第五章 弯曲位移习题_3

合集下载

第五章习题答案

第五章习题答案

5-1 把直径1d mm =的钢丝绕在直径为2m 的卷筒上,试计算该钢丝中产生的最大应力。

设200E GPa =解:钢丝绕在直径为D 的卷筒上后产生弯曲变形,其中性层的曲率半径为22D d Dρ+=≈(因D d >>) 该钢丝中产生的最大应力为39maxmax/211020010100/22y d d E E E Pa MPa D D σρ-⨯====⨯⨯=5.4 矩形截面悬臂梁如图所示。

已知4l m =,23b h =,10/q kN m =,[]10MPa σ=,试确定此梁横截面的尺寸。

解:作梁的弯矩图如图所示。

梁的最大弯矩发生在固定端截面上。

22max 111048022M ql kN m ==⨯⨯=⋅ 由强度条件,有max maxmax 26[]z M M W bhσσ==≤ 将23b h =代入上式,得0.416416h m mm ≥=== 22773b h mm =≥ 5.5 20a 工字钢梁的支承和受力情况如图所示。

若[]160MPa σ=,试求许可载荷F 。

解:(1)求支座反力。

选整个梁为研究对象,受力分析如图所示。

列平衡方程,有0yF =∑,0A B F F F F ++-=()0AM=∑F ,6240B F F F ⨯-⨯+⨯=解得:13A F F =,13B F F =-M O212qlM O(2)作梁的弯矩图如图所示。

由图可知该梁的最大弯矩为max 23C M M F ==查表得No.20a 工字钢的抗弯截面系数为3237z W cm =,由强度条件,有max max 2/3[]z zM F W W σσ==≤ 解得663[]3237101601056.922z W F kN σ-⨯⨯⨯⨯≤==所以许可载荷56.9F kN =。

5.8 压板的尺寸和载荷情况如图所示。

材料为45钢,380s MPa σ=,取安全因数1.5n =。

试校核压板的强度。

解:由受力分析可知最大弯矩发生在m m -截面处,且其值为3max 10.0215.4100.02308M P N m =⨯=⨯⨯=⋅m m -截面的抗弯截面系数z W 为333max11302030121212156810zz I W mm y ⨯⨯-⨯⨯=== 压板的最大应力为max max 9308197156810z M MPa W σ-===⨯ 而许用应力为380[]2531.5sMPa nσσ===截面m-m因最大应力小于许用应力,所以压板的强度足够。

弯曲位移 习题与试题集

弯曲位移 习题与试题集

弯曲位移习题与试题集一选择题1 dx dx C x++1.用积分法求图示梁的挠曲线方程时,确定积分常数的四个条件,除 0A ω=,0A θ= 外,另外两个条件是 。

A .C C C C ωωθθ==左右左右,; B. 0B C C ωωω==左右,; C . 00C B ωω==,; D . D. 00B C ωθ==,;答案:B2.图示圆截面梁,若直径d 增大一倍(其他条件不变),则梁的最大正应力、最大挠度分别降至原来的 。

A .12 14B .14 18C .18 18D .18 116答案:D3.梁变形前的轴线为x 轴,若取图(a )图(b )两个坐标系,则其挠曲线近似微分方程分别为 。

A . ''''a b EI M EI M ωω==-和B . ''''a bEI M EI M ωω==和 C . ''''a b EI M EI M ωω=-=-和D . ''''a bEI M EI M ωω=-=和 答案:D4.设图示悬臂梁的挠曲线方程为()EI M x dxdx Cx D ω=++⎰⎰,则积分常A .C=0 D ≠0 B.C=0 D=0 C .C ≠0 D ≠0 D.C ≠0 D=0答案:B5.对于图示(a )(b )(c )(d )4种坐标系,挠曲线近似微分方程()EI M x ω''=-适用的坐标系是 。

A.(a ) (c )B.(b ) (c )C.(a ) (d )D.(b ) (d )()a ()b答案:D6.梁的受力如图,挠曲线正确的是。

答案:B7.图示两根梁的材料相同,截面惯性矩分别为I1 和I2 ,梁长分别为i1=l2,若I1=2I2,l1=2l2,两根梁在中点处接触,在无处载时两梁刚好接触,在F作用下,上下梁分别承担的荷载之比为A.14B. 4C.18D. 8 答案:A二判断题1、小挠度微分方程的使用条件是线弹性范围内的直梁。

孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-梁弯曲时的位移(圣才出品)

孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-梁弯曲时的位移(圣才出品)
5 / 41
圣才电子书

ql3/6,D=-ql4/24。
十万种考研考证电子书、题库视频学习平台
故挠曲线方程和转角方程分别为:
w(x)=qx2(x2+6l2-4lx)/(24EI),θ(x)=q(x3-3lx2+3l2x)/(6EI)
则最大挠度 wmax=w(x)|x=l=ql4/(8EI);梁端转角 θB=θ(x)| x=l=ql3/(6EI)。
表 5-1-4 叠加原理计算梁的挠度和转角
四、梁的刚度校核·提高梁的刚度的措施(见表 5-1-5)
表 5-1-5 梁的刚度校核及提高措施
3 / 41
圣才电子书 十万种考研考证电子书、题库视频学习平台

五、梁内的弯曲应变能 定义:由于梁弯曲变形而存储的能量称为梁内的弯曲应变能。梁在弹性变形过程中,其 弯曲应变能与作用在梁上的外力所作的功相等,常见梁内的弯曲应变能见表 5-1-6。
则最大挠度 wmax=w(x)|x=l=Fl3/3EI;梁端转角 θB=θ(x)| x=l=Fl2/2EI。
图 5-2-1(a)(b) (2)建立如图 5-2-1(b)所示坐标系。 首先列弯矩方程:M(x)=-q(l-x)2/2,由此可得挠曲线近似方程: EIw″=-M(x)=q(l-x)2/2 积分得: EIw′=-q(l-x)3/6+C① EIw=q(l-x)4/24+Cx+D② 该梁的边界条件:x=0,w=0,x=0,w'=0。代入式①、②可确定积分常数:C=
圣才电子书

十万种考研考证电子书、题库视频学习平台
第 5 章 梁弯曲时的位移
5.1 复习笔记
梁在承受荷载时发生相应的变形,变形后轴线相对原位置将会发生位移、梁的截面将出 现转角,梁内会因变形存储能量。本章首先介绍梁的位移概念,并基于坐标系统建立挠曲线 方程;接着介绍求解梁的位移的方法,根据挠曲线近似微分方程积分和按叠加原理计算;再 介绍梁刚度校核以及提高梁刚度的方法;最后介绍梁弯曲应变能的概念及计算方法。

材料力学-求弯曲位移)

材料力学-求弯曲位移)
③ 建立近似微分方程: EIw M x
④ 积分求 EIw 和 EIw; ⑤ 用约束条件或连续条件,确定积分常数; ⑥ 求指定截面的挠度和转角
5.2 积分法求梁的挠度和转角 讨论
??? 积分法求变形有什么优缺点?
优点:易理解;可得到挠度方程w(x)和转角方程
(x) , 因而可求出任意截面的挠度和转角。
缺点:适用范围有限。
目录
例 如图所示简支梁,在C截面承受集中力
偶M作用,已知梁的刚度为EI,试求梁的挠曲
线方程, 并确定位移 A 、 B 和 wmax 。
M
A
C
B
a
b
积分法求梁的弯曲位移
1.由平衡条件求A.B端的约束反力
M
FA
M ab
()
FB
M ab
()
A
C a
b
B
2.建立弯矩方程
AC段:
M1
M ab
x
Mx
CB段:
M2
ab
M
(0 x a)
(a x a b)
3.建立挠度方程和转角方程
AC段:
EIw1 '
M ab
x2 2
C1
M x3 EIw1 a b 6 C1x D1
CB段:
EIw2
'
M ab
x2 2
Mx C2
EIw2
M ab
x3 6
M 2
x2
C2 x D2
4.由边界条件确定积分常数
x 0处,w1 0
x a处,1=2 x a处,w1 w2 x a b处,w2 0
D1 0
C1
M 3
(b 2a)
Ma 2 2(a b)

家电公司研发部资料材料力学习题答案(五)

家电公司研发部资料材料力学习题答案(五)

+-++(a)(b)(c)(d)M M M MeMeMeFa图图图M 图挠曲线挠曲线挠曲线挠曲线第五章梁弯曲时的位移5-1试画出图示梁挠曲线的大致形状。

根据梁的弯矩图确定梁挠曲线的大致形状,M >0,挠曲线向下凸;M <0,挠曲线向上凸。

5-2图示各梁EI=常数。

试写出各梁的位移边界条件,并画出梁挠曲线的大致形状。

F(c)题 5 - 1 图(a)(b)(d)++-M 图M 图FL/2m/32m/3FL挠曲线挠曲线(a)(b)设梁的最左端断点为坐标原点,x 轴正方向向右。

则各梁边界条件、弯矩图及梁的挠曲线大致形状如下: (a)(0)0ω=(b)(0)()0L ωω== (c)(0)()0L ωω== (d)(0)(2)0a ωω==(e)()(3)0a a ωω==(f)(0)0ω=(a)(b)qL/4F(d)(c)L(f)(e)题 5 - 2 图+--M 图M 图+qL2/64qL2/8FaFa挠曲线挠曲线(c)(d)+-M 图M 图-2mmFL挠曲线挠曲线(e)(f)5-3试画出图示梁挠曲线的大致形状。

2(a)(b)(c)题 5 - 3 图(3)++--qa2qa/423qa/42qa2/2qa2/2(a)(b)+-m(c)5-4如要使图示结构B端的挠度为零,则长度x应为多少?试画出此时AB梁的挠曲线大致形状。

答:Lx32=解:固定端约束反力如图所示。

则AB梁上距离A端l处的横截面上的弯矩为M(l)=Fl-F(L-x)由挠曲线微分方程得:EIω”=-M(l)=F(L-x)-Fl积分得:EIω’=F(L-x)l-2Fl2+C1;再积分得:EIω=2F(L-x)l2-6Fl3+C1l+C2;由边界条件l=0 ,ω’=0得C1=0;由ω=0得C2=0L题 5 - 4 图题 5 - 5 图刚性杆qBB∴EI ω=2F (L -x )l 2-6F l 3;由题意知l =L 时,ω=0得x =32L AB 梁挠曲线大致形状:M (l )=Fl -3F L ;0<l <3L 时,M (l )<0;3L<l <L 时,M (l )>05-5图示刚架在端点C 处受集中力F 作用,试求当B 点的铅垂位移为零时La的比值。

《材料力学》第5章-梁弯曲时的位移-习题解

《材料力学》第5章-梁弯曲时的位移-习题解

第五章 梁弯曲时的位移 习题解[习题5-1] 试用积分法验算附录IV 中第1至第8项各梁的挠曲线方程及最大挠度、梁端转角的表达式。

解:序号1(1)写弯矩方程(2)写挠曲线近似微分方程,并积分 把边界条件:当0=x 时,0'=w,0=w 代入以上方程得:01=C,02=C。

故:转角方程为:x M EI EIw e ==θ',EIxM e =θ 挠曲线方程:221x M EIw e =, EI x M w e 22=(3)求梁端的转角和挠度 解:序号2(1)写弯矩方程(2)写挠曲线近似微分方程,并积分 把边界条件:当0=x 时,0'=w,0=w 代入以上方程得:01=C,02=C。

故:转角方程为:2'21Fx Flx EI EIw -==θ,)2(22x lx EIF-=θ 挠曲线方程:326121Fx Flx EIw -=,)3(62x l EIFx w -=(3)求梁端的转角和挠度解:序号3(1)写弯矩方程当a x ≤≤0时, Fx Fa x a F x M +-=--=)()( 当l x a ≤≤时, 0)(=x M(2)写挠曲线近似微分方程,并积分当a x ≤≤0时,把边界条件:当0=x 时,0'=w,0=w 代入以上方程得:01=C,02=C。

故:转角方程为:2'21Fx Fax EI EIw -==θ,)2(22x ax EIF-=θ 挠曲线方程:326121Fx Fax EIw -=,)3(62x a EIFx w -=(3)求梁端的转角和挠度设集中力的作用点为C ,则:EI Fa a a a EI F a C 2)2(2)(22=-⋅==θθ EIFa a a EI Fa a w w C 3)3(6)(32=-== 由于CB 段没有外力作用,故该段没有变形,所以:EIFa B 22=θ)233(62)(3tan )(223a a x EIFa EI Fa a x EI Fa a x w w C C B +-=-+≈-+=θ )3(62a x EIFa w B -= 解:序号4(1)写弯矩方程 2)(21)(x l q x M --= (2)写挠曲线近似微分方程,并积分)("x M EIw -= 2")(21x l q EIw -=1322'6)()()(2)(2C x l q x l d x l q dx x l q EIw +--=---=-=⎰⎰ 当0=x 时,0'=w ,即:136)0(0C l q +--=,631ql C =66)(33'ql x l q EIw +--= 23433624)(6)()(6C x ql x l q x ql x l d x l q EIw ++-=+--=⎰ 当0=x 时,0=w 代入以上方程得:24240C ql +=,2442ql C -=24624)(434ql x ql x l q EIw -+-=故:转角方程为:66)(33'ql x l q EIw +--= 挠曲线方程:24624)(434ql x ql x l q EIw -+-=]4)[(24434l x l x l qEIw -+-=)4464(2443432234l x l x lx x l x l l q -++-+-= )46(244322x lx x l q +-= )46(24222x lx l qx +-= (3)求梁端的转角和挠度66)()(33'ql l l q EI l EIw B +--=θEIql B 63=θEIql l l l l ql EIw l EIw B 8)46(24)(4222=+⋅-==解:序号5(1)写弯矩方程l xl q x q -=0)(,lx l q x q )()(0-= lx l q x l l x l q x l x M 6)(3])()(21[)(300--=-⋅-⋅-⋅-=(2)写挠曲线近似微分方程,并积分)("x M EIw -= 30")(6x l lq EIw -=1403030'24)()()(6)(6C lx l q x l d x l l q dx x l l q EIw +--=---=-=⎰⎰ 当0=x 时,0'=w ,即:14024)0(0C l l q +--=,24301l q C =2424)(3040'l q l x l q EIw +--=23050304024120)(24)()(24C x l q l x l q x l q x l d x l l q EIw ++-=+--=⎰ 当0=x 时,0=w 代入以上方程得:250120)0(0C l l q +-=,120402l q C -=12024120)(403050l q x l q l x l q EIw -+-=故:转角方程为:2424)(3040'l q l x l q EIw +--=挠曲线方程:12024120)(403050l q x l q l x l q EIw -+-=)51010(120322320x lx x l l lx q EIw -+-=(3)求梁端的转角和挠度24)(30'l q EI l EIw B ==θ,EIl q B 2430=θ12024120)()(403050l q l l q l l l q EIw l EIw B -⋅+--==, EIl q w B 3040=解:序号6(1)写弯矩方程 l M R A B =(↑),lM R AA = (↓) x lM M x R M x M AA A A -=-=)( (2)写挠曲线近似微分方程,并积分)("x M EIw -= A AM x lM EIw -=" 12'2C x M x lM EIw A A +-=2123216C x C x M x l M EIw A A ++-=把边界条件:当0=x 时,0=w 代入以上方程得:02=C 。

材料力学课后习题答案5章

材料力学课后习题答案5章
(b)
保留有限量,略去一阶和二阶微量后,得
足标 C 系指梁微段右端面的形心,对题图(b)亦同。 根据题图 b,由
∑F
略去微量 qdx 后,得
y
=0 ,FS左 + qdx − FS右 = 0
FS右 = FS左
仍据题图 b,由
(c)
∑M
C
=0 ,M 右 − M e − qdx(
dx ) − FS左 dx − M 左 = 0 2
11l 处有 FS2 = 0 , M 2 有极大值,其值为 24 121 2 M 2 max = M max = ql 1152
(d)解:1.建立剪力、弯矩方程
8
图 5-9d 坐标如图 5-9d(1)所示,由截面法易得剪力、弯矩方程分别为
q( x1 ) ⋅ x1 qx 2 =− 1 2 l ql FS2 = − + qx2 4 qx 3 M1 = − 1 3l q 2 ql l M 2 = x2 − ⋅ ( + x2 ) 2 4 6 FS1 = −
2 q0l q 0 x2 FS = − + 4 l q x3 ql M = 0 x2 − 0 2 4 3l
l (0 ≤ x2 ≤ ) 2 l (0 ≤ x2 ≤ ) 2
(e) (f)
3.画剪力、弯矩图 依据式(c)和(e)可绘剪力图,如图 5-9b(2)所示;依据式(d)和(f)可绘弯矩图,如图 5-9b(3) 所示。 (c)解:1.求支反力
=0 ,FS左 + F + qdx − FS右 = 0
保留有限量,略去微量 qdx 后,得
FS右 − FS左 = F
为了更一般地反映 F 作用处剪力的突变情况(把向下的 F 也包括在内) ,可将上式改写为

材料力学第五章梁弯曲时的位移

材料力学第五章梁弯曲时的位移

实例3 :均布载荷
分析受均布载荷作用下梁的位移。
材料力学第五章梁弯曲时 的位移
在材料力学的第五章中,我们将学习有关梁在弯曲时的位移。掌握梁的基本 知识、位移方程和位移计算方法,以及梁的挠度与转角关系。
梁的基本知识
1 定义
梁是一种长条形结构,承受着沿其长度方向的外部力。
2 类型
常见的梁包括简支梁、悬臂梁和受力梁。
3 材料
梁可以由不同类型的材料制成,例如钢、木材或混凝土。
梁的位移方程
1 弯曲位移
2 挠度
3 转角
梁在弯曲时,沿梁的长度方 向发生位移。
挠度是梁的中点相对于其自 由状态的偏移量。
转角是指梁在弯曲时端部角 度的变化。
简支梁的位移计算方法
1
载荷和反力
计算简支梁上的载荷和反力分布。
2
弯矩方程
使用弯矩方程推导出简支梁的位移方程。
3
边界条件
应用适当的边界条件来解决位移方程中的未知量。
悬臂梁的位移计算方法
加载和支座反力
确定悬臂梁上的加载和支座反力。
弯曲力矩方程
通过推导弯曲力矩方程来解决悬臂 梁的位移问题。
解决边界条件
应用边界条件来计算悬臂梁的位移。
受力梁的位移计算方法
1
截面转动方程
2
推导出受力梁的截面转动方程。
3
确定力的分布
分析受力梁上的力分布,包括集中力和均布 力。
边界条件和位移方程
应用边界条件,求解受力梁的位移方程。ຫໍສະໝຸດ 梁的挠度与转角关系挠度
挠度是梁在弯曲时沿其长度方向上的位移。
转角
转角是梁在弯曲时端部偏离初始位置的角度。
关系公式
挠度和转角之间存在一定的关系,可以通过公式计算。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空
1.1 平面弯曲梁上弯矩等于零的截面处,挠曲线的曲率________,转角________。

(必为零、必不为零、不一定为零)
1.2 几何形状完全相同的一根铝材梁和一根钢材梁,若它们受力相同,则它们弯曲变形后的弯曲应力________,轴线曲率________。

(相同、不相同、不一定相同)
1.3 用积分法求图示悬臂梁的挠曲线方程时,求解积分常数所用到的边界条件是_______、______,连续条件是_______、______、______、______。

二、使用积分法求解图示悬臂梁D 端的绕度D w 和转角D .
D
三、使用叠加原理并利用附录IV 求解习题二
四、使用叠加原理并利用附录IV 求外伸梁的B w 、D w 、D θ。

a
五:悬臂梁AB 受力如图,已知均布荷载q=15KN/m ,长度a=1m ,钢材弹性模量E=200GP ,许用弯曲正应力[]160MPa σ=,许用切应力[]100MPa τ=,许可绕度[]/500w l =(l=3a ),试选取工字钢的型号。

B。

相关文档
最新文档