高中数学第一章计数原理1.3.1二项式定理练习含解析
高二数学 第一章1.3.1 二项式定理

本
解析 依题意 C57a2+C37a4=2C74a3.
课
时 由于 a≠0,整理得 5a2-10a+3=0,
栏
目 开 关
解得
a=1±
10 5.
练一练·当堂检测、目标达成落实处
1.3.1
4.求2
x-
1 6 x
的展开式.
解 先将原式化简,再展开,得
本
2 x- 1x6=2x-x 16=x13(2x-1)6
开 关
(a+b)在相乘时都有两种选择:选 a 或选 b,而且每个(a+b)
中的 a 或 b 都选定后,才能得到展开式的一项.由分步乘法
计数原理,在合并同类项之前,(a+b)2 展开式共有 2×2=
22 项,而且 a2-kbk 相当于从 2 个(a+b)中取 k 个 b 的组合数
Ck2,即 a2-kbk 的系数是 Ck2.
பைடு நூலகம்
当 9-2r=5 时,解得 r=2,所以系数为 36.
所以展开式中,不含 x6 项,含有 x5 项,系数为 36.
研一研·问题探究、课堂更高效
1.3.1
探究点三 综合应用
例3
已知
x- 2
1 4
x
n
的展开式中,前三项系数的绝对值依次
成等差数列.
本
(1)证明:展开式中没有常数项;
课
时
(2)求展开式中所有的有理项.
栏 目 开 关
(即1)证n2-明9n+由8题=意0,得:2Cn1·12=1+Cn2·122,
∴n=8 (n=1 舍去).
∴Tk+1=Ck8(
x)8-k·-241
xk=-12k·Ck8x
8-k 2
·x-4k =
高中数学 第1章 计数原理 1.3 二项式定理 1.3.1 二项式定理 新人教B版选修2-3

(2)化简(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1).
解 原式=C05(x-1)5+C15(x-1)4+C25(x-1)3+C35(x-1)2 +C45(x-1)+C55-1
=[(x-1)+1]5-1=x5-1.
规律方法 运用二项式定理展开二项式,要记准展开式的 通项公式,对于较复杂的二项式,有时先化简再展开更简 捷;要搞清楚二项展开式中的项以及该项的系数与二项式 系数的区别.逆用二项式定理可将多项式化简,对于这类问 题的求解,要熟悉公式的特点、项数、各项幂指数的规律 以及各项的系数.
要点二 二项展开式通项的应用 例2 若 ( x+ 1 )n展开式中前三项系数成等差数列,求:
4 2x (1)展开式中含x的一次项; 解 由已知可得 C0n+C2n·212=2C1n·12, 即n2-9n+8=0, 解得n=8,或n=1(舍去).
Tr+1=Cr8(
x)8-r·(
1
4
)r=Cr8·2-r·x 4-34r,
+
C
2 2n+1
×142n
-
1×52
-
…
+
C22nn+1×14×52n-C22nn+ +11×52n+1+52n+1
=
14(142n
-
C
1 2n+1
×142n
-
1×5
+
C
22n+1×142n
-
2×52
-
…
+
C22nn+1×52n).
上式是14的倍数,能被14整除,所以34n+2+52n+1能被14整除 .
10-2r 令 3 =2,得
r=12(10-6)=2.
故 x2 项的系数为 C210(-3)2=405.
高中数学 第一章 计数原理 1.3 二项式定理 1.3.3 二项式定理习题课教案 新人教A版选修2-

二项式定理习题课教学目标知识与技能1.能熟练地掌握二项式定理的展开式及其有关概念.2.会用二项式定理解决与二项展开式有关的简单问题.3.能熟练掌握杨辉三角及二项式系数的有关性质.4.会用二项式系数的性质解决一些简单问题,并能熟练地使用赋值法.过程与方法1.能解决二项展开式的有关概念问题:项、二项式系数、系数、有理项、无理项、常数项、整数项等.2.能用二项式定理解决诸如整除、近似值、求和等有关问题.3.能用二项式系数的有关性质,解决诸如:最值、二项式系数和、系数和等问题.情感、态度与价值观1.培养学生对整个数学知识的驾驭能力,能在一定高度上进行数学知识的应用.2.培养学生观察、归纳的能力以及分析问题与解决问题的能力.3.进一步提升学生学好数学用好数学的积极性,进一步提升学生学习数学的兴趣.重点难点教学重点:掌握二项展开式,掌握二项式系数的有关性质,掌握解决二项式定理性质等有关问题的方法.教学难点:利用二项式定理解决有关问题,利用二项式系数的性质解决有关问题.教学过程复习巩顾前面我们学习了二项式定理,请回顾:1.(a+b)n=________________(n∈N*),这个公式表示的定理叫做二项式定理,公式右边的多项式叫做(a+b)n的______________,其中C r n(r=0,1,2,…,n)叫做______________,通项是指展开式的第__________________项,共有____________项.其中二项式系数是____________,系数是____________.2.二项式系数的四个性质(杨辉三角的规律) (1)对称性:____________________. (2)性质2:______________________.(3)二项式系数的最大值________________________.(4)二项式系数之和____________________,所用方法是____________________. 答案:1.(a +b)n=C 0n a n+C 1n an -1b +C 2n an -2b 2+…+C r n an -r b r+…+C n n b n(n∈N )、展开式、二项式系数、r +1、n +1、C rn 、变量前的常数2.(1)C mn =-mn (2)C rn +1=C r -1n +C rn(3)当n 是偶数时,中间的一项取得最大值,即C n2n 最大;当n 是奇数时,中间的两项相等,且同时取得最大值,即C n -12n =C n +12n 最大(4)C 0n +C 1n +C 2n +…+C rn +…+C nn =2n赋值法典型示例类型一:二项展开式的有关概念 例1试求:(1)(x 3-2x 2)5的展开式中x 5的系数;(2)(2x 2-1x)6的展开式中的常数项;(3)在(3x +32)100的展开式中,系数为有理数的项的个数.思路分析:理解二项展开式的有关概念,什么是二项式系数,什么是系数,什么是项,什么是常数项、有理项、无理项等,其实都是由通项入手,根据变量的系数、指数进行判断,当指数为0时是常数项,当指数是整数时是有理项,当指数是分数时是无理项.解:(1)T r +1=C r5(x 3)5-r(-2x2)r =(-2)r C r 5x 15-5r ,依题意15-5r =5,解得r =2.故(-2)2C 25=40为所求x 5的系数.(2)T r +1=C r 6(2x 2)6-r(-1x)r =(-1)r ·26-r ·C r 6x 12-3r ,依题意12-3r =0,解得r =4.故(-1)4·22C 26=60为所求的常数项.(3)T r +1=C r 100(3x)100-r(32)r =C r100·350-r 2·2r 3x 100-r ,要使x 的系数为有理数,指数50-r 2与r 3都必须是整数,因此r 应是6的倍数,即r =6k(k∈Z ),又0≤6k≤100,解得0≤k≤1623(k∈Z ),∴x 的系数为有理数的项共有17项.点评:求二项展开式中具有某特定性质的项,关键是确定r 的值或取值X 围.应当注意的是二项式系数与二项展开式中各项的系数不是同一概念,要加以区分.[巩固练习]试求:(1)(x +2)10(x 2-1)的展开式中x 10的系数;(2)(|x|+1|x|-2)3的展开式中的常数项.解:(1)∵(x+2)10=x 10+20x 9+180x 8+…,∴(x+2)10(x 2-1)的展开式中x 10的系数是-1+180=179.(2)∵(|x|+1|x|-2)3=(|x|-1|x|)6,∴所求展开式中的常数项是-C 36=-20.类型二:二项展开式的有关应用——简单应用例2求(x -1)-(x -1)2+(x -1)3-(x -1)4+(x -1)5的展开式中x 2的系数. 解:∵(x-1)-(x -1)2+(x -1)3-(x -1)4+(x -1)5=x -1{1-[-x -1]5}1-[-x -1]=x -1+x -16x ,∴所求展开式中x 2的系数就是(x -1)6的展开式中x 3的系数-C 36=-20.点评:这是一组将一个二项式扩展为假设干个二项式相乘或相加,或扩展为简单的三项展开式的问题,求解的关键在于转化为二项展开式的问题,转化时要注意分析题目中式子的结构特征.能够最大限度地考查学生对知识的把握程度.[巩固练习](1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中x 3项的系数是( )A .74B .121C .-74D .-121 解析:先求和:(1-x)5+(1-x)6+(1-x)7+(1-x)8=1-x 5[1-1-x4]1-1-x=1-x5[4x -6x 2+4x 3-x 4]x,分子的展开式中x 4的系数,即为原式的展开式中x 3项的系数,(-1)×1+4×(-C 15)-6C 25+4×(-C 35)=-1-20-60-40=-121,所以选D.答案:D类型三:二项展开式的有关应用:整除、不等式、近似值等问题 例3证明:(1)2≤(1+1n)n <3,其中n∈N *;(2)证明:对任意非负整数n,33n-26n -1可被676整除.思路分析:对于二项式中的不等式,通过展开式,分析其中的特殊项,可以证明一些简单的不等式问题;对于整除问题同样如此,关键是把二项式拆成676的形式;对于比较麻烦的数列问题,我们经常采用的方法就是数学归纳法,此题也不例外.证明:(1)(1+1n )n =1+C 1n ·1n +C 2n (1n )2+…≥2(当且仅当n =1时取等号).当n =1时,(1+1n)n=2<3显然成立;当n≥2时,(1+1n )n =C 0n +C 1n ·1n +C 2n ·1n 2+…+C nn ·1n n =2+n(n -1)2!1n 2+n(n -1)(n -2)3!1n 3+…+n(n -1)…2·1n !1n n =2+12!n n n -1n +13!n n n -1n n -2n +…+1n !n n n -1n …2n 1n <2+12!+13!+…1n !<2+11×2+12×3+…+1n(n -1)=2+(1-12)+(12-13)+…+(1n -1-1n )=3-1n <3.综上所述:2≤(1+1n)n <3,其中n∈N *.(2)当n =0,n =1时33n-26n -1=0,显然33n-26n -1可被676整除.当n≥2时,33n-26n -1=27n-26n -1=(1+26)n-26n -1=1+26n +C 2n ·262+…+C nn ·26n-26n -1=C 2n ·262+C 3n ·263+…+C nn 26n=676(C 2n +26C 3n +…+26n -2C nn).综上所述:对任意非负整数n,33n-26n -1可被676整除.点评:用二项式定理解决整除问题是二项式定理的一大特色,这是二项展开式的一种基本应用,通过对二项式的拆解,我们可以解决一些看似很难但易解决的问题.[巩固练习]m ,n 是正整数,f(x)=(1+x)m+(1+x)n的展开式中x 的系数为7, (1)试求f(x)中的x 2的系数的最小值;(2)对于使f(x)中的x 2的系数为最小的m ,n ,求出此时x 3的系数; (3)利用上述结果,求f(0.003)的近似值(精确到0.01). 解:根据题意得:C 1m +C 1n =7,即m +n =7.(*)(1)x 2的系数为C 2m+C 2n=m(m -1)2+n(n -1)2=m 2+n 2-m -n2.将(*)变形为n =7-m 代入上式得:x 2的系数为m 2-7m +21=(m -72)2+354.故当m =3或4时,x 2的系数的最小值为9.(2)当m =3,n =4或m =4,n =3时,x 3的系数为C 33+C 34=5. (3)f(0.003)≈2.02.类型四:二项式系数的最大值、系数的最大值问题 例4求(x -1)9的展开式中系数最大的项.思路分析:二项式系数最大的项我们可以根据公式求解,但是系数最大的项怎么求呢?观察此题中二项式系数与系数之间的关系,我们发现它们只不过相差一个负号而已,所以可以通过二项式系数的大小反映系数的大小,只不过要注意正负号.解:T r +1=(-1)r C r 9x 9-r .∵C 49=C 59=126,而(-1)4=1,(-1)5=-1,∴T 5=126x 5是所求系数最大的项.点评:此类问题仍然是利用二项展开式的通项公式来求解,但在解题过程中要注意一些常用方法和数学思想的应用.[巩固练习] 求(x +124x)8展开式中系数最大的项.解:记第r 项系数为T r ,设第k 项系数最大,那么有⎩⎪⎨⎪⎧T k ≥T k -1,T k ≥T k +1,又T r =C r -182-r +1,那么有⎩⎪⎨⎪⎧C k -182-k +1≥C k -282-k +2,C k -182-k +1≥C k 82-k ,即⎩⎪⎨⎪⎧8!(k -1)!(9-k)!≥8!(k -2)!(10-k)!×2,8!(k -1)!(9-k)!×2≥8!k !(8-k)!,∴⎩⎪⎨⎪⎧1k -1≥2k -2,29-k ≥1k .解得3≤k≤4,∴系数最大的项为第3项T 3=7x 52和第4项T 4=7x 72.类型五:二项式系数之和、系数之和等问题例5假设(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,那么(a 0+a 2+a 4)2-(a 1+a 3)2的值等于__________;思路分析:注意到与系数的和差有关,所以可以用赋值法求得奇数项的系数之和与偶数项的系数之和,注意使用平方差公式.解:令x =1,得a 0+a 1+a 2+a 3+a 4=(2+3)4,令x =-1,得a 0-a 1+a 2-a 3+a 4=(3-2)4,由此可得(a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 1+a 2+a 3+a 4)(a 0-a 1+a 2-a 3+a 4)=[(3+2)(3-2)]4=1.点评:在二项式系数的性质应用中,尤其是系数和的问题,我们经常使用赋值法,这是一种奇妙的方法,可以帮助我们在不用计算每一个系数的前提下,求出各个系数的和.[巩固练习](1-2x)7=a 0+a 1x +a 2x 2+…+a 7x 7, 求(1)a 0+a 1+…+a 7的值;(2)a 0+a 2+a 4+a 6及a 1+a 3+a 5+a 7的值; (3)各项二项式系数和.解:(1)令x =1,那么a 0+a 1+…+a 7=-1.(2)令x =-1,那么a 0-a 1+a 2-a 3+…+a 6-a 7=2 187. 那么a 1+a 3+a 5+a 7=-1 094;a 0+a 2+a 4+a 6=1 093. (3)各项二项式系数和C 07+C 17+…+C 77=27=128. [拓展实例]例1(1+3x)6(1+14x)10的展开式中的常数项为( )A.1 B.46 C.4 245 D.4 246思路分析:对于非一般的二项式问题,要注意转化成二项式问题解决.此题虽然有两个式子相乘,只要我们写出整个式子的通项,令指数为0,即可求得常数项.解:先求(1+3x)6的展开式中的通项.T r+1=C r6(x13)r=C r6xr3,r=0,1,2,3,4,5,6.再求(1+14x )10的展开式中的通项.T k+1=C k10(x-14)k=C k10x-k4,k=0,1,2,3,4,…,10.两通项相乘得:C r6x r3C k10x-k4=C r6C k10xr3-k4,令r3-k4=0,得4r=3k,这样一来,(r,k)只有三组:(0,0),(3,4),(6,8)满足要求.故常数项为:1+C36C410+C66C810=4 246.点评:对于乘积的式子或者三项的式子的展开问题,我们可以通过化归思想,将其转化成二项展开式问题.要注意此题中,常数项的位置有三处.[巩固练习](1+x+x2)(x+1x3)n的展开式中没有..常数项,n∈N*,且2≤n≤8,那么n=______.解析:依题意(x+1x3)n,对n∈N*,且2≤n≤8中,只有n=5时,其展开式既不出现常数项,也不会出现与x、x2乘积为常数的项.故填5.答案:5[变练演编](1)对于9100你能编出什么样的整除问题?如9100被________整除的余数是________.(2)(2x2-1x)6的展开式中的常数项是第____________项,整数项是第______________项,x的最高次项是第______________项,二项式系数之和是______________,系数之和是______________.将你能得到的所有正确的答案一一列举出来.答案:(1)这是一个开放性的问题,学生可以有多种答案,比如说9100被8整除的余数是1,9100被80整除的余数是1等等.(2)T r +1=C r6(2x 2)6-r(-1x)r =(-1)r ·26-r ·C r 6x 12-3r .依题意12-3r =0,解得r =4,所以常数项是第5项;整数项是第1,2,3,4,5项;x 的最高次项是第1项;二项式系数之和为64;系数之和为1.设计意图:变练演编——这种开放性的设计,能够有效地提高学生学习的积极性,使得编题不仅仅是老师的专利,学生在编题解题的过程中,领悟知识,提高能力,增长兴趣,增强信心,不仅有助于训练同学们的常规思维,还能培养同学们的逆向思维,最终提高学生的数学成绩.[达标检测] 1.(x -13x)12展开式中的常数项为( )A .-1 320B .1 320C .-220D .220 2.(1-x)6(1+x)4的展开式中x 的系数是( ) A .-4 B .-3 C .3 D .4 3.假设(1-2x)2 005=a 0+a 1x +a 2x 2+…+a 2 005x2 005(x∈R ),那么(a 0+a 1)+(a 0+a 2)+(a 0+a 3)+…+(a 0+a 2 005)=________(用数字作答).答案:1.C 2.B 3.2 003反考老师:即由学生出题,教师现场解答(约8分钟).(活动设计:请学生到黑板板书题目,要求别太烦琐,且与本节习题课内容相符.一般不多于3道题,教师尽可能全部解答,具体解答数目视题目难度和时间而定.教师要边做边讲,以向学生现场展示解题思路的发现过程和解题能力.做完后,请学生给“阅卷〞)课堂小结活动设计:先给学生1~2分钟的时间默写本节的主要基础知识、方法,例题、题目类型、解题规律等;然后用精练的、精确的语言概括本节的知识脉络,思想方法,解题规律等.活动成果:(板书)1.知识收获:二项式定理、二项展开式、二项式系数的性质.2.方法收获:利用二项式定理解决有关问题,利用二项式系数的性质解决有关问题. 3.思维收获:合作意识,创新精神,增加了学习数学的积极性,提升学习数学的兴趣. 设计意图:通过学生自己总结所学、所识、所想,不但能充分表达新课程的理念,还能充分发挥学生在课堂上的“主人翁〞精神,真正表达了学生的主体地位.不仅可以使学生更好地掌握本节所学,而且还能提高学生学习的主动性,提高学生学习数学的兴趣,久而久之,学生的数学水平与数学素养必定会得到长足的提高!补充练习[基础练习]1.计算1-3C 1n +9C 2n -27C 3n +…+(-1)n 3n C nn . 2.(x +1x -2)3的展开式中,常数项是________.3.(3x -13x2)n ,n∈N *的展开式中各项系数和为128,那么展开式中1x3的系数是( )A .7B .-7C .21D .-21 4.求(x -13x)10的展开式中有理项共有________项.1.解:原式=C 0n +C 1n (-3)1+C 2n (-3)2+C 3n (-3)3+…+C 3n (-3)n=(1-3)n=(-2)n. 2.解析:(x +1x -2)3=[(x -1)2x ]3=(x -1)6x 3. 上述式子展开后常数项只有一项C 36x3-13x3,即-20.3.解析:由条件可得:(3-1)n=128,n =7. ∵T r +1=(-1)r C r7(3x)7-r(13x2)r =(-1)r C r 737-rx7-53r.令7-5r3=-3,那么有:r =6.所以二项展开式中1x 3的系数是:T 7=(-1)6C 6737-6=21,应选C.4.解析:∵T r +1=C r10(x)10-r(-13x)r =C r 10(-1)rx5-56r.∴当r =0,6时,所对应的项是有理项.故展开式中有理项有2项. [拓展练习]5.(1+kx 2)6(k 是正整数)的展开式中,x 8的系数小于120,那么k =____________. 6.设n∈N ,那么C 1n +C 2n 6+C 3n 62+…+C n n 6n -1=____________.5.解析:(1+kx 2)6按二项式定理展开的通项为T r +1=C r6(kx 2)r=C r 6k r x 2r,我们知道x 8的系数为C 46k 4=15k 4,即15k 4<120,也即k 4<8,而k 是正整数,故k 只能取1.6.解:C 1n +C 2n 6+C 3n 62+…+C n n 6n -1=16C 0n +C 1n +C 2n 6+…+C n n 6n -1-16C 0n =16(C 0n +C 1n 6+C 2n 62+…+C n n 6n -1)=16[(1+6)n-1]=16(7n -1).设计说明二项式定理的内容,是各地高考中经常要考查的内容之一,其形式主要是选择题和填空题,题型往往相对稳定,思路方法常常是利用二项展开式的通项公式、二项式系数的有关性质等.常见的二项式问题有:求二项展开式中某一项或某一项的系数,求所有项系数的和或奇(偶)数项系数和,求展开式的项数,求常数项,求近似值,证明不等式等.实际教学的过程中,要努力把表现的机会让给学生,以发挥他们的自主精神;尽量创造让学生活动的机会,以让学生在直接体验中建构自己的知识体系;尽量引导学生发挥其创造意识,以使他们能在创造的氛围中学习.二项式定理是初中学习的多项式乘法的继续,它所研究的是一种特殊的多项式——二项式的乘方的展开式.二项式定理既是排列组合的直接应用,又与概率理论中的三大概率分布之一的二项分布有着密切联系.掌握好二项式定理既可对初中学习的多项式的变形起到很好的复习、深化作用,又可以为进一步学习概率统计做好必要的知识储备.所以有必要掌握好二项式定理的相关内容.备课资料 二项式定理 同步练习选择题1.C 7n +1-C 7n =C 8n ,那么n 等于( )word11 / 11 A .14 B .12 C .13 D .152.C 0n +3C 1n +9C 2n …+3n C nn 的值等于( )A .4nB .3·4n C.4n 3-1 D.4n-133.C 111+C 311+…+C 911的值为( )A .2 048B .1 024C .1 023D .5124.(x +1)(2x +1)(3x +1)……(nx+1)展开式中x 的一次项系数为( )A .C n -1nB .C 2nC .C 2n +1D .不能用组合数表示5.设(1+x +x 2)n =a 0+a 1x +a 2x 2+…a 2n x 2n,那么a 0+a 1+a 2+…+a 2n 等于 …() A .22n B .3n C.3n -12 D.3n+126.假设n 是正奇数,那么7n +C 1n 7n -1+C 2n 7n -2+…C n -1n 7被9除的余数为( )A .2B .5C .7D .87.(1+x)2+(1+x)3+…+(1+x)10展开式中x 4的系数为( )A .C 511 B .C 411 C .C 510D .C 410填空题8.(a +b)n 展开式中第r 项为__________.9.11100-1的末位连续零的个数为__________.参考答案1.A 2.A 3.C 4.C 5.B 6.C 7.A5.提示:令x =1即可.8.T r =C r -1n a n +1-rb r -19.3。
2019-2020学年高中数学 第一章 计数原理 1.3.1 二项式定理练习(含解析)新人教A版选修2-3

1.3.1 二项式定理[A 基础达标]1.在⎝⎛⎭⎪⎫2x 2-1x 5的二项展开式中,x 的系数为( )A .10B .-10C .40D .-40解析:选D .T r +1=C r5(2x 2)5-r⎝ ⎛⎭⎪⎫-1x r=(-1)r ·25-r ·C r 5·x 10-3r,令10-3r =1,得r =3.所以x 的系数为(-1)3·25-3·C 35=-40.故选D .2.(4x-2-x )6(x ∈R )展开式中的常数项是( ) A .-20 B .-15 C .15D .20解析:选C .由题意得T r +1=C r6(4x )6-r·(-2-x )r =(-1)r ·C r 62(12-3r )x,令12-3r =0,得r=4,则常数项为(-1)4C 46=15,故选C .3.二项式(1+x )6的展开式中有理项系数之和为( ) A .64 B .32 C .24D .16解析:选B .二项式(1+x )6的展开式的通项为T r +1=C r6x r2,令r2为整数,可得r =0,2,4,6,故展开式中有理项系数之和为C 06+C 26+C 46+C 66=32,故选B .4.若二项式(x +2)n的展开式的第4项是52,第3项的二项式系数是15,则x 的值为( )A .12B .14C .28D .18解析:选B .由二项式(x +2)n的展开式的第4项为23C 3n x n -3,第3项的二项式系数是C 2n ,可知C 2n =15,23C 3n xn -3=52,可得n =6,x =14,选B . 5.(2019·四平高二检测)(1-x )4(1-x )3的展开式中x 2的系数是( ) A .-6 B .-3 C .0D .3解析:选A .因为(1-x )4(1-x )3=(1-4x +6x 2-4x 3+x 4)(1-3x 12+3x -x 32), 所以x 2的系数是-12+6=-6.6.如果⎝⎛⎭⎪⎫3x 2+1x n 的开展式中,x 2项为第三项,则自然数n =________.解析:因为T k +1=C kn (3x 2)n -k ⎝ ⎛⎭⎪⎫1x k=C k n x2n -5k 3, 由题意知k =2时,2n -5k3=2,所以n =8.答案:87.设n 为自然数,化简C 0n ·2n -C 1n ·2n -1+…+(-1)k ·C k n ·2n -k+…+(-1)n ·C nn =________.解析:原式=C 0n ·2n ·(-1)0+C 1n 2n -1·(-1)1+…+(-1)k·C k n 2n -k+…+(-1)n ·C n n ·2=(2-1)n=1.答案:18.(2019·临沂高二检测)设二项式⎝⎛⎭⎪⎫x -a x 6(a >0)的展开式中x 3的系数为A ,常数项为B .若B =4A ,则a 的值是________.解析:对于T r +1=C r 6x 6-r(-ax-12)r =C r 6(-a )r x 6-32r ,B =C 46(-a )4,A =C 26·(-a )2.因为B=4A ,a >0,所以a =2.答案:29.记⎝ ⎛⎭⎪⎫2x +1x n的展开式中第m 项的系数为b m .(1)求b m 的表达式;(2)若n =6,求展开式中的常数项; (3)若b 3=2b 4,求n .解:(1)⎝ ⎛⎭⎪⎫2x +1x n 的展开式中第m 项为C m -1n ·(2x )n -m +1·⎝ ⎛⎭⎪⎫1x m -1=2n +1-m·C m -1n ·xn +2-2m,所以b m =2n +1-m·C m -1n .(2)当n =6时,⎝ ⎛⎭⎪⎫2x +1x n 的展开式的通项为T r +1=C r 6·(2x )6-r ·⎝ ⎛⎭⎪⎫1x r=26-r ·C r 6·x 6-2r.依题意,6-2r =0,得r =3,故展开式中的常数项为T 4=23·C 36=160. (3)由(1)及已知b 3=2b 4,得2n -2·C 2n =2·2n -3·C 3n ,从而C 2n =C 3n ,即n =5.10.已知⎝⎛⎭⎪⎪⎫x +124x n的展开式中,前三项的系数成等差数列. (1)求展开式中含x 的项; (2)求展开式中所有的有理项.解:(1)由已知可得C 0n +C 2n ·122=2C 1n ·12,即n 2-9n +8=0,解得n =8或n =1(舍去).故T k +1=C k 8(x )8-k ·⎝ ⎛⎭⎪⎪⎫124x k=C k 8·2-k ·x 4-34k ,令4-34k =1,得k =4,所以含x 的项为T 5=C 48×2-4x =358x .(2)令4-34k ∈Z ,且0≤k ≤8,则k =0或k =4或k =8,所以展开式中的有理项分别为T 1=x 4,T 5=358x ,T 9=1256x2. [B 能力提升]11.若对于任意实数x ,有x 3=a 0+a 1(x -2)+a 2(x -2)2+a 3(x -2)3,则a 2的值为( ) A .3 B .6 C .9D .12解析:选B .x 3=[2+(x -2)]3,a 2=C 23×2=6.12.设(x -2)n的展开式中第二项与第四项的系数之比为1∶2,求含x 2的项. 解:(x -2)n 的展开式中第二项与第四项分别为T 2=C 1n ·x n -1·(-2)=-2nx n -1, T 4=C 3n ·xn -3·(-2)3=-22C 3n x n -3. 根据题意得到-2n -22C 3n =12, 整理得n 2-3n -4=0,解得n =4或n =-1(没有意义,舍去).设(x -2)4的展开式中含x 2的项为第(r +1)项, 则T r +1=C r4·x4-r ·(-2)r(r =0,1,2,3,4),根据题意有4-r =2,解得r =2,所以(x -2)4的展开式中含x 2的项为T 3=C 24·x 2·(-2)2=12x 2.13.(选做题)已知在⎝⎛⎭⎪⎫12x 2-1x n的展开式中,第9项为常数项.求:(1)n 的值;(2)展开式中x 5的系数; (3)含x 的整数次幂的项的个数.解:二项展开式的通项为T k +1=C k n ⎝ ⎛⎭⎪⎫12x 2n -k ·⎝⎛⎭⎪⎫-1x k =(-1)k ⎝ ⎛⎭⎪⎫12n -k C kn x 2n -52k.(1)因为第9项为常数项,即当k =8时,2n -52k =0,即2n -20=0,解得n =10.(2)令2n -52k =5,得k =25(2n -5)=6,所以x 5的系数为(-1)6⎝ ⎛⎭⎪⎫124C 610=1058.(3)要使2n -52k ,即40-5k2为整数,只需k 为偶数,由于k =0,1,2,3,…,9,10,故符合要求的有6项,分别为展开式的第1,3,5,7,9,11项.。
高中数学 第一章 计数原理 1.3 二项式定理 1.3.1 二项

1.3.1 二项式定理1.二项式定理(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n n b n (n ∈N *) (1)这个公式叫做二项式定理.(2)展开式:等号右边的多项式叫做(a +b )n的二项式的展开式,展开式中一共有____项.(3)二项式系数:各项的系数__(k ∈{0,1,2,…,n })叫做二项式系数. 2.二项展开式的通项(a +b )n展开式中第k +1项____________(k ∈{0,1,2,…,n })称为二项展开式的通项. 预习交流(1)二项展开式的特点有哪些?(2)(x +1)n的展开式共有11项,则n 等于( ). A .9 B .10 C .11 D .12(3)⎝ ⎛⎭⎪⎫2x -1x 7的展开式中第3项的二项式系数为__________,第6项的系数为__________,x 的次数为5的项为__________.答案:1.(2)n +1 (3)C kn2.T k +1=C k n a n -k b k预习交流:(1)提示:①项数:n +1项;②指数:字母a ,b 的指数和为n ,字母a 的指数由n 递减到0,同时b 的指数由0递增到n ;③通项公式T r +1=C r n a n -r b r指的是第r +1项,不是第r 项;④某项的二项式系数与该项的系数不是一个概念,C rn 叫做二项式系数,而某一项的系数是指此项中除字母外的部分,如(1+2x )3的二项展开式中第3项的二项式系数为C 23=3,而该项的系数为C 23·22=12.(2)提示:B(3)提示:21 -84 -448x 5一、二项式定理的直接应用求⎝⎛⎭⎪⎫3x +1x 4的展开式.思路分析:直接利用二项式定理处理是基本的方法.但考虑到处理起来比较复杂,因此可以考虑将原式变形后再展开.化简:(x -1)5+5(x -1)4+10(x -1)3+10(x -1)2+5(x -1).熟记二项式(a +b )n的展开式,是解决此类问题的关键,我们在解较复杂的二项式问题时,可根据二项式的结构特征进行适当变形,简化展开二项式的过程,使问题的解决更加简便.二、二项展开式中特定项(项的系数)的计算1.(2011山东高考,理14)若⎝⎛⎭⎪⎫x -a x 26展开式的常数项为60,则常数a 的值为__________.思路分析:利用二项式定理的通项公式求出不含x 的项即可.2.(2011天津高考,理5)在⎝ ⎛⎭⎪⎫x 2-2x 6的二项展开式中,x 2的系数为( ).A .-154B .154C .-38D .38思路分析:利用二项展开式的通项公式求.1.(2011陕西高考,理4)(4x -2-x )6(x ∈R )展开式中的常数项是( ). A .-20 B .-15 C .15 D .202.(2011广东高考,理10)x ⎝⎛⎭⎪⎫x -2x 7的展开式中,x 4的系数是________.(用数字作答)求二项展开式的特定项问题,实质是考查通项T k +1=C k n an -k b k的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(k =0,1,2,…,n ).(1)第m 项:此时k +1=m ,直接代入通项;(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程; (3)有理项:令通项中“变元”的幂指数为整数建立方程.特定项的系数问题及相关参数值的求解等都可依据上述方法求解. 三、二项式定理的应用(整除问题)试判断7777-1能否被19整除.思路分析:由于76是19的倍数,可将7777转化为(76+1)77用二项式定理展开.证明:32n +2-8n -9是64的倍数.用二项式定理解决a n+b 整除(或余数)问题时,一般需要将底数a写成除数m 的整数倍加上或减去r (1≤r <m )的形式,利用二项展开式求解.答案:活动与探究1:解法1:⎝ ⎛⎭⎪⎫3x +1x 4=C 04(3x )4⎝ ⎛⎭⎪⎫1x 0+C 14(3x )3·⎝ ⎛⎭⎪⎫1x +C 24(3x )2⎝ ⎛⎭⎪⎫1x 2+C 34(3x )⎝ ⎛⎭⎪⎫1x 3+C 44(3x )0⎝ ⎛⎭⎪⎫1x 4=81x 2+108x +54+12x +1x 2.解法2:⎝⎛⎭⎪⎫3x +1x 4=3x +14x 2=1x 2(81x 4+108x 3+54x 2+12x +1)=81x 2+108x +54+12x +1x2.迁移与应用:解:原式=C 05(x -1)5+C 15(x -1)4+C 25(x -1)3+C 35(x -1)2+C 45(x -1)+C 55-1=[(x -1)+1]5-1=x 5-1.活动与探究2:1.4 解析:由二项式定理可知T r +1=C r 6x 6-r⎝ ⎛⎭⎪⎫-a x 2r =C r 6(-a )r x 6-3r, 令6-3r =0,得r =2,∴T 3=C 26(-a )2=60. ∴15a =60.∴a =4.2.C 解析:设含x 2的项是二项展开式中第r +1项,则T r +1=C r 6⎝ ⎛⎭⎪⎫x 26-r·⎝⎛⎭⎪⎫-2x r=C r 6⎝ ⎛⎭⎪⎫126-r (-2)r x 3-r.令3-r =2,得r =1.∴x 2的系数为C 16⎝ ⎛⎭⎪⎫125(-2)=-38.迁移与应用:1.C 解析:设第r +1项为常数项,T r +1=C r 622x (6-r )(-2-x )r =(-1)r ·C r 6212x -2rx -rx, ∴12x -3rx =0, ∴r =4.∴常数项为T 5=(-1)4C 46=15.2.84 解析:⎝ ⎛⎭⎪⎫x -2x 7的通项T r +1=C r 7x 7-r ⎝ ⎛⎭⎪⎫-2x r =(-2)r C r 7x 7-2r.令7-2r =3得r =2.因而⎝ ⎛⎭⎪⎫x -2x 7展开式中含x 3项的系数为(-2)2·C 27=4×7×62=84.故x ⎝ ⎛⎭⎪⎫x -2x 7的展开式中,x 4的系数为84.活动与探究3:解:7777-1=(76+1)77-1=7677+C 177·7676+C 277·7675+…+C 7677·76+C 7777-1=76(7676+C 1777675+C 2777674+…+C 7677).由于76能被19整除,因此7777-1能被19整除.迁移与应用:证明:∵32n +2-8n -9 =9n +1-8n -9=(8+1)n +1-8n -9 =8n +1+C 1n +1·8n +…+C n -1n +1·82+C nn +1·8+1-8n -9=8n +1+C 1n +1·8n +…+C n -1n +1·82+8(n +1)+1-8n -9=8n +1+C 1n +1·8n +…+C n -1n +1·82=(8n -1+C 1n +1·8n -2+…+C n -1n +1)·64,故32n +2-8n -9是64的倍数.1.⎝⎛⎭⎪⎫x -1x 16的二项展开式中第4项是( ). A .C 216x 12B .C 316x 10 C .-C 316x 10D .C 416x 82.(2012天津高考,理5)在⎝⎛⎭⎪⎫2x 2-1x 5的二项展开式中,x 的系数为( ).A .10B .-10C .40D .-403.(2012山东省实验中学诊断,理6)二项式⎝⎛⎭⎪⎫x 2+2x 10的展开式中的常数项是( ).A .第10项B .第9项C .第8项D .第7项4.(2012湖南高考,理13)⎝ ⎛⎭⎪⎫2x -1x 6的二项展开式中的常数项为________.(用数字作答)5.在(x +43y )20的展开式中,系数为有理数的项共有__________项. 6.(1-x )4·(1-x )3的展开式中x 2的系数是__________.答案:1.C 解析:展开式的通项公式为T r +1=C r 16·(x )16-r·⎝ ⎛⎭⎪⎫-1x r =(-1)r ·C r 16·x 16-2r , ∴第4项为T 4=(-1)3C 316·x 10=-C 316x 10. 2.D 解析:T r +1=C r5(2x 2)5-r ⎝ ⎛⎭⎪⎫-1x r =(-1)r 25-r C r 5x 10-3r ,∴当10-3r =1时,r =3.∴(-1)325-3C 35=-40.3.B 解析:展开式的通项公式为T r +1=C r 10x 20-2r ⎝ ⎛⎭⎪⎫2x r =2r C r 10·x 20-5r 2,令20-5r 2=0,得r =8.∴常数项为第9项.4.-160 ⎝ ⎛⎭⎪⎫2x -1x 6的通项为T r +1=C r 6(2x )6-r⎝⎛⎭⎪⎫-1x r=(-1)r C r 626-r x 3-r .当3-r =0时,r =3.故(-1)3C 3626-3=-C 3623=-160.5.6 解析:∵T r +1=3r4C r 20x20-r y r(r =0,1,2,…,20)的系数为有理数,∴r =0,4,8,12,16,20,共6项.6.-6 解析:展开式中的x 2项为C 14·(-x )1·C 23·(-x )2+C 24(-x )2C 03=-6x 2.。
高中选修2-3第一章计数原理知识点总结与训练

第一章:计数原理一、两个计数原理3、两个计数原理的区别二、排列与组合1、排列:一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
2、排列数:从n 个不同元素中取出m(m ≤n)个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数。
用符号 表示.3、排列数公式: 其中4、组合:一般地,从n 个不同元素中取出m(m ≤n)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
5、组合数:从n 个不同元素中取出m(m ≤n)个元素的所有不同组合的个数叫做从n 个不同元素中取出m 个元素的组合数。
用符号 表示。
6、组合数公式:其中注意:判断一个具体问题是否为组合问题,关键是看取出的元素是否与顺序有关,有关就是排列,无关便是组合.判断时要弄清楚“事件是什么”.7、性质:m n A mn A ()()()()!!121m n n m n n n n A mn -=+---= .,,*n m N m n ≤∈并且m n C ()()()()!!!!121m n m n m m n n n n C mn -=+---=.,,*n m N m n ≤∈并且m n n m n C C -=mn m n m n C C C 11+-=+三、二项式定理如果在二项式定理中,设a=1,b=x,则可以得到公式:2、性质:02413512nn n n n n nC C C C C C-=+++=+++=奇数项二项式系数和偶数项二项式系数和:注意事项:相邻问题,常用“捆绑法”不相邻问题,常用“插空法”巩固训练:1、有4个男生和3个女生排成一排,按下列要求各有多少种不同排法:(1)男甲排在正中间;(2)男甲不在排头,女乙不在排尾;(3)三个女生排在一起;(4)三个女生两两都不相邻;2、某城新建的一条道路上有12只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有()3、(1)今有10件不同奖品,从中选6件分成三份, 二份各1件,另一份4件, 有多少种分法?(2) 今有10件不同奖品,从中选6件分给甲乙丙三人,每人二件有多少种分法?4、从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?5、将8个学生干部的培训指标分配给5个不同的班级,每班至少分到1个名额,共有多少种不同的分配方法?6、对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能?7、3 名医生和 6 名护士被分配到 3 所学校为学生体检,每校分配1 名医生和 2 名护士,不同的分配方法共有多少种?8、如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?9、求值与化简:1055845635425215222221)1(⋅+⋅+⋅+⋅+⋅+CCCCC求值:。
高中数学第一章计数原理1.3二项式定理1.3.1二项式定理课后课时精练a23a高二23数学

12/9/2021
第十页,共十八页。
8.(x+1)4(x-1)的展开式中 x3 的系数是________. 答案 2
解析 (x+1)4(x-1)的展开式中含 x3 的项由以下两部分相加得到:①(x +1)4 中的二次项乘以(x-1)中的一次项 x,即 C24x2·x=6x3;②(x+1)4 中的三 次项乘以(x-1)中的常数项-1,即 C14x3×(-1)=-4x3.所以(x+1)4·(x-1)的 展开式中 x3 的系数是 6+(-4)=2.
课后课时 精练 (kèshí)
12/9/2021
第一页,共十八页。
A 级:基础巩固练 一、选择题 1.1-2Cn1+4C2n-8Cn3+…+(-2)nCnn=( ) A.1 B.-1 C.(-1)n D.3n
答案 C
解析 逆用公式,将 1 看作公式中的 a,-2 看作公式中的 b,可得原式 =(1-2)n=(-1)n.
12/9/2021
第二页,共十八页。
答案
解析
2.若二项式(x+2)n 的展开式的第 4 项是52,第 3 项的二项式系数是 15,
则 x 的值为( )
11
21
A.2 B.4 C. 8 D.8
答案 B
解析 由二项式(x+2)n 的展开式的第 4 项为 23C3nxn-3,第 3 项的二项式 系数是 C2n,可知 Cn2=15,23Cn3xn-3=25,可得 n=6,x=41,选 B.
12/9/2021
第十一页,共十八页。
答案
解析
三、解答题 9.求(1+x)2(1-x)5 的展开式中 x3 的系数.
高中数学 第一章 计数原理 1.3.1 二项式定理练习(含解

1.3.1 二项式定理一、选择题1.在(x -3)10的展开式中,x 6的系数是( )A .-27C 610B .27C 410 C .-9C 610D .9C 410 【答案】 D【解析】 ∵T r +1=C r 10x 10-r (-3)r .令10-r =6,解得r =4.∴系数为(-3)4C 410=9C 410. 2.在⎝ ⎛⎭⎪⎫2x 3+1x 2n (n ∈N *)的展开式中,若存在常数项,则n 的最小值是( ) A .3B .5C .8D .10 【答案】 B【解析】 T r +1=C r n (2x 3)n -r ⎝ ⎛⎭⎪⎫1x 2r =2n -r ·C r n x 3n -5r .令3n -5r =0,∵0≤r ≤n ,r 、n ∈Z . ∴n 的最小值为5. 3.在⎝ ⎛⎭⎪⎫x 2-1x n 的展开式中,常数项为15,则n 的一个值可以是( ) A .3B .4C .5D .6 【答案】 D【解析】 通项T r +1=C r 10(x 2)n -r (-1x )r =(-1)r C r n x 2n -3r ,常数项是15,则2n =3r ,且C r n =15,验证n =6时,r =4合题意,故选D.4.(x +a x )5(x ∈R )展开式中x 3的系数为10,则实数a 等于( )A .-1B.12 C .1 D .2 【答案】 D【解析】 C r 5·x r (a x )5-r =C r 5·a 5-r x 2r -5,令2r -5=3,∴r =4,由C 45·a =10,得a =2. 5.若(1+2x )6的展开式中的第2项大于它的相邻两项,则x 的取值范围是( )A.112<x <15B.16<x <15C.112<x <23D.16<x <25【答案】 A【解析】 由⎩⎪⎨⎪⎧ T 2>T 1T 2>T 3得⎩⎪⎨⎪⎧ C 162x >1C 162x >C 26(2x )2∴112<x <15. 6.在⎝⎛⎭⎪⎫32x -1220的展开式中,系数是有理数的项共有( ) A .4项B .5项C .6项D .7项【答案】 A【解析】 T r +1=C r 20(32x )20-r ⎝ ⎛⎭⎪⎫-12r =⎝ ⎛⎭⎪⎫-22r ·(32)20-r C r 20·x 20-r , ∵系数为有理数,∴(2)r 与220-r3均为有理数,∴r 能被2整除,且20-r 能被3整除,故r 为偶数,20-r 是3的倍数,0≤r ≤20.∴r =2,8,14,20.二、填空题7.若⎝⎛⎭⎪⎫x 2+1ax 6的二项展开式中x 3的系数为52,则a =________(用数字作答). 【答案】 2【解析】 C 36(x 2)3·⎝ ⎛⎭⎪⎫1ax 3=20a3x 3=52x 3,∴a =2. 8.(1+x +x 2)(x -1x)6的展开式中的常数项为________. 【答案】 -5【解析】 (1+x +x 2)⎝ ⎛⎭⎪⎫x -1x 6=⎝ ⎛⎭⎪⎫x -1x 6+x ⎝ ⎛⎭⎪⎫x -1x 6+x 2⎝ ⎛⎭⎪⎫x -1x 6, ∴要找出⎝ ⎛⎭⎪⎫x -1x 6中的常数项,1x 项的系数,1x2项的系数,T r +1=C r 6x 6-r (-1)r x -r =C r 6(-1)r x 6-2r , 令6-2r =0,∴r =3,令6-2r =-1,无解.令6-2r =-2,∴r =4.∴常数项为-C 36+C 46=-5.三、解答题9.m 、n ∈N *,f (x )=(1+x )m +(1+x )n 展开式中x 的系数为19,求x 2的系数的最小值及此时展开式中x 7的系数.【解析】 由题设m +n =19,∵m ,n ∈N *.∴⎩⎪⎨⎪⎧ m =1n =18,⎩⎪⎨⎪⎧m =2n =17,…,⎩⎪⎨⎪⎧ m =18n =1. x 2的系数C 2m +C 2n =12(m 2-m )+12(n 2-n )=m 2-19m +171. ∴当m =9或10时,x 2的系数取最小值81,此时x 7的系数为C 79+C 710=156. 10.若⎝⎛⎭⎪⎪⎫x +124x n 展开式中前三项系数成等差数列.求:展开式中系数最大的项.【解析】 通项为:T r +1=C r n ·(x )n -r·⎝ ⎛⎭⎪⎪⎫124x r . 由已知条件知:C 0n +C 2n ·122=2C 1n ·12,解得:n =8. 记第r 项的系数为t r ,设第k 项系数最大,则有: t k ≥t k +1且t k ≥t k -1.又t r =C r -18·2-r +1,于是有:⎩⎪⎨⎪⎧ C k -18·2-k +1≥C k 8·2-kC k -18·2-k +1≥C k -28·2-k +2即⎩⎪⎨⎪⎧8!(k -1)!·(9-k )!×2≥8!k !(8-k )!,8!(k -1)!·(9-k )!≥8!(k -2)!·(10-k )!×2. ∴⎩⎪⎨⎪⎧29-k ≥1k ,1k -1≥210-k .解得3≤k ≤4. ∴系数最大项为第3项T 3=7·x 35和第4项T 4=7·x 74.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.1 二项式定理
一、选择题
1.在(x -3)10的展开式中,x 6的系数是( )
A .-27C 610
B .27
C 410 C .-9C 610
D .9C 410 【答案】 D
【解析】 ∵T r +1=C r 10x 10-r (-3)r .令10-r =6,解得r =4.∴系数为(-3)4C 410=9C 4
10. 2.在⎝ ⎛⎭
⎪⎫2x 3+1x 2n (n ∈N *)的展开式中,若存在常数项,则n 的最小值是( ) A .3
B .5
C .8
D .10 【答案】 B
【解析】 T r +1=C r n (2x 3)
n -r ⎝ ⎛⎭
⎪⎫1x 2r =2n -r ·C r n x 3n -5r .令3n -5r =0,∵0≤r ≤n ,r 、n ∈Z . ∴n 的最小值为5. 3.在⎝ ⎛⎭
⎪⎫x 2-1x n 的展开式中,常数项为15,则n 的一个值可以是( ) A .3
B .4
C .5
D .6 【答案】 D
【解析】 通项T r +1=C r 10(x 2)
n -r (-1x )r =(-1)r C r n x 2n -3r ,常数项是15,则2n =3r ,且C r n =15,验证n =6时,r =4合题意,故选D.
4.(x +a x )5(x ∈R )展开式中x 3的系数为10,则实数a 等于( )
A .-1
B.12 C .1 D .2 【答案】 D
【解析】 C r 5·x r (a x )
5-r =C r 5·a 5-r x 2r -5,令2r -5=3,∴r =4,由C 45·a =10,得a =2. 5.若(1+2x )6的展开式中的第2项大于它的相邻两项,则x 的取值范围是( )
A.112<x <15
B.16<x <15
C.112<x <23
D.16<x <25
【答案】 A
【解析】 由⎩⎪⎨⎪⎧ T 2>T 1T 2>T 3得⎩⎪⎨⎪⎧ C 162x >1C 162x >C 26(2x )2∴112<x <15
. 6.在⎝
⎛⎭⎪⎫32x -1220的展开式中,系数是有理数的项共有( ) A .4项
B .5项
C .6项
D .7项
【答案】 A
【解析】 T r +1=C r 20(32x )20-r ⎝
⎛⎭⎪⎫-12r =⎝ ⎛⎭⎪⎫-22r ·(32)20-r C r 20·x 20-r , ∵系数为有理数,∴(2)r 与220-r
3均为有理数,
∴r 能被2整除,且20-r 能被3整除,
故r 为偶数,20-r 是3的倍数,0≤r ≤20.∴r =2,8,14,20.
二、填空题
7.若⎝
⎛⎭⎪⎫x 2+1ax 6的二项展开式中x 3的系数为52,则a =________(用数字作答). 【答案】 2
【解析】 C 36(x 2)3·⎝ ⎛⎭⎪⎫1ax 3=20a
3x 3=52x 3,∴a =2. 8.(1+x +x 2)(x -1x
)6的展开式中的常数项为________. 【答案】 -5
【解析】 (1+x +x 2)⎝ ⎛⎭⎪⎫x -1x 6=⎝ ⎛⎭⎪⎫x -1x 6+x ⎝ ⎛⎭⎪⎫x -1x 6+x 2⎝ ⎛⎭
⎪⎫x -1x 6, ∴要找出⎝ ⎛⎭⎪⎫x -1x 6中的常数项,1x 项的系数,1x
2项的系数,T r +1=C r 6x 6-r (-1)r x -r =C r 6(-1)r x 6-2r , 令6-2r =0,∴r =3,
令6-2r =-1,无解.
令6-2r =-2,∴r =4.
∴常数项为-C 36+C 46=-5.
三、解答题
9.m 、n ∈N *,f (x )=(1+x )m +(1+x )n 展开式中x 的系数为19,求x 2
的系数的最小值及此时展开式中x 7的系数.
【解析】 由题设m +n =19,∵m ,n ∈N *.
∴⎩⎪⎨⎪⎧ m =1n =18,⎩⎪⎨⎪⎧
m =2n =17,…,⎩⎪⎨⎪⎧ m =18n =1. x 2的系数C 2m +C 2n =12(m 2-m )+12(n 2-n )=m 2-19m +171. ∴当m =9或10时,x 2的系数取最小值81,此时x 7的系数为C 79+C 7
10=156. 10.若⎝ ⎛⎭⎪⎪⎫x +124x n 展开式中前三项系数成等差数列.求:展开式中系数最大的项.
【解析】 通项为:T r +1=C r n ·(x )n -r
·⎝ ⎛⎭⎪⎪⎫124x r . 由已知条件知:C 0n +C 2n ·122=2C 1n ·12
,解得:n =8. 记第r 项的系数为t r ,设第k 项系数最大,则有: t k ≥t k +1且t k ≥t k -1.
又t r =C r -18·2-r +1,于是有:⎩⎪⎨⎪⎧ C k -18·2-k +1≥C k 8·2
-k
C k -18·2-k +1≥C k -28·2-k +2 即⎩⎪⎨⎪⎧
8!(k -1)!·(9-k )!×2≥8!k !(8-k )!,8!
(k -1)!·(9-k )!≥8!
(k -2)!·(10-k )!×2. ∴⎩⎪⎨⎪⎧ 29-k ≥1k ,
1k -1≥2
10-k .解得3≤k ≤4.
∴系数最大项为第3项T 3=7·x 35和第4项T 4=7·x 7
4.。