要内容:
自动控制系统稳定性和稳态性能分析上机实验
目的与要求:
熟悉 MATLAB 软件对系统稳定性分析的基本命令语句 熟悉 MATLAB 软件对系统误差分析的 Simuink 仿真 通过编程或 Simuink 仿真完成系统稳定性和稳态性能分析
一 实验目的
1、研究高阶系统的稳定性,验证稳定判据的正确性;
2、了解系统增益变化对系统稳定性的影响;
3、观察系统结构和稳态误差之间的关系。
二 实验任务
1、稳定性分析
欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。
(1)已知单位负反馈控制系统的开环传递函数为0.2( 2.5)()(0.5)(0.7)(3)s G s s s s s +=+++,用 MA TLAB 编写程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。
(2)已知单位负反馈控制系统的开环传递函数为( 2.5)()(0.5)(0.7)(3)k s G s s s s s +=+++,当取k =1,10,100用MA TLAB 编写程序来判断闭环系统的稳定性。
只要将(1)代码中的k 值变为1,10,100,即可得到系统的闭环极点,从而判断系统的稳定性,并讨论系统增益k 变化对系统稳定性的影响。
2、稳态误差分析
(1)已知如图所示的控制系统。
其中2(5)()(10)
s G s s s +=+,试计算当输入为单位阶跃信号、单位斜坡信号和单位加速度信号时的稳态误差。
从 Simulink 图形库浏览器中拖曳Sum (求和模块)、Pole-Zero (零极点)模块、Scope (示波器)模块到仿真操作画面,连接成仿真框图如右上图所示:
(2)若将系统变为I 型系统,5()(10)
G s s s =+,在阶跃输入、斜坡输入和加速度信
号输入作用下,通过仿真来分析系统的稳态误差。
三实验数据
1.(1)
>> [z1,p1,k1]=zpkdata(Go,'v')
z1 =-2.5000
p1 =-3.0058
-0.0971 + 0.3961i
-0.0971 - 0.3961i
-1.0000
k1 = 0.2000
1.(2)
K=1
K=10
K=100
2.(1)Ⅱ行系统。
单位阶跃:
稳态误差=0 单位斜坡:
稳态误差=0 单位加速度:
稳态误差=1
2.(2)Ⅰ型系统。
单位阶跃:
稳态误差=0 单位斜坡:
稳态误差=2 单位加速度:
稳态误差=∞
四实验结论
1.当系统的闭环极点的实部均为负数时,系统是稳定的,此时对应极点分布在s平面的左半部分。
系统的稳定性与增益的大小有关,增益增大超过一定范围,则系统会由稳定变为不稳定,增益越大。
2.对于Ⅰ型系统,单位阶跃信号的误差为0,单位斜坡信号的误差为稳态速度误差系数的倒数,单位加速度信号的误差为无穷大。
对于Ⅱ型系统,单位阶跃、单位斜坡信号的误差均为0,单位加速度信号的误差为稳态加速度误差系数的倒数。
也可见,系统型别越高,对所加输入信号的要求越低。