变形分析与控制

合集下载

机械结构的弹性变形分析与控制

机械结构的弹性变形分析与控制

机械结构的弹性变形分析与控制一、引言机械结构的弹性变形是指在外力作用下,机械结构产生的一种可逆变形现象。

弹性变形的分析与控制对于机械工程的设计和制造具有重要意义。

本文将探讨机械结构的弹性变形以及相关的分析与控制方法。

二、机械结构的弹性变形分析1. 弹性变形的基本原理弹性变形是指机械结构在受力作用下变形后能够恢复原状的一种变形形式。

在弹性变形过程中,机械结构的原子、分子间的相互作用力会产生弹性力,从而使结构发生变形。

而当外力撤离后,结构会恢复到其初始状态。

2. 弹性变形的影响因素机械结构的弹性变形受到多种因素的影响,主要包括材料的弹性模量、结构的几何形状和外力的大小和方向等。

材料弹性模量越大,结构的弹性变形越小;结构的几何形状越复杂,弹性变形越大;外力的大小和方向会直接影响结构的受力情况,从而引起弹性变形。

3. 弹性变形的分析方法弹性变形的分析方法主要有理论分析和数值计算两种。

理论分析是通过应用弹性力学理论推导出结构的变形方程,从而得到结构的变形解析解。

数值计算则是通过数值方法对结构的变形方程进行近似求解,得到结构的变形数值解。

4. 弹性变形的控制方法为了减小机械结构的弹性变形,可以采取一些控制措施。

常见的控制方法包括结构加强、材料改进和减小外力作用等。

结构加强可以通过增加结构的截面积、加粗结构的梁柱等来提高结构的刚度,从而减小弹性变形。

材料改进可以选用弹性模量较大的材料,如高强度钢等。

减小外力作用可以通过合理设计机械结构的工作状态,如在设计起重机械时,可以根据工作负荷的大小选择适当的起重机。

三、机械结构的弹性变形控制实例以汽车悬挂系统为例,介绍机械结构的弹性变形控制。

汽车悬挂系统是保证汽车行驶平稳性和舒适性的重要组成部分。

在汽车行驶过程中,悬挂系统需要承受来自路面的冲击力,并使车身保持稳定。

为了减小汽车悬挂系统的弹性变形,可以采用以下控制措施:1. 结构加强:增加悬挂系统的强度和刚度可以减小其弹性变形。

立式储罐底板焊接变形分析与控制

  立式储罐底板焊接变形分析与控制

立式储罐底板焊接变形分析与控制摘要:立式储罐是焦化厂普遍应用的设备之一,其稳定运行是焦化厂安全生产的保证。

储罐底板是整个储罐的关键部位,罐底板通常铺在沥青砂基础上,由数块薄钢板焊接而成。

如果罐底的焊接变形过大,不仅影响罐底外观,而且在罐内介质液位不断变动时产生的应力集中和附加应力有可能造成底板断裂,使储存介质泄漏,其变形部位是影响储罐质量的重要因素。

基于此,本文对立式储罐变形进行研究,以供参考。

关键词:立式储罐;;变形分析引言按照立式储罐罐顶的结构将立式储罐分为固定顶储罐和浮顶储罐。

对于浮顶储罐又可以按照其储罐浮顶的形式分为内内浮顶储罐和外浮顶储罐。

立式储罐过程很容易受到各方面因素的影响,比如,焊接工人的技术失误、焊接过程的工作环境等,从而使焊接质量得不到有效的保障,焊接变形常有发生,造成极大的安全隐患。

所以,立式储罐底板的变形控制应该引起足够的重视,研究焊接造成的变形形式,探讨变形产生的原因,找到有效的解决措施,从而提高立式储罐底板的焊接质量。

1焊接变形概述常见的焊接变形主要分为线性缩短、角变形、弯曲变形、扭曲变形、波浪失稳变形。

线性缩短大致规律是线性膨胀系数大的材料焊接后焊缝收缩量也大,焊缝的纵向缩短随着焊缝长度的增加而增加,焊缝的横向收缩量随着焊缝宽度的增加而增加。

角变形大致规律是开V型坡口的对接接头焊后产生的变形为2°~3°;开X型坡口的对接接头时,虽然厚度方向上焊缝截面是对称的,但如果焊接顺序选择安排不当,也会使焊缝正反两面的横向收缩不相等而产生角变形;焊脚高度等于板厚的角接接头焊接后,角变形量也为2°~3°。

弯曲变形是纵向收缩和横向收缩综合作用的结果,其主要原因是焊缝布置不在构件截面的中轴线上,弯曲变形总是向着焊缝的方向,焊缝离截面中轴线的距离越大,则弯曲变形越严重。

扭曲变形主要是由于装配质量不好、工件搁置不当以及焊接顺序和焊接方向安排不当等原因造成的。

薄壁零件加工变形分析及控制方案

薄壁零件加工变形分析及控制方案

0引言薄壁零件在设备中的应用都是在核心部位,其质量以及性能的会关系到设备的应用效果。

再加上薄壁零件在加工制作的过程中需要对其外壁进行不断的打磨,以使其达到薄壁的要求,但这就导致了资源的浪费,这与我们现代社会提倡的“绿色生产”相违背。

为了相应这一号召,就必须对生产的工艺以及过程进行分析,探究新的技术,实现薄壁零件的最优生产。

1薄壁零件的介绍薄壁零件顾名思义就是零件的壁厚较薄,一般为轮廓尺寸的二十分之一。

最重要的是其有强度高、承载性强等优点,受到了很多行业的追捧。

在航天产品以及汽车制造工业中,其具体的特点有以下几点,一是结构复杂,在很多的大型产品中应用,为了减轻产品整体的重量,会增加很多的复杂设计,因此故意忽略了装夹定位,导致零件结构复杂。

二是壁薄,尤其是对于一些精密产品来说,需要零件的壁更薄,并且不适合集中粗放生产,这就相应的增加了零件的生产时间,进而使得提高了制造成本。

三是精准度高,薄壁零件要适应设备的制造的需求,就必须提高自身的精确度,为此从毛坯加工到成品需要多道工序,而且在加工的过程中极易出现变形的情况,甚至会导致零件报废。

这增加了制造企业的经济负担,延误了买家的使用也对零件生产企业的形象造成了破坏。

四是制作材料多,为了使用不同产品生产的需求,薄壁零件在加工的过程中会应用到多种材料,例如塑料、钛合金等等,不同的原材料对工业的需求也有差别。

2薄壁零件的加工变形原因2.1残余应力因素薄壁零件中的残余应力是有两个方面组成的,一部分是毛坯残余应力,另一部分是加工过程中的残余应力。

例如在钛合金加工的过程中需要加热使得材料软化,导致了残余应力的产生,应力的释放会造成零件的变形,进而影响零件的质量。

2.2工件装夹因素为了应对加工的过程中零件出现的位移现象,技术人员会利用工件装夹对零件进行固定。

但是工件装夹产生的力也会对零件生产的精准度造成一定的影响。

因此,技术人员在设定工件装夹是要将其松紧调整到最优的模式。

结构力学中的变形与变位控制

结构力学中的变形与变位控制

结构力学中的变形与变位控制在结构力学领域,变形和变位控制是十分重要的概念。

变形指的是结构在受到外部载荷作用后的形态变化,而变位则是结构在外力作用下的位移变化。

控制这些变形和变位可以保证结构的稳定性和安全性,减少其在使用过程中出现的问题。

一、变形与变位的概念在结构力学中,变形是指结构在外部载荷作用下发生的形态变化。

这种形态变化通常通过位移、角度或曲率来描述,可以分为整体变形和局部变形两种。

1. 整体变形:指整个结构单位内各点之间的相对位移。

比如,在桥梁结构中,整体变形可以通过观察桥面的上下位移来判断。

2. 局部变形:指结构中某一部分的形态变化。

比如,在悬臂梁结构中,支座附近的区域可能会出现较大的弯曲变形。

变位则是指结构在外部载荷作用下的位移变化。

变位可以通过结构的几何特征来描述,比如结构的伸缩、旋转或倾斜等。

变位控制是指通过调整结构的几何形态或结构性能,以达到控制结构位移的目的。

二、变形与变位的分析方法为了更好地控制结构的变形和变位,研究人员使用了各种分析方法。

这些方法可以帮助工程师评估结构的变形和变位,以及采取相应的控制措施。

1. 解析方法:解析方法是通过分析结构的力学性质和几何特征,使用数学模型来推导出结构的变形和变位。

这些方法通常基于一些假设和简化条件,可以非常清晰地描述结构的行为。

常用的解析方法有弹性分析和塑性分析。

2. 数值模拟方法:数值模拟方法是通过使用计算机模拟结构的行为,以获得结构的变形和变位信息。

这些方法可以考虑更为复杂的结构,包括非线性材料和几何非线性等。

常用的数值模拟方法有有限元方法和边界元方法。

三、变形与变位控制的应用结构的变形和变位控制在工程中有着广泛的应用。

以下是一些常见的应用领域:1. 结构工程:在桥梁、建筑物等结构中,变形和变位控制可以帮助工程师评估结构的变形情况,确保结构的稳定性和安全性。

2. 航空航天:在飞机和航天器中,变形和变位控制可以保证飞行过程中结构的稳定性,减少结构的疲劳破坏。

《2024年软土地区深基坑施工引起的变形及控制研究》范文

《2024年软土地区深基坑施工引起的变形及控制研究》范文

《软土地区深基坑施工引起的变形及控制研究》篇一一、引言随着城市化进程的推进,建筑工程的深度和复杂性日益增加,特别是在软土地区,深基坑施工成为了建筑行业面临的重要问题。

软土地区的地质条件复杂,深基坑施工往往伴随着土体变形,这对周边环境及建筑物安全构成威胁。

因此,研究软土地区深基坑施工引起的变形及控制措施,对于保障施工安全、提高工程质量具有重要意义。

二、软土地区深基坑施工变形分析1. 变形类型及原因在软土地区进行深基坑施工时,常见的变形类型包括基坑隆起、周边地面沉降及相邻建筑物变形等。

这些变形主要由以下几个因素引起:(1)土体应力重分布:施工过程中,土体应力重新分布,导致土体发生位移和变形。

(2)地下水位变化:基坑开挖导致地下水位上升或下降,引起土体固结或松动。

(3)支护结构位移:支护结构的不稳定或设计不合理,导致结构位移,进而引发土体变形。

2. 变形影响分析深基坑施工引起的变形对周边环境及建筑物安全具有较大影响。

一方面,地面沉降可能导致周边道路、管线等设施损坏;另一方面,基坑隆起及建筑物变形可能影响相邻建筑物的稳定性及使用安全。

此外,变形还可能引发环境问题,如地面开裂、地下水污染等。

三、深基坑施工变形控制措施为有效控制深基坑施工引起的变形,需采取一系列措施。

这些措施主要包括以下几个方面:1. 合理设计支护结构:根据地质条件、基坑深度及周边环境等因素,设计合理的支护结构,确保结构稳定,防止土体位移和变形。

2. 优化施工工艺:采用先进的施工工艺和技术,减少对土体的扰动和破坏,降低变形发生的可能性。

3. 地下水控制:采取有效的地下水控制措施,如设置止水帷幕、合理降低地下水位等,以减少地下水位变化对土体的影响。

4. 监测与反馈:对深基坑施工过程进行实时监测,包括土体位移、支护结构位移、地下水位等,根据监测结果及时调整施工参数和措施,确保施工安全。

5. 应急预案:制定针对可能发生的变形的应急预案,包括预警机制、应急救援队伍、救援设备等,以便在发生变形时能够迅速、有效地应对。

铝合金薄壁件加工中变形的因素分析与控制方法

铝合金薄壁件加工中变形的因素分析与控制方法

铝合金薄壁件加工中变形的因素分析与控制方法一般认为,在壳体件、套筒件、环形件、盘形件、轴类件中,当零件壁厚与内径曲率半径(或轮廓尺寸)相比小于1:20时,称作为薄壁零件。

这一类零件的共同特点是受力形式复杂,刚度低,加工时极易引起误差变形或工件颤振,从而降低工件的加工精度。

薄壁零件因其制造难度极大,而成为国际上公认的复杂制造工艺问题。

一、薄壁件加工变形因素分析薄壁件由于刚度低,去除材料率大,在加工过程中容易产生变形,对装夹工艺要求高,使加工质量难以保证。

薄壁类零件在加工中引起变形的因素有很多,归纳总结有以下几个方面:1、工件材料的影响铝合金作为薄壁件最理想的结构材料,与其他金属材料相比,具有切削加工性好的特点。

但由于铝合金导热系数高、弹性模量小、屈强比大、极易产生回弹现象,大型薄壁件尤为显著。

因此,在相同载荷情况下,铝合金工件产生的变形要比钢铁材料的变形大,同时铝合金材料具有硬度小、塑性大和化学反应性高等性质,在其加工中极易产积屑瘤,从而影响工件的表面质量和尺寸精度。

2、毛坯初始残余应力的影响薄壁件加工中的变形与毛坯内部的初始残余应力有直接的关系,同时由于切削热和切削力的影响,使工件和刀具相接触处的材料产生不能回弹的塑性变形。

这种永久性的变形一旦受到力的作用就会产生残余应力,而在加工过程中,一旦破坏了毛坯的残余应力,工件内部为达到新的平衡状态而使应力重新分布,从而造成了工件的变形。

3、装夹方式的影响在加工中夹具对工件的夹、压而引起的变形直接影响着工件的表面精度,同时如果由于夹紧力的作用点选择不当而产生的附加应力,也将影响工件的加工精度。

其次,由于夹紧力与切削力产生的耦合效应,也将引起工件残余应力的重新分布,造成工件变形。

4、切削力和切削热的影响切削力是影响薄壁件变形的一个重要因素。

切削力会导致工件的回弹变形,产生不平度,当切削力达到工件材料的弹性极限会导致工件的挤压变形。

在切削加工过程中,刀具与工件之间的摩擦所作的功,材料在克服弹性、塑性变形过程中所做的功绝大部分转化为加工中的切削热,从而导致工件的各部分的温度差,使工件产生变形。

建筑工程施工测量中的变形分析与控制技术要点

建筑工程施工测量中的变形分析与控制技术要点

建筑工程施工测量中的变形分析与控制技术要点引言:建筑工程的施工过程中,测量变形是一个非常重要的环节。

合理的变形分析与控制技术能够保证建筑的稳定性和安全性。

本文将探讨建筑工程施工测量中的变形分析与控制技术的要点。

一、变形分析的概念及方法1. 变形分析的概念变形分析是指对建筑物或结构物在施工过程中所产生的各种不可避免的变形进行监测、分析和评估的过程。

变形可以是建筑物的线性变形、非线性变形或动力响应。

2. 变形分析的方法(1)测量法:通过使用测量工具和设备,如全站仪、水平仪、位移传感器等,对建筑物进行实时测量,获取变形数据。

(2)数学模型法:通过建立数学模型,结合建筑物的材料和结构特点,预测变形情况,并进行分析和评估。

(3)物理模型法:通过设计和制作具有相似形状和性质的物理模型,对建筑物的变形进行模拟和观测。

二、变形控制的目标和原则1. 变形控制的目标变形控制的目标是控制建筑物在合理范围内的变形,避免因变形过大而导致建筑物的失稳和损坏。

2. 变形控制的原则(1)基准线:确定合适的基准线,作为变形测量的参考点。

基准线应选择稳定的地质条件,以减小测量误差。

(2)监测频率:根据建筑物的类型和工程条件,确定监测变形的频率。

通常情况下,建筑物变形监测应在施工过程中定期进行,特别是在关键节点时需要增加监测频率。

(3)控制标准:确定合理的变形控制标准,根据设计规范和实际情况,制定变形值的限制范围。

超出控制标准的变形情况需要及时采取措施进行修复或调整。

三、常用的变形分析与控制技术1.2D/3D测量技术通过使用全站仪、激光扫描仪等测量设备,可以对建筑物的二维或三维形态进行实时监测。

这种技术可以准确地测量建筑物各个部分的位移、翘曲和扭转等变形情况。

2.振动监测技术通过安装振动传感器,对建筑物在施工过程中产生的振动进行监测。

这种技术可以用于检测不同类型的变形,如振动速度、振动加速度等。

3.有限元分析技术通过建立建筑物的有限元模型,结合建筑物的材料和结构特性,对变形进行模拟和分析。

建筑结构的变形与稳定性分析

建筑结构的变形与稳定性分析

建筑结构的变形与稳定性分析建筑结构是指构成建筑物的各种构件和材料,通过相互连接形成一个整体,承担建筑物自身重力和外部荷载的力学系统。

在建筑物的设计、施工和使用过程中,结构的变形与稳定性是十分重要的考虑因素。

本文将分析建筑结构的变形与稳定性,并介绍一些分析方法和技术。

一、变形分析变形是建筑结构受荷载作用后产生的几何、形状上的变化。

结构的变形直接关系到建筑物的使用功能和安全性。

通常,建筑结构的变形是可以接受的,但是需要在一定的范围内控制。

过大的变形可能导致建筑物的功能失效,甚至造成结构破坏。

1. 变形原因建筑结构的变形主要受以下几个方面的因素影响:荷载、材料性能、构件刚度、结构形式和施工质量等。

荷载是导致结构变形的主要外力,包括静态荷载、动态荷载和温度变化等。

材料的弹性和粘性等力学性能也会对结构的变形产生影响。

构件刚度是指结构各构件对外力的抵抗能力,刚度越大,变形越小。

不同的结构形式也会对变形有不同的影响。

2. 变形控制方法为了控制建筑结构的变形,可以采取以下几种方法:合理选择结构形式和材料,增加构件尺寸和厚度,提高构件刚度和抗变形能力。

在设计和施工过程中,应进行详细的变形分析和计算,确保满足结构的变形要求。

此外,也可以通过设置补偿装置和预应力等措施来减小结构的变形。

二、稳定性分析稳定性是建筑结构抵抗外力作用时不产生破坏或失稳的能力。

结构的稳定性分析主要研究结构抗侧推、抗压弯和抗扭转等方面的性能。

1. 稳定性失效稳定性失效是指结构在受到一定荷载作用时出现失稳现象。

常见的稳定性失效形式包括整体失稳、局部失稳和摆动失稳。

整体失稳是指结构整体和构件发生整体侧扭或整体位移现象。

局部失稳是指结构某一局部构件在极限弯矩之下发生屈曲现象。

摆动失稳是指结构由于受到侧向力的作用,出现左、右侧摆动。

2. 稳定性分析方法稳定性分析可以通过静力弯矩法、力法和能量法等方法进行。

其中静力弯矩法是最常用的方法之一。

它是根据结构相对于一定轴线的刚度和弯矩对比,判断结构在作用荷载下的稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一)核心筒整体变形控制在高层钢框架—钢筋混凝土核心筒混合结构中,由于框—筒竖向构件的材料不同、应力不同以及混凝土的收缩和徐变、施工安装的时间差、结构不同部位的温度差等影响, 将导致竖向构件之间的竖向变形差异, 其中钢构件的压缩大于混凝土构件的压缩。

由于同一结构中不同竖向构件的材料特性及应力水平的差异,将导致这种混合体系产生显著的竖向变形差。

根据国内外多个工程实测表明:若不包括温度变形,钢筋混凝土柱的弹性变形和徐变、收缩变形之和大约每400m高度可达100mm,徐变和收缩变形之和约为弹性变形的两倍。

这些与时间和环境相关的变形将使结构随时间发生显著的内力重分布,也会给非结构构件带来不利影响,还可能影响设备的安装和使用。

为了能尽可能的控制核心筒的整体变形,我们应对各种变形的原因进行分析,找出对应的解决措施。

1、混凝土结构徐变混凝土在持续荷载作用下会发生徐变变形,徐变的存在会使混凝土结构的强度降低,缩短其使用寿命。

混凝土是一种主要用于承受压力的脆性材料,其抗压强度远远高于抗拉强度。

混凝土生产徐变的原因,一般认为是由于在长期荷载作用下,水泥石中的凝胶体产生粘性流动,向毛细管内迁移,或者凝胶体中的吸附水或结晶水向内部毛细孔迁移渗透所致。

从水泥凝结硬化过程可知,随着水泥的逐渐水化,新的凝胶体逐渐填充毛细孔,使毛细孔的相对体积逐渐减小。

在荷载初期或硬化初期,由于未填满的毛细孔较多,凝胶体的迁移较容易,故徐变增长较快。

以后由于内部移动和水化的进展,毛细孔逐渐减小,徐变速度愈来愈慢。

徐变是混凝土这种粘弹性材料的重要性质之一。

通常对于混凝土结构会因为徐变而使得变形不断增大 ,或者带来预应力损失 ,人们十分熟悉。

但是另一方面,徐变会使混凝土的温度或其他收缩变形受约束时产生的应力得到松弛。

事实上 ,长期以来结构混凝土因为各种收缩变形受约束而并未引起广泛开裂的重要原因,是早期强度增长较缓慢的混凝土徐变松弛作用显著的结果。

以一组数据来说明徐变的作用[1 ]:设混凝土达到温峰后下降幅度为 3 0℃ ,其弹性模为 3 0GPa,线胀系数 1 0× 1 0 -6,如果不存在徐变 ,则引起的拉应力可高达 9MPa ,显然任何普通混凝土都无法承受这样大的应力而产生开裂,由此可见徐变的影响之大。

徐变与混凝土强度通常是反向发展的,使普通混凝土原来具备开裂后的自愈能力完全丧失 ,因此一旦混凝土开裂就无法再愈合 ,而且在外界荷载与环境条件 (包括干湿、冷热循环 )作用下继续收缩,使裂缝会进一步连通和扩展。

1.1、徐变产生的机理分析徐变是指在固定应力或荷载作用下,应变随时间的增长而继续不断发展的一种现象。

它是一个复杂的物理和化学过程,将其主要机理分为:1)在应力作用下、在吸附水层的润滑作用下,水泥胶凝体的滑动或剪切所产生的水泥石的粘稠变形。

2)在应力作用下,山于吸附水层的渗流或层间水转移而导致的紧缩。

3)由于水泥胶凝体对骨架(由骨料和胶体结晶组成)弹性变形的约束作用所引起的滞后弹性变形。

4)由于局部破裂(在应力作用下发生微裂及结晶破坏)以及重新结晶与新的联结而产生的永久变形1.2、混凝土徐变的影响因素混凝土的徐变和许多因素有关。

水灰比较小或混凝土在水中养护时,同龄期的水泥石中未填满的孔隙较少,故徐变较小。

水灰比相同的混凝土,水泥用量愈多,即水泥石相对含量愈大,其徐变愈大。

混凝土所用集料弹性模量较大时,徐变较小。

此外,徐变与混凝土的弹性模量也有密切关系。

一般弹性模量大者,徐变小。

混凝土徐变还与集料级配、粗集料最大粒径、养护条件、受荷应力种类、温度等因素有关。

根据混凝土徐变的机理,可得出影响混凝土徐变的主要因素:徐变与混凝土强度通常是反向发展的,使普通混凝土原来具备开裂后的自愈能力完全丧失 ,因此一旦混凝土开裂就无法再愈合 ,而且在外界荷载与环境条件 (包括干湿、冷热循环 )作用下继续收缩 ,使裂缝会进一步连通和扩展。

国内水泥这些年来的变化 ,也促使混凝土的徐变能力发生了同样的演变。

徐变变形规律(1)当应力水平相对较低时(如图),在持续荷载作用下,其变形虽然随着时间的增加而有所增长,但增长速度缓慢,试件在持续荷载作用下历时一个月而未破坏.这可能是由于存在某一应力水平(长期强度),当持续荷载在这一应力水平以下时,构件不会发生徐变破坏。

应力水平为70%时徐变变形曲线(2)当在较高应力水平时(如图),其变形随时间的增加不断增长,直至构件发生徐变破坏.这类徐变曲线一般可以分为3个阶段:在第1阶段,徐变速率随时间的增长逐渐减小,该阶段是混凝土由瞬时弹性阶段向徐变变形转化的过渡阶段,称为徐变减速阶段;在第2阶段,徐变速率随时间的增加变化很小,徐变曲线接近直线,称之为稳定徐变阶段,混凝土内部的微裂缝在该阶段开始萌生与扩展;到了第3阶段,微裂缝得到进一步扩展并贯通为宏观裂纹,该阶段中的徐变速率随时间的增加不断增大,并最终导致材料破坏,称之为徐变加速阶段。

应力水平为85%时徐变变形曲线混凝土的收缩和徐变密不可分,两者同时对结构的长期变形产生影响,不能把两者完全孤立开。

收缩和徐变作用机理不同,收缩是不依赖于荷载的一种变形,而徐变是依赖于荷载的一种变形,此收缩和徐变要根据其影响机制正确对待。

混凝土的收缩和徐变对钢筋混凝土结构的变形影响较大,尤其是收缩会引起比较大的附加变形。

收缩量(X10 )(月)混凝土结构收缩曲线图2、风载影响本工程塔体高度将达+432米,受到风力、日照、温差等多种动态作用的影响,核心筒顶部处于偏摆运动状态。

根据类似工程的监测研究表明,塔心在一个白天的位移轨迹,是一个未闭合的近似椭圆形,预测广州西塔核心筒顶部施工期间的摆幅可能会大于15厘米。

其中越到顶部,风力对结构的影响越大。

高层建筑的主要荷载为水平荷载,风荷载是建筑的设计荷载之一,也是高层建筑,高耸建筑的主要荷载之一。

风速的脉动以及横向风涡流的频繁将引起结构顺向风和横向风振动,甚至产生扭转耦合振动,失稳,弛振及颤振。

当结构的自振周期与风振周期接近一致时,有可能使建筑倒塌。

历史上因为风振造成的工程结构坍塌事故实有发生。

美国塔科马港湾上的第一座塔科马桥就是在竣工四个月后的1940年11月7日毁于68千米/小时的风振。

同地震作用相比,风力作用极其频繁且持续时间比较长,因此风力的影响比地震大的多。

高层建筑对风的动力作用比较敏感,建筑物越柔,自振周期越长,风的动力作用也就越显著。

如果在强风作用下产生过大的水平位移和振幅,会使建筑物产生一定的损害或者由于风振引起构件的疲劳破坏。

为了使高层建筑在风力作用下不会发生倒塌,结构开裂和过大的残余变形,就必须研究高层建筑在风振作用下的变形情况,进而采取合理的风振控制措施。

因此研究风对工程结构的作用规律具有重要的现实意义。

高层建筑风振变形的研究主要是研究风振对高层建筑物倾斜,水平位移,竖向变形,不同层面间的扭转变形。

风振测量的方法,常用的是风洞模拟法和现场直接测量法。

为了掌握风振作用下高层建筑物的竖向变形和不同层面的扭转变形,我们可以采用现场直接测量的方法,根据试验获取的数据进行分析,可以对高层建筑在风振作用下的变形规律进行初步的总结,并且在有条件的情况下,建立相应的数学模型,定性定量地分析风振对高层建筑产生的影响。

受风载影响,西塔外筒钢结构和核心筒部分摆动比较大,为了尽量减少风载对筒体结构变形的影响,我们每12层设置一个测量转化层,并且定周期复核,防止误差累积。

具体操作步骤参见工程测量部分主塔楼垂直度控制部分。

通过精确的定位,完全可以将风载的影响控制在容许范围内。

3、日照影响由于日照的影响,混凝土构件和钢构件背面和正面受到的阳光照射不一样,产生的温差导致构件发生变形。

温度变化时,若结构中的构件变形受到约束,那么构件的膨胀、收缩不能自由发生,结构构件就有内力,称为温度内力。

对于一般的低层建筑物.温度变形和温度内力很小,可忽略。

但随着建筑物高度增高、温度内力也越来越大。

日照变形观测应在高耸建筑物或单柱(独立高柱)受强阳光照射或辐射的过程中进行,应测定建筑物或单柱上部由于向阳面与背阳面温差引起的偏移量及其变化规律。

日照变形观测可根据不同观测条件与要求选用下列方法:1 当建筑物内部具有竖向通视条件时,应采用激光铅直仪观测法。

在测站点上可安置激光铅直仪或激光经纬仪,在观测点上安置接收靶。

每次观测,可从接收靶读取或量出顶部观测点的水平位移值和位移方向,亦可借助附于接收靶上的标示光点设施,直接获得各次观测的激光中心轨迹图,然后反转其方向即为实测日照变形曲线图。

2 从建筑物外部观测时,可采用测角前方交会法或方向差交会法。

对于单柱的观测,按不同量测条件,可选用经纬仪投点法、测顶部观测点与底部观测点之间的夹角法或极坐标法。

按上述方法观测时,从两个测站对观测点的观测应同步进行。

所测顶部的水平位移量与位移方向,应以首次测算的观测点坐标值或顶部观测点相对底部观测点的水平位移值作为初始值,与其他各次观测的结果相比较后计算求取。

一般来说,受日照温差影响,晚上日落以后到早上日出以前,向阳面与背阳面温差较小,引起的变形偏位也就比较小,早上10点以后至下午4点以前,由于内外温差较大,核心筒部位变形偏位较大,具体影响曲线如下图:塔楼顶部受日照影响变形曲线注: 1 图中顺序号为观测次数编号,括号内数字为时间;2 曲线图由激光铅直仪直接测出的激光中心轨迹反转而成。

为了减小日照对建筑变形的影响,我们选在0:00~8点之间进行控制测量和投点工作,以尽量减少日照变形对施工的影响和轴线偏差的影响。

4、竖向变形差的解决方案对于超高层结构的竖向变形差异问题,可以从材料和结构两个方面来拟定解决方案。

从问题的本质来讲,控制徐变与收缩应首先从混凝土材料本身着手,调整混凝土的组成材料及配合比,采用合理的养护方法,尽量减小混凝土的徐变和收缩:(1)降低混凝土中水泥在水化过程中的水化热,提高混凝土和易性,减少水灰比,增加混凝土的密实性和提高混凝土抗拉强度,减少混凝土在施工过程中由于温差过大产生膨胀与收缩应力。

(2)延长混凝土初凝及终凝时间,因为水泥在水化的总发热量是个常数,延长升温与降温时间,不致于使温度梯度产生峰值,使膨胀与收缩的应力达到最高值,裂缝迅速加大。

(3)合理选用混凝土粗细骨料,水灰比,掺适量微膨胀剂,缓凝剂,使结构产生自应力,来提高混凝土的抗拉能力,减少由于热胀冷缩产生结构裂缝及提高抗渗能力。

(4)加强混凝土的养护,采取有效表层保温,保湿措施,使外界气温与混凝土表面温差不宜过大,散热过快,并保持足够水份,使混凝土水化与凝固更完善,减少温度梯度,膨胀与收缩更均匀。

(5)严格控制水灰比,水是影响混凝土收缩主要因素,因混凝土中水份大部分蒸发引起混凝土内部形成很多毛细孔,降低混凝土抗拉强度、收缩变形也同时发生,因此采用减水剂、减少水灰比,改善混凝土和易性,从而提高混凝土的抗拉强度,减小混凝土徐变和收缩量。

相关文档
最新文档