五年级奥数《长方体与正方体的表面积与体积》
长方体与正方体的表面积与体积

长方体与正方体的表面积与体积长方体和正方体是几何体中常见的两个形状。
它们在日常生活中广泛应用于建筑、设计等领域。
本文将探讨长方体和正方体的表面积和体积计算公式,并解释其应用。
一、长方体的表面积与体积长方体是一个具有六个矩形面的立体形状。
其中,有三个对面的边长相等,被称为底面;而另外的三个对面也有相等的边长,被称为侧面。
为了计算长方体的表面积和体积,我们需要知道长方体的边长。
1. 表面积计算公式:长方体的表面积等于底面积与侧面积的和。
底面积等于长乘以宽,而侧面积等于底面的周长乘以高。
表面积 = 2(长×宽 + 长×高 + 宽×高)2. 体积计算公式:长方体的体积等于底面积乘以高。
体积 = 长×宽×高二、正方体的表面积与体积正方体是是一个六个相等正方形面构成的立体形状。
相比于长方体,正方体的特点在于所有的边长都相等。
1. 表面积计算公式:正方体的表面积等于其中一个正方形面的面积乘以6。
表面积 = 6×边长×边长 = 6a²2. 体积计算公式:正方体的体积等于正方形底面积乘以高。
体积 = 底面积×高 = a²×高其中,a代表正方体的边长,高代表正方体的高度。
三、应用举例1. 长方体:假设某个长方体的长为4cm,宽为3cm,高为5cm。
我们可以使用上述的公式计算该长方体的表面积和体积。
表面积 = 2(4×3 + 4×5 + 3×5) = 2(12 + 20 + 15) = 2×47 = 94cm²体积 = 4×3×5 = 60cm³2. 正方体:假设某个正方体的边长为6cm,高度为6cm。
我们可以使用上述的公式计算该正方体的表面积和体积。
表面积 = 6×6×6 = 216cm²体积 = 6×6×6 = 216cm³以上是长方体和正方体表面积与体积的计算公式和应用举例。
【沪教版】五年级上册奥数:长方体和正方体的体积与表面积 (含答案)

图1 图2 图3图4【答案】按图1所示沿一条棱挖,为592平方厘米;按图2所示在某一面上挖,为632平方厘米;按图3所示在某面上斜着挖,为648平方厘米;按图4所示挖通两个对面,为672平方厘米.【例 7】从一个长8厘米、宽7厘米、高6厘米的长方体中截下一个最大的正方体(如下图),剩下部分的表面积之和是平方厘米.【考点】长方体与正方体【难度】3星【题型】填空【解析】可以将这个图形看作一个八棱柱,表面积和为:()()(平方厘米).⨯-⨯⨯+⨯+++++++=87662616661787292也可以这样想:由于截去后原来的长方体的表面少了3个66⨯的正方形,而新图形凹进去的部分恰好是3个66⨯的正方形,所以新图形的表面积与原图形的表面积相等,为()⨯+⨯+⨯⨯=(平方厘米).8786762292【答案】292【例 8】右图是一个表面被涂上红色的棱长为10厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 10⨯10⨯6=600(平方厘米).【答案】600【例 9】 由六个棱长为1的小正方体拼成如图所示立体,它的表面积是 .【考点】长方体与正方体 【难度】3星 【题型】填空【关键词】2006年,第四届,走美杯,4年级,决赛,第3题,8分【解析】 三视图法:表面积为:()454226++⨯=【答案】26【例 10】 将15个棱长为1的正方体堆放在桌子上,喷上红色后再将它们分开。
涂上红色的部分,面积是( )平方厘米【考点】长方体与正方体 【难度】3星 【题型】填空【关键词】2010年,第8届,走美杯,3年级,初赛,第12题【解析】 注意底面放在桌子上,不能被染到。
从上向下看有10个:从左向右看有6个;从前向后看有7个。
因此被染色的面有()1067236++⨯=个面【答案】36【例 11】 用6块右图所示(单位:cm )的长方体木块拼成一个大长方体,有许多种拼法,其中表面积最小的是多少平方厘米?最大是多少平方厘米?【考点】长方体与正方体 【难度】4星 【题型】解答【解析】 要使表面积最小,需重叠的面积最大,如图⑴的拼接方式新的长方体长为5,宽为4,高为3,所以表面积为2(343334)266(cm )⨯+⨯+⨯⨯=;要使表面积最大需重叠的面积最小,如图⑵所示,长为18,宽为2,高为1,所以最大的表面积为2(18118212)2112(cm )⨯+⨯+⨯⨯=【答案】112【例 12】 要把12件同样的长a 、宽b 、高h 的长方体物品拼装成一件大的长方体,使打包后表面积最小,该如何打包?⑴当 b =2h 时,如何打包?⑵当 b <2h 时,如何打包?⑶当 b >2h 时,如何打包?【考点】长方体与正方体 【难度】5星 【题型】解答【解析】 图2和图3正面的面积相同,侧面面积=正面周长⨯长方体长,所以正面的周长愈大表面积越大,图2的正面周长是8h +6b ,图3的周长是12h +4b .两者的周长之差为2(b -2h ).当b =2h 时,图2和图3周长相等,可随意打包;当b <2h 时,按图2打包;当b >2h 时,按图3打包.【答案】当b =2h 时,图2和图3周长相等,可随意打包;当b <2h 时,按图2打包;当b >2h 时,按图3打包. (1)图3图2图1hba【例 13】 如图,把正方体用两个与它的底面平行的平面切开,分成三个长方体,这三个长方体的表面积比是3:4:5时,用最简单的整数比表示这三个长方体的体积比: : : 。
长方体和正方体的表面积、体积知识点

长方体和正方体的表面积1.长方体棱长总和: (长+宽+高)×4 正方体棱长总和:棱长×12长+宽+高=棱长总和÷4 棱长=棱长总和÷122.长方体表面积= (长×宽+长×高+宽×高)×2 s=(a×b+a×h+b×h)×2正方体表面积=棱长×棱长×6 s=6a²长方体和正方体的体积1.体积:物体所占空间的大小叫做物体的体积。
2.常用的体积单位:立方厘米、立方分米和立方米,分别记作cm3、dm3、m3。
3. 体积计算:长方体的体积=长×宽×高 V=abh正方体的体积=棱长×棱长×棱长 V=a3(a3读作“a的立方”,表示三个a相乘。
)长方体(或正方体)的体积=底面积×高 V=Sh拦河坝的体积=横断面的面积×长3.长方体和正方体底面的面积叫做底面积。
(计算时一定要先统一单位长度)4.体积单位之间的进率:1立方米=1000立方分米 1立方分米=1000立方厘米(高级单位换成低级单位,乘进率,低级单位换成高级单位,除以进率。
)5.物体浸没在水中时,所排开的水的体积就是物体的体积。
6.容积:一个容器所能容纳物体的体积叫做这个容器的容积。
容积的计算方法与体积计算方法相同,但是要从里面测量数据。
不是所有物体都有容积。
同一容器,体积大于容积。
7.容积常用单位有升和毫升,也可以写成L和ml。
1升=1立方分米 1毫升=1立方厘米 1升=1000升1。
长方体与正方体的表面积与体积

长方体与正方体的表面积与体积表面积和体积是几何学中常用的概念,它们可以用来描述物体的大小和形状。
长方体和正方体是两种常见的立体图形,它们之间的表面积和体积有一些不同之处。
本文将以长方体与正方体为例,探讨它们的表面积和体积的计算方法。
1. 长方体的表面积和体积长方体是一种长宽高均不相等的立方体,它的表面由六个矩形面组成。
我们可以用边长a、b和c来表示长方体的三个边长。
根据定义,长方体的表面积S可以通过以下公式计算:S = 2ab + 2bc + 2ac其中,2ab表示长方体的前后两个面的面积,2bc表示长方体的左右两个面的面积,2ac表示长方体的上下两个面的面积。
这个公式可以将长方体的表面积分解成三个矩形面的面积之和。
另外,长方体的体积V表示长方体内部的空间大小,可以通过以下公式计算:V = abc其中,abc代表长方体的三个边长的乘积。
这个公式直接得出了长方体的体积。
举例来说,假设一个长方体的长为3cm,宽为4cm,高为5cm,我们可以先计算出其表面积和体积。
根据上述公式,这个长方体的表面积S为:S = 2 × 3 × 4 + 2 × 4 × 5 + 2 × 3 × 5 = 94 cm²其体积V为:V = 3 × 4 × 5 = 60 cm³因此,这个长方体的表面积为94平方厘米,体积为60立方厘米。
2. 正方体的表面积和体积正方体是一种六个面都为正方形的立方体,它的边长相等,用a表示。
正方体的表面积和体积的计算方法与长方体有所不同。
正方体的表面积S可以通过以下公式计算:S = 6a²这个公式表示正方体的六个面都是正方形,每个面的边长都为a。
因此,正方体的表面积等于六个正方形的面积之和。
正方体的体积V可以通过以下公式计算:V = a³这个公式表示正方体的体积等于正方体的边长的立方。
长方体与正方体的表面积和体积计算

长方体与正方体的表面积和体积计算在几何学中,长方体和正方体都是常见的立体图形。
了解如何计算它们的表面积和体积是非常有用的。
在本文中,我们将介绍如何进行这些计算,并提供相关的公式和例子。
一、长方体表面积和体积的计算长方体是一种有六个面的立方体,其中所有的面都是长方形。
我们可以通过计算长方体的长度、宽度和高度来确定其表面积和体积。
以下是计算长方体表面积和体积的公式:表面积公式:表面积 = 2lw + 2lh + 2wh体积公式:体积 = lwh其中,l代表长方体的长度,w代表宽度,h代表高度。
例如,假设一个长方体的长度为5cm,宽度为3cm,高度为4cm。
我们可以使用上述公式来计算其表面积和体积。
表面积 = 2(5)(3) + 2(5)(4) + 2(3)(4) = 90cm²体积 = 5(3)(4) = 60cm³二、正方体表面积和体积的计算正方体是一种六个面都是正方形的立方体。
与长方体不同,正方体的所有边长是相等的。
我们可以通过计算正方体的边长来确定其表面积和体积。
以下是计算正方体表面积和体积的公式:表面积公式:表面积 = 6a²体积公式:体积 = a³其中,a代表正方体的边长。
例如,假设一个正方体的边长为3cm。
我们可以使用上述公式来计算其表面积和体积。
表面积 = 6(3)² = 54cm²体积 = 3³ = 27cm³三、长方体和正方体计算示例让我们通过一个具体的示例来进一步说明长方体和正方体的表面积和体积计算。
例1:假设有一个长方体,长、宽、高分别为6cm、4cm和5cm。
我们将根据前面提到的公式计算其表面积和体积。
表面积 = 2(6)(4) + 2(6)(5) + 2(4)(5) = 148cm²体积 = 6(4)(5) = 120cm³例2:假设有一个正方体,边长为7cm。
我们将使用之前的公式计算其表面积和体积。
长方体和正方体的表面积和体积公式的推导过程

长方体和正方体的表面积和体积公式的推导
过程
长方体和正方体的表面积和体积公式的推导过程如下:
长方体的表面积S=2(lw+lh+wh),其中l、w、h分别为长方体的长、宽、高。
长方体的体积V=lwh。
正方体的表面积S=6s²,其中s为正方体的边长。
正方体的体积V=s³。
长方体推导过程:
长方体有6个面,每个面都是一个矩形,长方体的表面积等于它
所有面积之和。
设长方体的长、宽、高分别为l、w、h,那么长方体的表面积可以表示为S=2lw + 2lh + 2wh。
长方体的体积可以看成是一个长方体的六分之一,即V=lwh。
正方体推导过程:
正方体有6个面,每个面都是一个正方形,正方体的表面积等于6倍其中一个正方形的面积。
设正方体的边长为s,那么正方体的表面积可以表示为S=6s²。
正方体的体积可以表示为一个正方体的体积,即V=s³。
以上就是长方体和正方体的表面积和体积公式的推导过程。
当然,这些公式只适用于长方体和正方体,对于其他形状的立体,需要采用
其他公式来计算表面积和体积。
五年级奥数几何专项十五 长方体和正方体的表面积与体积

一、立体图形的体积计算常用公式:立体图形示例表面积公式体积公式相关要素长方体S = 2(ab+bc+ac)V abh=V sh=三要素:a、b、h二要素:s、h 正方体S = 6a23V a=V sh=一要素:a二要素:s、h重点:观察并找出.难点:三视图法【例 1】大正方体的棱长是小正方体棱长的4倍,那么它的表面积是小正方体表面积的______倍.【巩固】边长l米的正方体2100个,堆成了一个实心的长方体。
它的高是10米,长、宽都大于高。
问长方体的表面积和体积是多少?知识框架重难点例题精讲专项十五表面积与体积(一)【例 2】如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.【巩固】如右图所示,由三个正方体木块粘合而成的模型,它们的棱长分别为1米、2米、4米,要在表面涂刷油漆,如果大正方体的下面不涂油漆,则模型涂刷油漆的面积是多少平方米?【例 3】用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?【巩固】把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.,求这个立体图形的表面积.【例 4】边长为1厘米的正方体,如图这样层层重叠放置,那么当重叠到第5层时,这个立体图形的表面积是多少平方厘米?N ),要想使总表面积恰好是一个完全平方数,则N 【巩固】按照上题的堆法一直堆到N层(3的最小值是多少?【例 5】由27个棱长为1的小正方体组成一个棱长为3的大正方体,若自上而下去掉中间的3个小正方体,如图所示,则剩下的几何体的表面积是。
【巩固】如右图,一个边长为3a 厘米的正方体,分别在它的前后、左右、上下各面的中心位置挖去一个截口是边长为a 厘米的正方形的长方体(都和对面打通).如果这个镂空的物体的表面积为2592平方厘米,试求正方形截口a 的边长.【例 6】有一个棱长为5cm 的正方体木块,从它的每个面看都有一个穿透的完全相同的孔(右上图),求这个立体图形的内、外表面的总面积.【巩固】 如图所示,一个555⨯⨯的立方体,在一个方向上开有115⨯⨯的孔,在另一个方向上开有215⨯⨯的孔,在第三个方向上开有315⨯⨯的孔,剩余部分的体积是多少?表面积为多少?【例 7】若长方体的三个侧面的面积分别是6,8,12,则长方体的体积是。
小学五年奥数-长方体和正方体的表面积和体积

长方体和正方体的表面积和体积【知能大展台】1.长方体和正方体的特征:(1)定义:长方体和正方体六个面的总面积叫做它们的表面积。
(2)计算公式:长方体的表面积S=2(AB+AH+BH)正方体的表面积(3)长方体和正方体的体积(1)定义:物体所占空间的大小叫做物体的体积。
(2)长方体的体积V=ABH(3)正方体的体积V=长方体或正方体的体积还可以这样计算:V=S·H【试金石】例1一个正方体的棱长5厘米,表面涂满了红漆,4它切成棱长为1厘米的小正方体若干块,问:在这些小正方体中,三面涂有红漆的有多少块?两面涂红色有多少块?一面涂有红色的有多少块?没有涂上红色有多少块?【分析】先看这个正方体可以切多少块小正方体。
如图:一共可以切成=125块小正方体。
为方便起见,我们用不同的阴影表示不同涂色情况网影表示三面涂有红色的小正方体。
三面涂有的小正方体位于顶点处,每个顶点上有一块。
点影表示两面涂有红色的小正方体。
两面涂色的小正方体位于棱长,每条棱上有(5-2)块。
斜影表示一面涂有红色的小正方体。
一面涂色的小正方体位于面中,没个面中间有(5-2)2块。
没有涂上红色的小正方体位于大正方体内部,共有(5-2)3块。
【解答】三面涂有红色的正方体有8块。
两面涂有红色的小正方体有:(5-2)×12=36(块)一面涂有红色的小正方体有:没有涂上红色的小正方体有:面棱顶点面的形状面积大小棱长长方体6个12条8个都是长方形(也可能有两个相对的面是正方形)相对的两个面的面积相等相对的4条棱长度相等正方体6个12条8个都是正方形6个面的面积相等12条棱长度相等【智力加油站】【针对性训练】一个正方体的棱长4分米,表面涂满了红漆,4它切成棱长为1分米的小正方体若干块,问:在这些小正方体中,三面涂有红漆的有多少块?两面涂红色有多少块?一面涂有红色的有多少块?没有涂上红色有多少块?【试金石】例2 把一块长30厘米的长方形铁皮,在四个角上剪去边长为5厘米的正方形,在焊接成一个无盖的长方体铁盒,这个铁盒的容积是1500立方厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长方体和正方体的表面积和体积
一、方法讲解
我们学习了长方体和正方体,运用长方体和正方体的表面积和体积公式一般可以简单长方体和正方体问题,解决较复杂的立体图形问题要注意几点:
1、必须以基本概念和方法为基础,同时吧构成几何图形的诸多条件融合贯通起来。
2、依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化。
3、求一些不规则的物体的体积时,可以通过变形的方法来解决。
二、例题讲解
1、一个零件形状大小如右图所示:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)
2、有一个长方体形状的零件,中间挖去一个正方体的孔(如图所示),你能算出它的体积和表面积吗?(单位:厘米)
3、一个长方体沿着长的方向切掉一个小正方体,剩下的长方体的表面积比原来减少24平方厘米,求所切下的正方体的表面积是多少平方厘米?
4、长方体不同的三个面的面积分别为10平方厘米、15平方厘米和6平方厘米。
这个长方体的体积是多少立方厘米?
5、一个凌长为6厘米的正方体木块,如果把它锯成凌长为2厘米的正方体若干块,表面积增加多少平方厘米?
三、达标练习
1、一个长5厘米、宽1厘米、高3厘米的长方体,被切去一块后(如图所示),剩下部分的表面积和体积各是多少?
2、把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积。
3、有一个长8厘米、宽1厘米、高3厘米的长方体,在它的左右两个角各切掉一个正方体(如图所示),求切掉正方体后的表面积和体积各是多少?
4、有一个形状如上图所示的零件,求它的体积和表面积。
(单位:厘米)
5、如果把上题中挖下的小正方体粘在另一个面上,(如图所示)那么得到的物体的体积和表面积各是多少?
6、一个正方体和一个长方体刚好拼成新的长方体,其表面积比原来的长方体的表面积增加了60平方厘米,原来正方体的表面积是多少立方厘米?
7、一根长1米,宽和高都是8厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?
8、把两个完全相同的长方体木块拼成一个正方体,表面积比原来两个长方体的表面积的和减少了40 平方厘米,求原来每个长方体的表面积是多少平方厘米?
9 .一个长方体,不同的三个面的面积分别是25平方厘米、18平方厘米和8平方厘米。
这个长方体的体积是多少平方厘米?
10.一块小正方体的表面积是6平方厘米,那么,由1000个这样的小正方体所组成的大正方体的表面积是多少平方厘米?
11.有一个凌长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米?
12.把一个正方体的六个面都涂上红色,然后把它锯两次锯成4个同样的小长方体,没有涂颜色的面积是60平方厘米。
求涂上红色的面积一共是多少平方厘米?
13.用凌长是1厘米的小正方体摆成一个稍大一些的正方体,如果要摆一个凌长是6厘米的正方体,需要多少个小正方体?凌长50厘米需要多少个小正方体?。