pn结的特性,PN结的击穿特性,PN结的电容特性

合集下载

PN结及其特性详细介绍

PN结及其特性详细介绍

PN结及其特性详细介绍1. PN结的形成在一块本征半导体在两侧通过扩散不同的杂质,分别形成N型半导体和P型半导体。

此时将在N型半导体和P型半导体的结合面上形成如下物理过程:扩散到对方的载流子在P区和N区的交界处附近被相互中和掉,使P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。

这样在两种半导体交界处逐渐形成由正、负离子组成的空间电荷区〔耗尽层〕。

由于P区一侧带负电,N区一侧带正电,所以出现了方向由N区指向P 区的内电场PN结的形成当扩散和漂移运动到达平衡后,空间电荷区的宽度和内电场电位就相对稳定下来。

此时,有多少个多子扩散到对方,就有多少个少子从对方飘移过来,二者产生的电流大小相等,方向相反。

因此,在相对平衡时,流过PN结的电流为0。

对于P型半导体和N型半导体结合面,离子薄层形成的空间电荷区称为PN结。

在空间电荷区,由于缺少多子,所以也称耗尽层。

由于耗尽层的存在,PN结的电阻很大。

PN结的形成过程中的两种运动:多数载流子扩散少数载流子飘移PN结的形成过程〔动画〕2. PN结的单向导电性PN结具有单向导电性,假设外加电压使电流从P区流到N区,PN结呈低阻性,所以电流大;反之是高阻性,电流小。

如果外加电压使PN结中:P区的电位高于N区的电位,称为加正向电压,简称正偏;P区的电位低于N区的电位,称为加反向电压,简称反偏。

(1) PN结加正向电压时的导电情况PN结加正向电压时的导电情况如下图。

外加的正向电压有一局部降落在PN结区,方向与PN结内电场方向相反,削弱了内电场。

于是,内电场对多子扩散运动的阻碍减弱,扩散电流加大。

扩散电流远大于漂移电流,可忽略漂移电流的影响,PN结呈现低阻性。

PN结加正向电压时的导电情况(2) PN结加反向电压时的导电情况外加的反向电压有一局部降落在PN结区,方向与PN结内电场方向一样,加强了内电场。

内电场对多子扩散运动的阻碍增强,扩散电流大大减小。

PN结——电容特性优秀课件

PN结——电容特性优秀课件

的电子电流一定;半导体流向金

属的电子电流因电位增加而降低,
故有半导体→金属反向电流(恒
定)。
金属半导体接触I-U特性类似于pn结的伏安特性
I
正向特性
VD
反向特性
肖特基二极管
利用金属—半导体整流接触特性制成的二极管称 为肖特基二极管。
肖特基二极管与pn二极管的比较
相同:单向导电性 不同:
1 反向电流产生机制不同: ➢肖特基二极管为多数载流子工作 ➢pn接面二极管为少数载流子工作 ➢结果:肖特基二极管的饱和电流要 大得多,起始电流也较大。
P
△U变化时,P区 积累的非平衡少 子浓度分布图
3 1
2
电子浓度
1 ΔU=0
2 ΔU<0
x 3 ΔU>0
U ΔU
N
+ +
+ +
....................................
. ..
.
.
P
PN结正向偏置电压越高,积累的非平衡少子越多。
这种电容效应用扩散电容CD表征。
CD Q U
PN结正偏时,由N区扩 散到P区的电子(非平衡少 子),堆积在 P 区内紧靠 PN结的附近,到远离交界 面处,形成一定的浓度梯 度分布曲线。电压增大, 正向(扩散)电流增大。
扩散电容示意图
U ΔU
N
+ +
+ +
....................................
. . .
..
C1 L
Байду номын сангаасDC
R
+ UD –

3.2 PN结的形成及特性

3.2 PN结的形成及特性
3.2 PN结 的形成及特性
在同一片半导体基片上,分别制造 在同一片半导体基片上,分别制造P 型半导 体和N 型半导体,经过载流子的扩散, 体和 型半导体,经过载流子的扩散,在它们的 交界面处就形成了PN 结。 交界面处就形成了
- - - - - - - - - - - - - - - - - - - - - - - - P 型半导体 + + + + + + + + + + + + + + + + + + + + + + + + N 型半导体
1.PN 结正向偏置 1.
变薄 - + + + + 内电场
VF
内电场被削弱, 内电场被削弱,多子 的扩散加强能够形成 较大的扩散电流。 较大的扩散电流。
+ P
- - -
_ N
IF
外电场
R
2.PN 结反向偏置 2. 变厚
- + + + + 内电场 外电场 内电场被被加强,多子 内电场被被加强, 的扩散受抑制。 的扩散受抑制。少子漂 移加强, 移加强,但少子数量有 限,只能形成较小的反 向电流。 向电流。 +
iD
V( BR )
vD
4. PN结的击穿特性
击穿并不意味着PN结烧坏。 击穿并不意味着 结烧坏。 结烧坏
雪崩击穿: 随着反向电压增大, 电场也增大, 雪崩击穿 : 随着反向电压增大 , 电场也增大 ,
电子和空穴在强电场加速下获得很大的动能, 电子和空穴在强电场加速下获得很大的动能 , 与硅原子相撞时,使价电子脱离共价键的束缚, 与硅原子相撞时, 使价电子脱离共价键的束缚 , 产生新的电子空穴对, 产生新的电子空穴对 , 新的电子空穴对又产生 碰撞,又产生新的电子空穴对, 碰撞 , 又产生新的电子空穴对 , 这种连锁反应 使载流子数目增加,从而电流增加。 V 击穿电压>6V 击穿电压 译音), 齐纳击穿(Zener译音 ,又称隧道击穿:杂 译音 又称隧道击穿: 质浓度很高时, 结的阻挡层很薄 结的阻挡层很薄, 质浓度很高时,PN结的阻挡层很薄,虽然反 向电压只有几伏,但电场强度却很大, 向电压只有几伏 , 但电场强度却很大 , 强电 场可把共价键中的电子拉出, 场可把共价键中的电子拉出 , 新产生的电子 空穴使PN结反向电流激增 。 击穿电压 结反向电流激增。 空穴使 结反向电流激增 击穿电压<6V

第二节PN结

第二节PN结

I D I T 求得VB 近似表达式
式中
VT
VB
VT
ln
Na Nd ni 2
kT q
VT 称为热电压,单位为伏特。
当室温为 T 300K时 VT 26mv
上式表明,PN结两边的掺杂浓度Na、Nd 越大,ni 越小, VB就越大。 锗的ni 大于硅,因而硅的VB 大于锗。
P区
空间电荷区
致使PN结中的载流子的数量急剧增多 流过PN结的反向电流也就急剧增大。
2、齐纳击穿: 发生在掺杂浓度较高的PN结中,当PN结两边的掺杂浓
度很高时,PN结将变得很薄,此时碰撞机会很小,不容易发 生碰撞电离。
但这种结构不用加太大的反向电压,就能建立很强的 电场,足以把PN结内中性原子的价电子直接从共价键中拉 出来,产生新 的自由电子–空穴对,这种过程称作场致激发, 场致激发能产生大量的载流子,是通过PN结的反向电流剧 增,呈现反向击穿现象。
或者说,阻挡层主要向低掺杂一侧扩展。
例如 P N 结,即P区的Na大于N区的Nd

Xn Xp
还可证明,动态平衡下PN结的阻挡层宽度为:
1
lo

xn

xp


2
q
VB
Na Nd NaNd
2
式中、ε为介电常数,由此式可知,VB 越小或者Na和Nd 越大,lo就越小。
1
1
-2 -1
V/V
0 0.2 0.4 0.6 0.8
实验结果表明 温度每升高10℃,IS 约增加一倍; 温度每升高1℃,VD(on) 约减小2.5mV。 当温度进一步升高时,热平衡少子浓度进一步增加。
在极端的情况下,本征激发占支配地位,杂质半导体就变得 与本征半导体相似,PN结也就不存在了。

电子线路第四版线性部分-谢嘉奎-复习资料全

电子线路第四版线性部分-谢嘉奎-复习资料全

电子线路第四版线性部分-谢嘉奎-复习资料全申明:本复习资料仅作为考试参考,不代表百分百会考本资料上的容。

一、选择填空题1、本征半导体:纯净的、不含杂质的半导体称为本征半导体。

2、本征激发是半导体中产生自由的电子空穴对的条件。

3、N型半导体:本征半导体中掺入少量五价元素构成。

4、P型半导体:本征半导体中掺入少量三价元素构成。

5、PN结的基本特性:单向导电性(即正向导通,反向截止)。

除了单向导电性外还有反向击穿特性、温度特性、电容特性。

6、PN结的伏安特性方程式:正偏时:反偏时:其中:热电压倍。

7、硅PN结:VD(on)=0.7V锗PN结:VD(on)=0.3V8、PN结的击穿特性:热击穿(二极管损坏,不可恢复),齐纳击穿(可恢复)。

9、PN结的电容特性:势垒电容、扩散电容。

10、三极管部结构特点:发射区掺杂浓度大;基区薄;集电结面积大。

11、三极管的工作状态及其外部工作条件:放大模式:发射结正偏,集电结反偏;饱和形式:发射结正偏,集电结正偏;≈26mV(室温);温度每升高10℃,Is约增加一截止模式:发射结反偏,集电结反偏。

12、三极管工作在放大模式下:对NPN管各极电位间要求:Ve<Vb<Vc对PNP管各极电位间要求:Ve>Vb>Vc解:电压值都为正,可判断为NPN管;假设三极管工作在放大状态,根据电位间要求:Ve<Vb<Vc,可判断U1=10V 为C极电压,U2-U3=0.7V,可判断U2=3V为B极电压;U3=2.3V为E极电压;且UCE=10-2.3=7.7V>0.3V,由此可判断此三极管为NPN型三极管,且工作在放大状态,假设成立。

13、三极管静态工作点:IBQ、TCQ、VCEQ14、公式:15、三极管的三种组态:16、混合Π型小号电路模型:vB Er b ei BQiEvB EiBiEQ26(1)re(1)ICQrce三极管输出电阻,数值较大。

最新第二章-PN结

最新第二章-PN结
达几百千欧以上)。
漂移电流大于扩散电

内电场
外电场 U

流,可忽略扩散电流
UB+U 在一定的温度条件下,
由本征激发决定的少
E
R
子浓度是一定的
故少子形成 的漂移电流是恒定的,基本上与所加反向 电压的大小无关,这个电流也称为 反向饱和电流IS。
《半导体器件》中国计量学院光电学院
综上所述:PN结加正向电压时,呈现低 电阻,具有较大的正向扩散电流;PN结加反 向电压时,呈现高电阻,具有很小的反向漂 移电流。 即PN结具有单向导电特性。
第二章-PN结
一、PN结的形成 二、PN结的单向导电性 三、PN结的击穿特性 四、PN结的电容效应 五、 PN结的隧道效应
《半导体器件》中国计量学院光电学院
P型半导体和N型半导体相结合——PN结
PN结是构造半导体器件的基本单元。其 中,最简单的晶体二极管就是由PN结构 成的。
PN
异质结、同质结
《半导体器件》中国计量学院光电学院
发生击穿并不一定意味着PN结被损坏。 当PN结反向击穿时, 只要注意控制反向
电流的数值(一般通过串接电阻R实现),
不使其过大, 以免因过热而烧坏PN结, 当反向电压(绝对值)降低时, PN结的性 能就可以恢复正常。 稳压二极管正是利用了PN结的反向击 穿特性来实现稳压的, 当流过PN结的电 流变化时, 结电压基本保持不变。
关键在于耗尽层的存在
《半导体器件》中国计量学院光电学院
PN结的伏安特性
UD
I
伏安特性方程 ID IS(eUT 1)
ID
UBR U B
O
U
加正向电压时,UD只要大
于UT几倍以上,IDISeUD/UT

半导体二极管及其应用习题解答

半导体二极管及其应用习题解答

半导体二极管及其应用习题解答Document number:NOCG-YUNOO-BUYTT-UU986-1986UT第1章半导体二极管及其基本电路教学内容与要求本章介绍了半导体基础知识、半导体二极管及其基本应用和几种特殊二极管。

教学内容与教学要求如表所示。

要求正确理解杂质半导体中载流子的形成、载流子的浓度与温度的关系以及PN结的形成过程。

主要掌握半导体二极管在电路中的应用。

表第1章教学内容与要求内容提要1.2.1半导体的基础知识1.本征半导体高度提纯、结构完整的半导体单晶体叫做本征半导体。

常用的半导体材料是硅(Si)和锗(Ge)。

本征半导体中有两种载流子:自由电子和空穴。

自由电子和空穴是成对出现的,称为电子空穴对,它们的浓度相等。

本征半导体的载流子浓度受温度的影响很大,随着温度的升高,载流子的浓度基本按指数规律增加。

但本征半导体中载流子的浓度很低,导电能力仍然很差,2.杂质半导体(1) N 型半导体 本征半导体中,掺入微量的五价元素构成N 型半导体,N 型半导体中的多子是自由电子,少子是空穴。

N 型半导体呈电中性。

(2) P 型半导体 本征半导体中,掺入微量的三价元素构成P 型半导体。

P 型半导体中的多子是空穴,少子是自由电子。

P 型半导体呈电中性。

在杂质半导体中,多子浓度主要取决于掺入杂质的浓度,掺入杂质越多,多子浓度就越大。

而少子由本征激发产生,其浓度主要取决于温度,温度越高,少子浓度越大。

1.2.2 PN 结及其特性1.PN 结的形成在一块本征半导体上,通过一定的工艺使其一边形成N 型半导体,另一边形成P 型半导体,在P 型区和N 型区的交界处就会形成一个极薄的空间电荷层,称为PN 结。

PN 结是构成其它半导体器件的基础。

2.PN 结的单向导电性PN 结具有单向导电性。

外加正向电压时,电阻很小,正向电流是多子的扩散电流,数值很大,PN 结导通;外加反向电压时,电阻很大,反向电流是少子的漂移电流,数值很小,PN 结几乎截止。

半导体器件基础知识

半导体器件基础知识

半导体基础知识一、半导体本础知识(一)半导体自然界的物质按其导电能力区别,可分为导体、半导体、绝缘体三类。

半导体是导电能力介于导体和绝缘体之前的物质,其电阻率在10-3~109Ω范围内。

用于制作半导体元件的材料通常用硅或锗材料。

(二)半导体的种类在纯净的半导体中掺入特定的微量杂质元素,能使半导体的导电能力大提高。

掺入杂质后的半导体称为杂质半导体。

根据掺杂元素的性质不同,杂质半导体可分为N型和P型半导体。

(三)PN结及其特性1、PN结:PN结是构成半导体二极管、三极管、场效应管和集成电路的基础。

它是由P型半导体和N型半导体相“接触”后在它们交界处附近形成的特殊带电薄层。

2、PN结的单向导电性:当PN结外加正向电压(又叫正向偏置)时,PN结会表现为一个很小的电阻,正向电流会随外加的电压的升高而急速上升。

称这时的PN结处于导通状态。

当PN结外加反向电压(以叫反向偏置)时,PN结会表现为一个很大的电阻,只有极小的漏电流通过且不会随反向电压的增大而增大,这时的电流称为反向饱和电流。

称这时的PN结处于截止状态。

当反向电压增加到某一数值时,反向电流急剧增大,这种现象称为反向击穿。

这时的反向电压称为反向击穿电压,不同结构、工艺和材料制成的管子,其反向击穿电压值差异很大,可由1伏到几百伏,甚至高达数千伏。

3、频率特性由于结电容的存在,当频率高到某一程度时,容抗小到使PN结短路。

导致二极管失去单向导电性,不能工作,PN结面积越大,结电容也越大,越不能在高频情况下工作。

二、半导体二极管(一)半导体二极管及其基本特性1、半导体二极管:半导体二极管(简称为二极管)是由一个PN结加上电极引线并封装在玻璃或塑料管壳中而成的。

其中正极(或称为阳极)从P区引出,负极(或称为阴极)从N区引出。

以下是常见的一些二极管的电路符号:普通二极管稳压二极管发光二极管整流桥堆2、二极管的伏安特性二极管的伏安特征如下图所示:二极管的伏安特性曲线(二)二极管的分类二极管有多种分类方法1、按使用的半导体材料分类二极管按其使用的半导体材料可分为锗二极管、硅二极管、砷化镓二极管、磷化镓二极管等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

pn结的特性,PN结的击穿特性,PN结的电容特性
当反向电压增大到一定值时,PN 结的反向电流将随反向电压的增加而急剧增加,这种现象称为PN 结的击穿,反向电流急剧增加时所对应的电压称为反向击穿电压,如上图所示,PN 结的反向击穿有雪崩击穿和齐纳击穿两种。

1、雪崩击穿:阻挡层中的载流子漂移速度随内部电场的增强而相应加快到一
定程度时,其动能足以把束缚在共价键中的价电子碰撞出来,产生自由电子—空穴对新产生的载流子在强电场作用下,再去碰撞其它中性原子,又产生新的自由电子—空穴对,如此连锁反应,使阻挡层中的载流子数量急剧增加,象雪崩一样。

雪崩击穿发生在掺杂浓度较低的PN 结中,阻挡层宽,碰撞电离的机会较多,雪崩击穿的击穿电压高。

2、齐纳击穿:当PN 结两边掺杂浓度很高时,阻挡层很薄,不易产生碰撞电离,但当加不大的反向电压时,阻挡层中的电场很强,足以把中性原子中的价电子直接从共价键中拉出来,产生新的自由电子—空穴对,这个过程称为场致激发。

一般击穿电压在6V 以下是齐纳击穿,在6V 以上是雪崩击穿。

3、击穿电压的温度特性:温度升高后,晶格振动加剧,致使载流子运动的平均自由路程缩短,碰撞前动能减小,必须加大反向电压才能发生雪崩击穿具有正的温度系数,但温度升高,共价键中的价电子能量状态高,从而齐纳击穿电压随温度升高而降低,具有负的温度系数。

6V
左右两种击穿将会同时发生,击穿电压的温度系数趋于零。

4、稳压二极管:PN 结一旦击穿后,尽管反向电流急剧变化,但其端电压几乎不变(近似为V(BR),只要限制它的反向电流,PN 结就不会烧坏,利用这一特性可制成稳压二极管,其电路符号及伏安特性如上图所示:其主要参数有:VZ 、Izmin 、Iz 、Izmax。

相关文档
最新文档