材料力学第五章粱弯曲时的位移
合集下载
材料力学梁的位移思维导图

材料力学梁的位移思维导图
材料力学梁的位移分析是一种复杂的思维,可以很好地帮助我们研究物理系统中的物理行为.以下是材料力学梁的位移思维导图:
I、定义梁:
1. 梁定义:梁是一种结构,由支撑它的支柱或壁连接到一组顶点,其中顶点可以是拱形形状或悬挂形状,能够承受弯矩外力。
2. 梁位移:梁的位移是指支撑它的支架或壁的相对位移。
它可以是相对位移、平行位移或扭矩位移
II、物理性质:
1. 梁的弯曲性:由于梁作为物体的一部分,它受到来自外界的外力,将会产生弯曲变形。
2. 梁的挠度:梁的挠度是梁的弯曲变形的程度。
它可以在梁的不同部位分布,高挠度会使梁变形更加明显。
III、位移测定:
1. 静力学:静力学方法可以通过对梁外力和顶点位移的测量,来确定梁位移的大小和分布情况,以及如何受到外力的影响。
2. 动态位移:动态位移测量将会提供深入的信息,这些信息会反映梁的动态行为,也就是振动响应。
IV、位移分析:
1. 力/位移关系:通过分析梁的力/位移关系,可以对梁的变形情况有一定的了解,以及梁承受外力时应激变形的状况。
2. 梁模型:通过建立梁模型,可以研究梁受到不同外力大小时的位移反应,并预测梁在某一状况下应受外力的大小。
V、总结:
材料力学梁的位移分析是一种复杂的思考,它主要包括梁的定义、物理性质、位移测定以及位移分析,可以很好地帮助研究者深入了解物理系统中物体的力学行为。
通过研究梁的弯曲性、挠度、力/位移关系以及建立梁模型,可以研究出梁的变形情况、预测梁应遭受的外力范围等,从而提高工件的力学性能和强度。
孙训方第五版材料力学(I)第五章

3
五邑大学土木建筑系:材料力学
第五章 梁弯曲时的位移
(a)
(b)
直梁弯曲时的挠度和转角这两个位移不但与梁的弯曲 变形程度(挠曲线曲率的大小)有关,也与支座约束的条件 有关。图a和图b所示两根梁,如果它们的材料和尺寸相同,
所受的外力偶之矩Me也相等,显然它们的变形程度(也就
是挠曲线的曲率大小)相同,但两根梁相应截面的挠度和 转角则明显不同。
q w
q l 3 6lx2 4 x 3 24 EI
qx 3 l 2lx2 x 3 挠曲线方程 w 24 EI
23
五邑大学土木建筑系:材料力学
第五章 梁弯曲时的位移
根据对称性可知,两支座处的转角qA及qB的绝对值相
等,且均为最大值,故
q max
ql 3 q A qB 24 EI
以x为自变量进行积分得 x2 EIw F lx C1 2
lx 2 x 3 EIw F 2 6 C1 x C2
该梁的边界条件为:在 x=0 处 w 0,w =0
于是得
15
C1 0,C2 0
五邑大学土木建筑系:材料力学
§5-1 梁的位移——挠度和转角
直梁在对称平面xy内弯曲时其原来的轴线AB将弯曲成 平面曲线AC1B。梁的横截面形心(即轴线AB上的点)在垂直 于x轴方向的线位移w称为挠度(deflection),横截面对其原 来位置的角位移q 称为横截面的转角(angle of rotation)。
2
五邑大学土木建筑系:材料力学
挠曲线近似微分方程
b EIw1 M 1 x F x l 积分得
五邑大学土木建筑系:材料力学
第五章 梁弯曲时的位移
(a)
(b)
直梁弯曲时的挠度和转角这两个位移不但与梁的弯曲 变形程度(挠曲线曲率的大小)有关,也与支座约束的条件 有关。图a和图b所示两根梁,如果它们的材料和尺寸相同,
所受的外力偶之矩Me也相等,显然它们的变形程度(也就
是挠曲线的曲率大小)相同,但两根梁相应截面的挠度和 转角则明显不同。
q w
q l 3 6lx2 4 x 3 24 EI
qx 3 l 2lx2 x 3 挠曲线方程 w 24 EI
23
五邑大学土木建筑系:材料力学
第五章 梁弯曲时的位移
根据对称性可知,两支座处的转角qA及qB的绝对值相
等,且均为最大值,故
q max
ql 3 q A qB 24 EI
以x为自变量进行积分得 x2 EIw F lx C1 2
lx 2 x 3 EIw F 2 6 C1 x C2
该梁的边界条件为:在 x=0 处 w 0,w =0
于是得
15
C1 0,C2 0
五邑大学土木建筑系:材料力学
§5-1 梁的位移——挠度和转角
直梁在对称平面xy内弯曲时其原来的轴线AB将弯曲成 平面曲线AC1B。梁的横截面形心(即轴线AB上的点)在垂直 于x轴方向的线位移w称为挠度(deflection),横截面对其原 来位置的角位移q 称为横截面的转角(angle of rotation)。
2
五邑大学土木建筑系:材料力学
挠曲线近似微分方程
b EIw1 M 1 x F x l 积分得
材料力学 梁 弯曲位移

D点的连续条件: x = a, 1' 2 ' 1 2
1 ( 0 x a)
2 (axl )
挠曲线方程
EI
1"
M1
F
b l
x
EI
2"
M
2
F
b l
x
F
(
x
a)
转角方程
EI
'
1
F b l
x2 2
C1
EI
2'
F
b l
x2 2
F
(
xa)2 2
D1
挠度方程
EI
1
F
b l
x3 6
C1 x
C2
EI
2
F
b l
式中:积分常数 C1 、C2 可通过梁挠曲线的 边界条件 和 变形 连续性条件 来确定。
1、边界条件
A
l A= 0
B
B= 0
A
A= 0
B
B= 0
在简支梁或外伸梁中, 铰支座处的挠度 都应等于零。
A 0 B 0
A
B
l A= 0 A= 0
在悬臂梁 中,固定端处的挠度 和转角 都应等于零。
A 0, A 0
F
(
xa)2 2
D1
挠度方程
EI
1
F
b l
x3 6
C1 x
C2
EI
2
F
b l
x3 6
F
(x 6
a)3
D1
x
D2
x = 0 , 1 = 0
x = l , 2= 0
再将边界条件代入方程可解得:
孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-梁弯曲时的位移(圣才出品)

5 / 41
圣才电子书
ql3/6,D=-ql4/24。
十万种考研考证电子书、题库视频学习平台
故挠曲线方程和转角方程分别为:
w(x)=qx2(x2+6l2-4lx)/(24EI),θ(x)=q(x3-3lx2+3l2x)/(6EI)
则最大挠度 wmax=w(x)|x=l=ql4/(8EI);梁端转角 θB=θ(x)| x=l=ql3/(6EI)。
表 5-1-4 叠加原理计算梁的挠度和转角
四、梁的刚度校核·提高梁的刚度的措施(见表 5-1-5)
表 5-1-5 梁的刚度校核及提高措施
3 / 41
圣才电子书 十万种考研考证电子书、题库视频学习平台
五、梁内的弯曲应变能 定义:由于梁弯曲变形而存储的能量称为梁内的弯曲应变能。梁在弹性变形过程中,其 弯曲应变能与作用在梁上的外力所作的功相等,常见梁内的弯曲应变能见表 5-1-6。
则最大挠度 wmax=w(x)|x=l=Fl3/3EI;梁端转角 θB=θ(x)| x=l=Fl2/2EI。
图 5-2-1(a)(b) (2)建立如图 5-2-1(b)所示坐标系。 首先列弯矩方程:M(x)=-q(l-x)2/2,由此可得挠曲线近似方程: EIw″=-M(x)=q(l-x)2/2 积分得: EIw′=-q(l-x)3/6+C① EIw=q(l-x)4/24+Cx+D② 该梁的边界条件:x=0,w=0,x=0,w'=0。代入式①、②可确定积分常数:C=
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 5 章 梁弯曲时的位移
5.1 复习笔记
梁在承受荷载时发生相应的变形,变形后轴线相对原位置将会发生位移、梁的截面将出 现转角,梁内会因变形存储能量。本章首先介绍梁的位移概念,并基于坐标系统建立挠曲线 方程;接着介绍求解梁的位移的方法,根据挠曲线近似微分方程积分和按叠加原理计算;再 介绍梁刚度校核以及提高梁刚度的方法;最后介绍梁弯曲应变能的概念及计算方法。
圣才电子书
ql3/6,D=-ql4/24。
十万种考研考证电子书、题库视频学习平台
故挠曲线方程和转角方程分别为:
w(x)=qx2(x2+6l2-4lx)/(24EI),θ(x)=q(x3-3lx2+3l2x)/(6EI)
则最大挠度 wmax=w(x)|x=l=ql4/(8EI);梁端转角 θB=θ(x)| x=l=ql3/(6EI)。
表 5-1-4 叠加原理计算梁的挠度和转角
四、梁的刚度校核·提高梁的刚度的措施(见表 5-1-5)
表 5-1-5 梁的刚度校核及提高措施
3 / 41
圣才电子书 十万种考研考证电子书、题库视频学习平台
五、梁内的弯曲应变能 定义:由于梁弯曲变形而存储的能量称为梁内的弯曲应变能。梁在弹性变形过程中,其 弯曲应变能与作用在梁上的外力所作的功相等,常见梁内的弯曲应变能见表 5-1-6。
则最大挠度 wmax=w(x)|x=l=Fl3/3EI;梁端转角 θB=θ(x)| x=l=Fl2/2EI。
图 5-2-1(a)(b) (2)建立如图 5-2-1(b)所示坐标系。 首先列弯矩方程:M(x)=-q(l-x)2/2,由此可得挠曲线近似方程: EIw″=-M(x)=q(l-x)2/2 积分得: EIw′=-q(l-x)3/6+C① EIw=q(l-x)4/24+Cx+D② 该梁的边界条件:x=0,w=0,x=0,w'=0。代入式①、②可确定积分常数:C=
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 5 章 梁弯曲时的位移
5.1 复习笔记
梁在承受荷载时发生相应的变形,变形后轴线相对原位置将会发生位移、梁的截面将出 现转角,梁内会因变形存储能量。本章首先介绍梁的位移概念,并基于坐标系统建立挠曲线 方程;接着介绍求解梁的位移的方法,根据挠曲线近似微分方程积分和按叠加原理计算;再 介绍梁刚度校核以及提高梁刚度的方法;最后介绍梁弯曲应变能的概念及计算方法。
材料力学-- 梁的位移计算

2 2 2
• 根据附录Ⅳ有: • 在 1 0 时,x1 2
•当
a 2ab 2b 3
2
2
a 2 2ab 2b 2 ab2 3 x2 2
时
挠度有最大值
(7a 2 6ab 9b2 ) (37a 2 2ab 11b2 )M (a 2 2ab 2b2 ) max 16 72(a b) 3
EIw2
qa 3 x 24
q ( x a ) 4 C2 x D2 24
1 EIw3 qa( x 3a)3 6 C3 x D3
qa 2 EI w1 x C1 8
qa 3 EIw1 x C1 x D1 24
EIw2
qa 2 x 8
EIw2
qa 3 x 24 q 9 ( x a) 4 qa3 x 24 48
(2)求
B、 D
7 qa 4 48 EI
wB w1 | x a
39 wD w3 | x 3 a qa 4 48 EI
FA
q
qa
A
Ⅰ
B
Ⅱ
C
ⅢDxFc源自方法二:奇异函数法解:(1) 初参数方程 将作用在梁BC段上的均布载荷q延续至右端B,同时,在CB 段施加等值反向的均布载荷,如图所示,写出梁(转角和挠 度)的初参数方程
选定坐标系后,梁变形后的轴线可表达为: w=f(x) —称为挠曲线方程 其中, w—该点挠度;x—横坐标 由于挠曲线是一平坦曲线,转角θ可表达为: θ ≈ tanθ = w' = f '(x)
M和w''正负号的判断
M>0,W''<0
• 根据附录Ⅳ有: • 在 1 0 时,x1 2
•当
a 2ab 2b 3
2
2
a 2 2ab 2b 2 ab2 3 x2 2
时
挠度有最大值
(7a 2 6ab 9b2 ) (37a 2 2ab 11b2 )M (a 2 2ab 2b2 ) max 16 72(a b) 3
EIw2
qa 3 x 24
q ( x a ) 4 C2 x D2 24
1 EIw3 qa( x 3a)3 6 C3 x D3
qa 2 EI w1 x C1 8
qa 3 EIw1 x C1 x D1 24
EIw2
qa 2 x 8
EIw2
qa 3 x 24 q 9 ( x a) 4 qa3 x 24 48
(2)求
B、 D
7 qa 4 48 EI
wB w1 | x a
39 wD w3 | x 3 a qa 4 48 EI
FA
q
qa
A
Ⅰ
B
Ⅱ
C
ⅢDxFc源自方法二:奇异函数法解:(1) 初参数方程 将作用在梁BC段上的均布载荷q延续至右端B,同时,在CB 段施加等值反向的均布载荷,如图所示,写出梁(转角和挠 度)的初参数方程
选定坐标系后,梁变形后的轴线可表达为: w=f(x) —称为挠曲线方程 其中, w—该点挠度;x—横坐标 由于挠曲线是一平坦曲线,转角θ可表达为: θ ≈ tanθ = w' = f '(x)
M和w''正负号的判断
M>0,W''<0
材料力学第五章梁弯曲时的位移

实例3 :均布载荷
分析受均布载荷作用下梁的位移。
材料力学第五章梁弯曲时 的位移
在材料力学的第五章中,我们将学习有关梁在弯曲时的位移。掌握梁的基本 知识、位移方程和位移计算方法,以及梁的挠度与转角关系。
梁的基本知识
1 定义
梁是一种长条形结构,承受着沿其长度方向的外部力。
2 类型
常见的梁包括简支梁、悬臂梁和受力梁。
3 材料
梁可以由不同类型的材料制成,例如钢、木材或混凝土。
梁的位移方程
1 弯曲位移
2 挠度
3 转角
梁在弯曲时,沿梁的长度方 向发生位移。
挠度是梁的中点相对于其自 由状态的偏移量。
转角是指梁在弯曲时端部角 度的变化。
简支梁的位移计算方法
1
载荷和反力
计算简支梁上的载荷和反力分布。
2
弯矩方程
使用弯矩方程推导出简支梁的位移方程。
3
边界条件
应用适当的边界条件来解决位移方程中的未知量。
悬臂梁的位移计算方法
加载和支座反力
确定悬臂梁上的加载和支座反力。
弯曲力矩方程
通过推导弯曲力矩方程来解决悬臂 梁的位移问题。
解决边界条件
应用边界条件来计算悬臂梁的位移。
受力梁的位移计算方法
1
截面转动方程
2
推导出受力梁的截面转动方程。
3
确定力的分布
分析受力梁上的力分布,包括集中力和均布 力。
边界条件和位移方程
应用边界条件,求解受力梁的位移方程。ຫໍສະໝຸດ 梁的挠度与转角关系挠度
挠度是梁在弯曲时沿其长度方向上的位移。
转角
转角是梁在弯曲时端部偏离初始位置的角度。
关系公式
挠度和转角之间存在一定的关系,可以通过公式计算。
材料力学 积分法求梁的变形

一、挠曲线近似微分方程
M ( x ) = r EI Z 1
1 = ± r d 2 w dx 2 d w é 2 ù 1 + ( ) ê ú dx ë û
3
±
d 2 w dx 2 d w 2 ù é 1 + ( ) ú ê dx û ë
3
M ( x ) = EI Z
边界条件、连续条件应用举例
弯矩图分三段,共6 个积分常数需6个边界条 件和连续条件 A B
P C D
w
铰连接
ω A点: A = 0, q A = 0
B 点 : w B 左 = w B 右
C点 : w C左 = w C右
D点:w D = 0
q C 左 = q C 右
边界条件、连续条件应用举例
y
边界条件
3 qL C1 = 6 EI z
EI zw =
1 (L - x )4 + C q 1 x + C 2 24
x = 0 x = 0 x = L
q = 0 w = 0
qL3 q B = 6 EI z
q =-
3 qL C2 =24 EI z
挠曲线方程应分两段AB,BC.
F A
a
q
B
EI z
L
共有四个积分常数
C
x
边界条件
x = a x = a + L
连续条件
w B = 0 wC = 0
y
x = a
w B1 = w B 2 q B1 = q B 2
例题 5.4 &
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件
M ( x ) = r EI Z 1
1 = ± r d 2 w dx 2 d w é 2 ù 1 + ( ) ê ú dx ë û
3
±
d 2 w dx 2 d w 2 ù é 1 + ( ) ú ê dx û ë
3
M ( x ) = EI Z
边界条件、连续条件应用举例
弯矩图分三段,共6 个积分常数需6个边界条 件和连续条件 A B
P C D
w
铰连接
ω A点: A = 0, q A = 0
B 点 : w B 左 = w B 右
C点 : w C左 = w C右
D点:w D = 0
q C 左 = q C 右
边界条件、连续条件应用举例
y
边界条件
3 qL C1 = 6 EI z
EI zw =
1 (L - x )4 + C q 1 x + C 2 24
x = 0 x = 0 x = L
q = 0 w = 0
qL3 q B = 6 EI z
q =-
3 qL C2 =24 EI z
挠曲线方程应分两段AB,BC.
F A
a
q
B
EI z
L
共有四个积分常数
C
x
边界条件
x = a x = a + L
连续条件
w B = 0 wC = 0
y
x = a
w B1 = w B 2 q B1 = q B 2
例题 5.4 &
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件
材料力学(土木类)第五章 梁弯曲时的位移(2)

逆时针) (逆时针)
3 3 3
利用叠加原理求图示弯曲刚度为EI的悬臂梁 例5-6 利用叠加原理求图示弯曲刚度为 的悬臂梁 自由端B截面的挠度和转角 截面的挠度和转角。 自由端 截面的挠度和转角。
F A l C EI l F D l B
原荷载可看成为图a和 两种荷载的叠加 两种荷载的叠加, 解:原荷载可看成为图 和 b两种荷载的叠加,对应 的变形和相关量如图所示。 的变形和相关量如图所示。
Fl θ C1 = 2 EI
2
3
由位移关系可得此时B截面的挠度和转角为: 由位移关系可得此时 截面的挠度和转角为: 截面的挠度和转角为
Fl 3 Fl 2 4 Fl 3 wB1 = wC1 + θ C1 ⋅ BC = + × 2l = 向下) (向下) 3EI 2 EI 3EI Fl θ B1 = θ C1 = 2 EI
q ( x) x 2 dθ B = dθ ( x) = dx 2 EI
范围对q(x)dx的作用进行叠加,相当于 的作用进行叠加, 在x=0, l范围对 范围对 的作用进行叠加 对上两式在前述范围内积分, 对上两式在前述范围内积分,即:
wB = ∫ d wB = ∫
0
l
l
0
11q 0 l q ( x ) x (3l − x ) dx = 6 EI 120 EI
上次课回顾: 上次课回顾:
1、度量梁变形的两个基本位移量:挠度和转角 度量梁变形的两个基本位移量: 2、挠曲线近似微分方程
EIw′′ = − M ( x )
3、挠曲线近似微分方程的积分 、
EIw ' ( x ) = ∫ ( − M ( x )) dx + C1
EIw ( x ) =
3 3 3
利用叠加原理求图示弯曲刚度为EI的悬臂梁 例5-6 利用叠加原理求图示弯曲刚度为 的悬臂梁 自由端B截面的挠度和转角 截面的挠度和转角。 自由端 截面的挠度和转角。
F A l C EI l F D l B
原荷载可看成为图a和 两种荷载的叠加 两种荷载的叠加, 解:原荷载可看成为图 和 b两种荷载的叠加,对应 的变形和相关量如图所示。 的变形和相关量如图所示。
Fl θ C1 = 2 EI
2
3
由位移关系可得此时B截面的挠度和转角为: 由位移关系可得此时 截面的挠度和转角为: 截面的挠度和转角为
Fl 3 Fl 2 4 Fl 3 wB1 = wC1 + θ C1 ⋅ BC = + × 2l = 向下) (向下) 3EI 2 EI 3EI Fl θ B1 = θ C1 = 2 EI
q ( x) x 2 dθ B = dθ ( x) = dx 2 EI
范围对q(x)dx的作用进行叠加,相当于 的作用进行叠加, 在x=0, l范围对 范围对 的作用进行叠加 对上两式在前述范围内积分, 对上两式在前述范围内积分,即:
wB = ∫ d wB = ∫
0
l
l
0
11q 0 l q ( x ) x (3l − x ) dx = 6 EI 120 EI
上次课回顾: 上次课回顾:
1、度量梁变形的两个基本位移量:挠度和转角 度量梁变形的两个基本位移量: 2、挠曲线近似微分方程
EIw′′ = − M ( x )
3、挠曲线近似微分方程的积分 、
EIw ' ( x ) = ∫ ( − M ( x )) dx + C1
EIw ( x ) =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学
第五章 梁弯曲时的位移
从而得两段梁的转角方程和挠曲线方程如下:
左段梁 (0 x a)
右段梁 (a x l)
q1
w1
Fb 2lEI
1 3
l2 b2
x
2
q2
w2
Fb 2lEI
l b
x
a
2
x2
1 3
l2
b2
根据对称性可知,两支座处的转角qA及qB的绝对值相
等,且均为最大值,故
qmax q A qB
ql3
24 EI
最大挠度在跨中,其值为
wmax
w
|xl
2
ql 2
24 EI
l 3
2l
l 2
2
l 2
3
5ql 4 384 EI
当集中荷载F作用于简支梁的跨中时(b=l/2),最大转角
qmax和最大挠度wmax为
qmax q A qB
第22页 / 共63页
材料力学
第五章 梁弯曲时的位移
例题5-3 试求图示等直梁的挠曲线方程和转角方程,
并确定其最大挠度wmax和最大转角qmax。
第23页 / 共63页
材料力学
第五章 梁弯曲时的位移
解:约束力为
FA
F
b, l
FB
Fa l
两段梁的弯矩方程分别为
M1x
FA
x
F
b l
x
0 x a
x1
l2 b2 3
aa 2b
3
显然,由于现在a>b,故上式
表明x1<a,从而证实wmax确实 在左段梁内。将上列x1的表达 式代入左段梁的挠曲线方程得
wmax w1 |xx1 9
Fb 3lEI
l2 b2 3
第31页 / 共63页
材料力学
第五章 梁弯曲时的位移
EI 2EI
挠曲线方程 w Fx2l Fx3 2EI 6EI
根据该梁边界条件和全梁横截面上弯矩均为负值, 以及挠曲线应光滑连续描出了挠曲线的示意图。
第16页 / 共63页
材料力学
第五章 梁弯曲时的位移
可见该梁的qmax和wmax均在x=l的自由端处。于是有
qmax
q
|xl
Fl 2 EI
6lEI
qB
q2
|xl
Fabl
6lEI
a
当a>b时有
qmax qB
Fabl a
6lEI
第30页 / 共63页
材料力学
第五章 梁弯曲时的位移
根据图中所示挠曲线的大致形状可知,最大挠度wmax 所在w 0 处在现在的情况下应在左段梁内。令左段梁的
转角方程 w1 等于零,得
3
2
中点C)的挠度wC为
wC
w1
|xl
2
Fb 48 EI
3l 2 4b2
Fbl 2 16 EI
0.0625
Fbl 2 EI
第32页 / 共63页
材料力学
第五章 梁弯曲时的位移
可见在集中荷载作用于右支座附近这种极端情况下,跨中
挠度与最大挠度也只相差不到3%。因此在工程计算中,只要 简支梁的挠曲线上没有拐点都可以跨中挠度代替最大挠度。
转角则明显不同。
第4页 / 共63页
材料力学
第五章 梁弯曲时的位移
在图示坐标系中,挠度w向下为正,向上为负;
顺时针转向的转角q为正,逆时针转向的转角q为负。
第5页 / 共63页
材料力学
第五章 梁弯曲时的位移
§5-2 梁的挠曲线近似微分方程及其积分
Ⅰ. 挠曲线近似微分方程的导出 在§4-4中曾得到等直梁在线弹性范围内纯弯曲情况
EIw M xd x C1
EIw M xd x d x C1x C2
以上两式中的积分常数C1, C2由边界条件确定后即可得出梁 的转角方程和挠曲线方程。
第11页 / 共63页
材料力学
第五章 梁弯曲时的位移
边界条件(这里也就是支座处的约束条件)的示例如 下图所示。
x
1
x
M x
EI
第7页 / 共63页
材料力学
第五章 梁弯曲时的位移
从几何方面来看,平面曲线的曲率可写作(参见《高等 数学上册》,同济大学,P212)
1
x
w 1 w2
3/ 2
式中,等号右边有正负号是因为曲率1/为度量平面曲线 (挠曲线)弯曲变形程度的非负值的量,而w"是q = w' 沿x方
第3页 / 共63页
材料力学
第五章 梁弯曲时的位移
(a)
(b)
直梁弯曲时的挠度和转角这两个位移不但与梁的弯曲
变形程度(挠曲线曲率的大小)有关,也与支座约束的条件
有关。图a和图b所示两根梁,如果它们的材料和尺寸相同, 所受的外力偶之矩Me也相等,显然它们的变形程度(也就 是挠曲线的曲率大小)相同,但两根梁相应截面的挠度和
第12页 / 共63页
材料力学
第五章 梁弯曲时的位移
若由于梁上的荷载不连续等原因使得梁的弯矩方程 需分段写出时,各段梁的挠曲线近似微分方程也就不同。 而对各段梁的近似微分方程积分时,都将出现两个积分 常数。要确定这些积分常数,除利用支座处的约束条件 外,还需利用相邻两段梁在交界处的连续条件。这两类 条件统称为边界条件。
下中性层的曲率为
1M EI
这也是位于中性层内的挠曲线的曲率的表达式。
第6页 / 共63页
材料力学
第五章 梁弯曲时的位移
在横力弯曲下,梁的横截面上除弯矩M=M(x)外,还 有剪力FS=FS(x),剪力产生的剪切变形对梁的变形也会产 生影响。但工程上常用的梁其跨长l 往往大于横截面高度h 的10倍,此时剪力FS对梁的变形的影响可略去不计,而有
Fb
wmax w1 |xx1 9 3lEI
l2 b2 3
由上式还可知,当集中荷载F
作用在右支座附近因而b值甚小,
以致 b2 和 l2 相比可略去不计时有
Fbl 2
Fbl 2
wmax 9
0.0642 3EI
EI
它发生在 x1
l 0.577 l 处。而此时 x l 0.500l处(跨
向的变化率,是有正负的。
第8页 / 共63页
材料力学
第五章 梁弯曲时的位移
再注意到在图示坐标系中,负弯矩对应于正值w" ,正弯矩对
应于负值的w" ,故从上列两式应有
w
1 w2
3/ 2
M x
EI
由于梁的挠曲线为一平坦的曲线,上式中的w2与1相比可略
去,于是得挠曲线近似微分方程 w M x
位移q 称为横截面的转角。
第2页 / 共63页
材料力学
第五章 梁弯曲时的位移
弯曲后梁的轴线——挠曲线为一平坦而光滑的曲线, 它可以表达为w=f(x),此式称为挠曲线方程。由于梁变形
后的横截面仍与挠曲线保持垂直,故横截面的转角q 也就
是挠曲线在该相应点的切线与x轴之间的夹角,从而有转 角方程:
q tanq w f x
第13页 / 共63页
材料力学
第五章 梁弯曲时的位移
例题5-1 试求图示等直梁的挠曲线方程和转角方程,
并确定其最大挠度wmax和最大转角qmax。
第14页 / 共63页
材料力学
第五章 梁弯曲时的位移
解:该梁的弯矩方程为
M x Fl x
挠曲线近似微分方程为
EIw M x Fl x
以x为自变量进行积分得
EIw
F lx
x2 2
C1
EIw
F
lx2 2
x3 6
C1x
C2
该梁的边界条件为:在 x=0 处 w 0,w =0
于是得
C1 0,C2 0
第15页 / 共63页
材料力学
从而有
转角方程
第五章 梁弯曲时的位移
q w Fxl Fx2
及
EIw|xl
q 2
l4 6
l4 12
C1l
0
即
C1
ql3 24
,C2
0
转角方程 q w q l3 6lx2 4x3 24EI
挠曲线方程 w qx l3 2lx2 x3 24EI
第21页 / 共63页
材料力学
第五章 梁弯曲时的位移
左段梁0 x a
右段梁 a x l
挠曲线近似微分方程
EIw1
M1x
F
b l
x
积分得
EIw2
M
2
x
F
b l
x
F
x
a
EIw1
F
b l
x2 2
C1
EIw1
F
b l
x3 6
C1x
D1
EIw2
F
b l
x2 2
F x a2