电荷在匀强磁场中的匀速圆周运动
第一章 3 带电粒子在匀强磁场中的运动

3 带电粒子在匀强磁场中的运动[学习目标] 1.理解带电粒子初速度方向和磁场方向垂直时,带电粒子在匀强磁场中做匀速圆周运动.2.会根据洛伦兹力提供向心力推导半径公式和周期公式.3.会分析带电粒子在匀强磁场中运动的基本问题.一、带电粒子在匀强磁场中的运动1.若v ∥B ,带电粒子以速度v 做匀速直线运动,其所受洛伦兹力F =0.所以粒子做匀速直线运动.2.若v ⊥B ,此时初速度方向、洛伦兹力的方向均与磁场方向垂直,粒子在垂直于磁场方向的平面内运动.(1)洛伦兹力与粒子的运动方向垂直,只改变粒子速度的方向,不改变粒子速度的大小. (2)带电粒子在垂直于磁场的平面内做匀速圆周运动,洛伦兹力提供向心力. 二、带电粒子在磁场中做圆周运动的半径和周期 1.半径一个电荷量为q 的粒子,在磁感应强度为B 的匀强磁场中以速度v 运动,那么带电粒子所受的洛伦兹力为F =q v B ,由洛伦兹力提供向心力得q v B =m v 2r ,由此可解得圆周运动的半径r=m vqB.从这个结果可以看出,粒子在匀强磁场中做匀速圆周运动的半径与它的质量、速度成正比,与电荷量、磁感应强度成反比. 2.周期由r =m v qB 和T =2πr v ,可得T =2πm qB .带电粒子在匀强磁场中做匀速圆周运动的周期与轨道半径和运动速度无关.1.判断下列说法的正误.(1)运动电荷进入磁场后(无其他场)可能做匀速圆周运动,不可能做类平抛运动.( √ ) (2)带电粒子在匀强磁场中做匀速圆周运动时,轨道半径跟粒子的速率成正比.( √ ) (3)带电粒子在匀强磁场中做匀速圆周运动的周期与轨道半径成正比.( × ) (4)带电粒子在匀强磁场中做圆周运动的周期随速度的增大而减小.( × )2.两个粒子带电荷量相等,在同一匀强磁场中只受到磁场力作用而做匀速圆周运动,则( ) A .若速率相等,则半径必相等 B .若质量相等,则周期必相等 C .若动能相等,则半径必相等 D .若动量相等,则周期必相等 答案 B一、带电粒子在匀强磁场中运动的基本问题 导学探究如图所示,可用洛伦兹力演示仪观察运动电子在匀强磁场中的偏转.(1)不加磁场时,电子束的运动轨迹如何? (2)加上磁场后,电子束的运动轨迹如何?(3)如果保持出射电子的速度不变,增大磁感应强度,轨迹圆半径如何变化? (4)如果保持磁感应强度不变,增大出射电子的速度,轨迹圆半径如何变化? 答案 (1)一条直线 (2)圆 (3)变小 (4)变大 知识深化1.分析带电粒子在匀强磁场中的匀速圆周运动,要紧抓洛伦兹力提供向心力,即q v B =m v 2r .2.同一粒子在同一匀强磁场中做匀速圆周运动,由r =m v qB 知,r 与v 成正比;由T =2πmqB知,T 与速度无关,与半径无关.例1 质子p(11H)和α粒子(42He)以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为R p 和R α,周期分别为T p 和T α,则下列选项中正确的是( ) A .R p ∶R α=1∶2,T p ∶T α=1∶2 B .R p ∶R α=1∶1,T p ∶T α=1∶1 C .R p ∶R α=1∶1,T p ∶T α=1∶2 D .R p ∶R α=1∶2,T p ∶T α=1∶1 答案 A解析 质子p(11H)和α粒子(42He)的带电荷量之比为q p ∶q α=1∶2,质量之比m p ∶m α=1∶4.由带电粒子在匀强磁场中做匀速圆周运动的规律可知,轨道半径R =m v qB ,周期T =2πm qB ,因为两粒子速率相同,代入q 、m ,可得R p ∶R α=1∶2,T p ∶T α=1∶2,故选项A 正确,B 、C 、D 错误.针对训练1 薄铝板将同一匀强磁场分成 Ⅰ、Ⅱ 两个区域,高速带电粒子可穿过铝板一次,在两个区域内运动的轨迹如图所示,半径R 1>R 2.假定穿过铝板前后粒子带电荷量保持不变,则该粒子( )A .带正电B .在Ⅰ、Ⅱ区域的运动速度大小相同C .在Ⅰ、Ⅱ区域的运动时间相同D .从Ⅱ区域穿过铝板运动到Ⅰ区域 答案 C解析 粒子穿过铝板受到铝板的阻力,速度将减小.由r =m vBq 可得粒子在磁场中做匀速圆周运动的轨道半径将减小,故可得粒子由Ⅰ区域运动到Ⅱ区域,结合左手定则可知粒子带负电,选项A 、B 、D 错误;由T =2πmBq可知粒子运动的周期不变,粒子在Ⅰ区域和Ⅱ区域中运动的时间均为t =12T =πmBq ,选项C 正确.二、带电粒子在匀强磁场中的圆周运动 1.圆心位置确定的两种方法 (1)圆心一定在垂直于速度的直线上已知入射方向和出射方向时,可以过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示,P 为入射点,M 为出射点). (2)圆心一定在弦的垂直平分线上已知入射方向和出射点的位置时,可以过入射点作入射方向的垂线,连接入射点和出射点,作其垂直平分线,这两条垂线的交点就是圆弧轨道的圆心(如图乙所示,P 为入射点,M 为出射点).2.半径的确定半径的计算一般利用几何知识解直角三角形.做题时一定要作好辅助线,由圆的半径和其他几何边构成直角三角形.由直角三角形的边角关系或勾股定理求解.3.粒子在匀强磁场中运动时间的确定(1)粒子在匀强磁场中运动一周的时间为T ,当粒子运动轨迹的圆弧所对应的圆心角为α时,其运动时间t =α360°T (或t =α2πT ).确定圆心角时,利用好几个角的关系,即圆心角=偏向角=2倍弦切角. (2)当v 一定时,粒子在匀强磁场中运动的时间t =lv ,l 为带电粒子通过的弧长.例2 如图所示,a 和b 所带电荷量相同,以相同动能从A 点射入磁场,在匀强磁场中做圆周运动的半径r a =2r b ,则可知(重力不计)( )A .两粒子都带正电,质量比m am b =4B .两粒子都带负电,质量比m am b =4C .两粒子都带正电,质量比m a m b =14D .两粒子都带负电,质量比m a m b =14答案 B解析 由于q a =q b ,E k a =E k b ,由动能E k =12m v 2和粒子偏转半径r =m v qB ,可得m =r 2q 2B 22E k ,可见m 与半径r 的二次方成正比,故m a ∶m b =4∶1,再根据左手定则知粒子应带负电,故选B.例3 如图所示,一带电荷量为2.0×10-9 C 、质量为1.8×10-16kg 的粒子,从直线上一点O沿与PO 方向成30°角的方向进入磁感应强度为B 的匀强磁场中,经过1.5×10-6 s 后到达直线上的P 点,求:(1)粒子做圆周运动的周期; (2)磁感应强度B 的大小;(3)若O 、P 之间的距离为0.1 m ,则粒子的运动速度的大小. 答案 (1)1.8×10-6 s (2)0.314 T (3)3.49×105 m/s解析 (1)作出粒子的运动轨迹,如图所示,由图可知粒子由O 到P 的大圆弧所对的圆心角为300°,则t T =300°360°=56,周期T =65t =65×1.5×10-6 s =1.8×10-6 s (2)由q v B =m v 2r ,T =2πr v ,得T =2πm qB ,知B =2πm qT =2×3.14×1.8×10-162.0×10-9×1.8×10-6T =0.314 T.(3)由几何知识可知,半径r =OP =0.1 m 则q v B =m v 2r得,粒子的运动速度大小为v =Bqr m =0.314×2.0×10-9×0.11.8×10-16 m/s ≈3.49×105 m/s. 针对训练2 (多选)(2020·天津卷)如图所示,在Oxy 平面的第一象限内存在方向垂直纸面向里,磁感应强度大小为B 的匀强磁场.一带电粒子从y 轴上的M 点射入磁场,速度方向与y 轴正方向的夹角θ=45°.粒子经过磁场偏转后在N 点(图中未画出)垂直穿过x 轴.已知OM =a ,粒子电荷量为q ,质量为m ,重力不计.则( )A .粒子带负电荷B .粒子速度大小为qBa mC .粒子在磁场中运动的轨道半径为aD .N 与O 点相距(2+1)a 答案 AD解析 由题意可知,粒子在磁场中做顺时针圆周运动,根据左手定则可知粒子带负电荷,故A 正确;粒子的运动轨迹如图所示,O ′为粒子做匀速圆周运动的圆心,其轨道半径R =2a ,故C 错误;由洛伦兹力提供向心力可得q v B =m v 2R ,则v =2qBa m ,故B 错误;由图可知,ON =a +2a =(2+1)a ,故D 正确.考点一 周期公式与半径公式的基本应用1.(多选)两个粒子A 和B 带有等量的同种电荷,粒子A 和B 以垂直于磁场的方向射入同一匀强磁场,不计重力,则下列说法正确的是( ) A .如果两粒子的速度v A =v B ,则两粒子的半径R A =R B B .如果两粒子的动能E k A =E k B ,则两粒子的周期T A =T B C .如果两粒子的质量m A =m B ,则两粒子的周期T A =T B D .如果两粒子的动量大小相同,则两粒子的半径R A =R B 答案 CD解析 因为粒子在匀强磁场中做匀速圆周运动的半径r =m v qB ,周期T =2πmqB ,又粒子电荷量相等且在同一匀强磁场中,所以q 、B 相等,r 与m 、v 有关,T 只与m 有关,所以A 、B 错误,C 、D 正确.2.在匀强磁场中,一个带电粒子做匀速圆周运动,如果又顺利垂直进入另一磁感应强度是原来磁感应强度一半的匀强磁场,则( ) A .粒子的速率加倍,周期减半 B .粒子的速率不变,轨道半径减半 C .粒子的速率不变,周期变为原来的2倍D .粒子的速率减半,轨道半径变为原来的2倍 答案 C解析 因洛伦兹力对粒子不做功,故粒子的速率不变;当磁感应强度减半后,由r =m vBq 可知,轨道半径变为原来的2倍;由T =2πmBq 可知,粒子的周期变为原来的2倍,故C 正确,A 、B 、D 错误.3.一个带电粒子沿垂直于磁场的方向射入一匀强磁场.粒子的一段径迹如图所示.径迹上的每一小段都可近似看成圆弧.由于带电粒子能使沿途的空气电离,粒子的能量逐渐减小(电荷量不变).从图中情况可以确定( )A .粒子从a 到b ,带正电B .粒子从a 到b ,带负电C .粒子从b 到a ,带正电D .粒子从b 到a ,带负电 答案 C解析 由于带电粒子使沿途的空气电离,粒子的能量逐渐减小,可知速度逐渐减小;根据粒子在匀强磁场中做匀速圆周运动的半径公式r =m vqB 可知,粒子的运动半径逐渐减小,所以粒子的运动方向是从b 到a ;再根据左手定则可知粒子带正电,选项C 正确,A 、B 、D 错误. 4.质量和带电荷量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场并最终打在金属板上,运动的半圆轨迹如图中虚线所示,不计重力,下列表述正确的是( )A .M 带负电,N 带正电B .M 的速率小于N 的速率C .洛伦兹力对M 、N 做正功D .M 的运动时间大于N 的运动时间 答案 A解析 根据左手定则可知N 带正电,M 带负电,A 正确;因r =m vBq,而M 的轨迹半径大于N的轨迹半径,所以M 的速率大于N 的速率,B 错误;洛伦兹力不做功,C 错误;M 和N 的运动时间都为t =πmBq,D 错误.考点二 带电粒子做匀速圆周运动的分析5.如图,ABCD 是一个正方形的匀强磁场区域,两相同的粒子甲、乙分别以不同的速率从A 、D 两点沿图示方向射入磁场,均从C 点射出,则它们的速率之比v 甲∶v 乙和它们通过该磁场所用时间之比t 甲∶t 乙分别为( )A .1∶1,2∶1B .1∶2,2∶1C .2∶1,1∶2D .1∶2,1∶1答案 C解析 根据q v B =m v 2r ,得v =qBrm ,根据题图可知,甲、乙两粒子的轨迹半径之比为2∶1,又因为两粒子相同,故v 甲∶v 乙=r 甲∶r 乙=2∶1,粒子在磁场中的运动周期T =2πmqB ,两粒子相同,可知甲、乙两粒子的周期之比为1∶1,根据轨迹图可知,甲、乙两粒子转过的圆心角之比为1∶2,故两粒子在磁场中经历的时间之比t 甲∶t 乙=1∶2,选C.6.如图所示,MN 为铝质薄平板,铝板上方和下方分别有垂直于纸面的匀强磁场(未画出),一带电粒子从紧贴铝板上表面的P 点垂直于铝板向上射出,从Q 点穿越铝板后到达PQ 的中点O .已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变,不计重力.铝板上方和下方的磁感应强度大小之比为( )A .2∶1 B.2∶1 C .1∶1 D.2∶2 答案 D解析 根据几何关系可知,带电粒子在铝板上方做匀速圆周运动的轨迹半径r 1是其在铝板下方做匀速圆周运动的轨迹半径r 2的2倍,设粒子在P 点的速度大小为v 1,动能为E k ,根据牛顿第二定律可得q v 1B 1=m v 12r 1,则B 1=m v 1qr 1=2mE kqr 1;同理,B 2=m v 2qr 2=2m ·12E kqr 2=mE kqr 2,则B 1B 2=2r 2r 1=22,D 正确.7.(多选)如图所示,分界线MN 上、下两侧有垂直纸面的匀强磁场,磁感应强度分别为B 1和B 2,一质量为m 、电荷量为q 的带电粒子(不计重力)从O 点出发以一定的初速度v 0沿纸面垂直MN 向上射出,经时间t 又回到出发点O ,形成了图示心形轨迹,则( )A .粒子一定带正电荷B .MN 上、下两侧的磁场方向相同C .MN 上、下两侧的磁感应强度的大小之比B 1∶B 2=1∶2D .时间t =2πm qB 2答案 BD解析 题中未给出磁场的方向和粒子绕行的方向,所以不能判定粒子所带电荷的正负,选项A 错误;粒子越过磁场的分界线MN 时,洛伦兹力的方向没有变,根据左手定则可知MN 上、下两侧的磁场方向相同,选项B 正确;设MN 上方的轨迹半径是r 1,下方的轨迹半径是r 2,根据几何关系可知r 1∶r 2=1∶2;洛伦兹力充当粒子做圆周运动的向心力,由q v 0B =m v 02r ,解得B =m v 0qr ,所以B 1∶B 2=r 2∶r 1=2∶1,选项C 错误;由题图知,时间t =T 1+T 22=2πmqB 1+πm qB 2,由B 1∶B 2=2∶1得t =2πm qB 2,选项D 正确. 8.如图所示,两个速度大小不同的同种带电粒子1、2沿水平方向从同一点垂直射入匀强磁场中,磁场方向垂直纸面向里,当它们从磁场下边界飞出时相对入射方向的偏转角分别为90°、60°,则粒子1、2在磁场中运动的( )A .轨迹半径之比为2∶1B .速度之比为1∶2C .时间之比为2∶3D .周期之比为1∶2答案 B解析 带电粒子在匀强磁场中运动时,洛伦兹力提供向心力,由牛顿第二定律有q v B =m v 2r,可得r =m v qB ,又T =2πr v ,联立可得T =2πmqB ,故两粒子运动的周期相同,D 错误;速度的偏转角等于轨迹所对的圆心角,故粒子1的运动时间t 1=90°360°T =14T ,粒子2的运动时间t 2=60°360°T=16T ,则时间之比为3∶2,C 错误;粒子1和粒子2运动轨迹的圆心O 1和O 2如图所示,设粒子1的轨迹半径R 1=d ,对于粒子2,由几何关系可得R 2sin 30°+d =R 2,解得R 2=2d ,故轨迹半径之比为1∶2,A 错误;由r =m vqB可知,速度之比为1∶2,B 正确.9.如图所示,在x 轴上方存在垂直于纸面向里的匀强磁场,磁场的磁感应强度为B ,在xOy 平面内,从原点O 处与x 轴正方向成θ角(0<θ<π),以速率v 发射一个带正电的粒子(重力不计),则下列说法正确的是( )A .若v 一定,θ越大,则粒子离开磁场的位置距O 点越远B .若v 一定,θ越大,则粒子在磁场中运动的时间越短C .若θ一定,v 越大,则粒子在磁场中运动的角速度越大D .若θ一定,v 越大,则粒子在磁场中运动的时间越短 答案 B解析 画出粒子在磁场中运动的轨迹如图所示,由几何关系得,轨迹对应的圆心角α=2π-2θ,粒子在磁场中运动的时间t =α2πT =2π-2θ2π·2πm qB =(2π-2θ)m qB ,可得,若v 一定,θ越大,粒子在磁场中运动的时间t 越短,若θ一定,则粒子在磁场中的运动时间一定,故B 正确,D 错误;设粒子的轨迹半径为r ,则r =m v qB ,由图有,AO =2r sin θ=2m v sin θqB ,可得,若θ是锐角,θ越大,AO 越大,若θ是钝角,θ越大,AO 越小,故A 错误;粒子在磁场中运动的角速度ω=2πT ,又T =2πm qB ,则得ω=qBm,与速度v 无关,故C 错误.10.(2019·全国卷Ⅲ)如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( )A.5πm 6qBB.7πm 6qBC.11πm 6qBD.13πm 6qB答案 B解析 设带电粒子进入第二象限的速度为v ,在第二象限和第一象限中运动的轨迹如图所示,对应的轨迹半径分别为R 1和R 2,由洛伦兹力提供向心力,有q v B =m v 2R、T =2πR v ,可得R 1=m v qB 、R 2=2m v qB 、T 1=2πm qB 、T 2=4πm qB ,带电粒子在第二象限中运动的时间为t 1=T 14,在第一象限中运动的时间为t 2=θ2πT 2,又由几何关系有cos θ=R 2-R 1R 2=12,可得t 2=T 26,则粒子在磁场中运动的时间为t =t 1+t 2,联立以上各式解得t =7πm 6qB,选项B 正确,A 、C 、D 错误.11.一带电粒子的质量m =1.7×10-27 kg ,电荷量q =+1.6×10-19 C ,该粒子以大小为v =3.2×106 m/s 的速度沿垂直于磁场同时又垂直于磁场边界的方向进入匀强磁场中,磁场的磁感应强度为B =0.17 T ,磁场的宽度L =10 cm ,如图所示.(粒子重力不计,g 取10 m/s 2,结果均保留两位有效数字)(1)带电粒子离开磁场时的速度多大?(2)带电粒子在磁场中运动多长时间?(3)带电粒子在离开磁场时偏离入射方向的距离d 为多大?答案 (1)3.2×106 m/s (2)3.3×10-8 s (3)2.7×10-2 m解析 (1)由于洛伦兹力不做功,所以带电粒子离开磁场时的速度大小仍为3.2×106 m/s.(2)由q v B =m v 2r 得, 轨迹半径r =m v qB =1.7×10-27×3.2×1061.6×10-19×0.17m =0.2 m. 由题图可知偏转角θ满足:sin θ=L r =0.1 m 0.2 m=0.5, 所以θ=30°=π6, 由q v B =m v 2r 及v =2πr T可得 带电粒子在磁场中运动的周期T =2πm qB, 所以带电粒子在磁场中运动的时间t =θ2π·T =112T , 所以t =πm 6qB = 3.14×1.7×10-276×1.6×10-19×0.17s ≈3.3×10-8 s. (3)带电粒子在离开磁场时偏离入射方向的距离d =r (1-cos θ)=0.2×(1-32) m ≈2.7×10-2 m.12.(2020·江苏卷改编)空间存在两个垂直于Oxy 平面的匀强磁场,y 轴为两磁场的边界,磁感应强度分别为2B 0、3B 0.质量为m 、带电荷量为q 的粒子从原点O 沿x 轴正向射入磁场,速度为v .粒子第1次、第2次经过y 轴的位置分别为P 、Q ,其轨迹如图所示.不考虑粒子重力影响.求:(1)Q 到O 的距离d ;(2)粒子两次经过P 点的时间间隔Δt .答案 (1)m v 3qB 0 (2)2πm qB 0解析 (1)粒子先后在两磁场中做匀速圆周运动,设半径分别为r 1、r 2由q v B =m v 2r 可知r =m v qB故r 1=m v 2qB 0,r 2=m v 3qB 0且d =2r 1-2r 2,解得d =m v 3qB 0(2)粒子先后在两磁场中做匀速圆周运动,设运动时间分别为t 1、t 2由T =2πr v =2πm qB 得t 1=πm 2qB 0,t 2=πm 3qB 0, 且Δt =2t 1+3t 2解得Δt =2πm qB 0.。
带电粒子在匀强磁场中的运动速度公式

带电粒子在匀强磁场中的运动速度公式在我们学习物理的过程中,带电粒子在匀强磁场中的运动速度公式可是个相当重要的知识点。
咱先来说说这个公式到底是啥。
带电粒子在匀强磁场中运动时,它所受到的洛伦兹力大小为 qvB,其中 q 是粒子的电荷量,v 是粒子的速度,B 是磁场的磁感应强度。
当这个洛伦兹力刚好提供了粒子做圆周运动的向心力时,就有 qvB = mv²/r ,通过这个式子一番推导,就得出了带电粒子在匀强磁场中的运动速度公式 v = qBr/m 。
我还记得有一次给学生们讲这个知识点的时候,有个学生一脸懵地问我:“老师,这玩意儿在生活中有啥用啊?”我笑着跟他们说:“这用处可大了去啦!就比如说医院里的核磁共振成像,那可就是利用了带电粒子在磁场中的运动原理。
你们想想,如果没有这些知识,医生怎么能通过这么高科技的手段看到咱们身体里的情况呢?”咱们再深入聊聊这个公式的应用。
比如说在一个特定的磁场中,已知磁场的磁感应强度 B ,还有粒子的电荷量 q 和质量 m ,只要能测量出粒子运动的半径 r ,就能轻松算出粒子的运动速度 v 。
这在科学研究和实际应用中,可都是非常关键的一步。
假设咱们要研究一种新型的带电粒子,通过精心设计的实验,控制好磁场的强度,然后精确地测量出粒子运动的轨迹半径。
这时候,运用这个速度公式,就能准确地算出粒子的速度,从而进一步了解这种新型粒子的性质和特点。
在解题的时候,同学们可一定要注意单位的换算。
有时候就是因为单位没搞清楚,结果得出了一个让人哭笑不得的答案。
我之前批改作业的时候,就发现有个同学因为单位的问题,算出的速度比火箭还快,这要是真的,那可就太神奇啦!而且,理解这个公式的时候,不能死记硬背,要真正理解其中每个物理量的含义和它们之间的关系。
比如说,电荷量的变化会怎样影响速度,磁场强度的改变又会带来什么结果。
再给大家举个例子,假如有一个带电粒子在一个强度为 0.5T 的匀强磁场中做圆周运动,粒子的电荷量是 1.6×10⁻¹⁹C ,质量是9.1×10⁻³¹kg ,测量得到运动半径是 0.1m ,那咱们来算算它的速度。
带电粒子在匀强磁场中的匀速圆周运动

洛伦兹力提供向心力,使带电 粒子绕固定点做圆周运动。
运动过程中,带电粒子的速度 方向时刻改变,但速度大小保 持不变。
周期和半径公式
周期公式
$T = frac{2pi m}{qB}$,其中$m$是带电粒子的质量,$q$是带电粒子的电荷 量,$B$是匀强磁场的磁感应强度。
半径公式
$r = frac{mv}{qB}$,其中$v$是带电粒子运动的速度。
偏转方向和速度大小不变
偏转方向
带电粒子在匀强磁场中做匀速圆周运 动时,其偏转方向与磁场方向垂直。
速度大小不变
由于洛伦兹力始终与带电粒子的速度 方向垂直,因此洛伦兹力不做功,带 电粒子的速度大小保持不变。
04 带电粒子在磁场中的运动 规律
周期与速度的关系
总结词
带电粒子在匀强磁场中做匀速圆周运动时,其周期与速度无关,即T=恒定值。
域。
核聚变反应
在高温高压条件下,带电粒子在匀 强磁场中高速旋转,可以引发核聚 变反应,为未来的清洁能源提供可 能。
磁流体发电
利用高温导电流体在匀强磁场中做 高速旋转运动,可以将机械能转化 为电能,具有高效、环保的优点。
对未来研究的展望
1 2 3
探索极端条件下的运动特性
随着实验技术的不断发展,未来可以进一步探索 带电粒子在更高温度、更高磁感应强度等极端条 件下的运动特性。
详细描述
带电粒子在匀强磁场中受到洛伦兹力作用,该力提供向心力使粒子做匀速圆周运 动。根据牛顿第二定律和向心力公式,粒子的周期T与速度v无关,只与磁场强度 B和粒子的质量m有关。
周期与磁场强度的关系
总结词
带电粒子在匀强磁场中做匀速圆周运 动时,其周期与磁场强度成正比。
详细描述
人教版高中物理选选择性必修二1.3 带电粒子在匀强磁场中的运动

3. 带电粒子在匀强磁场中的运动
学习目标
1、理解洛伦兹力对粒子不做功,带电粒子初速度方向与磁感应强 度方向垂直时,粒子在匀强磁场中做匀速圆周运动; 2、会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式, 知道它们和哪些因素有关; 3、能够解答带电粒子在匀强磁场中运动相关问题。
v qB
T质子 : T氚核 : T
m质子 e
: 3m质子 e
: 4m质子 2e
1: 3: 2
小结(一):分析粒子的圆周运动,要从粒子的动力学规律入手,由洛伦兹力 提供向心力,得到相关物理量间之间的关系;
五、带电粒子圆周运动的深入分析
1.轨迹圆心的确定
(1)圆心一定在垂直于速度的直线上
(2)圆心一定在弦的中垂线上
B
F v
电子的运动轨迹是什么样的?
加垂直于线圈平面向 里磁场,电子初速度 向左,与磁场方向垂 Байду номын сангаас进入匀强磁场。
电子的运动轨迹为圆
四、观察电子在磁场中的运动轨迹
3、仅改变磁感应强度的大小,电子运动有什么变化?
B
r mv qB
v
顺时针旋转励磁电流旋钮,励 磁电流逐渐增大,匀强磁场磁 感应强度逐渐增大
课堂练习
例题1
一个质量为 1.67 1027 kg、电荷量为1.61019 C的带电粒子,以 5105 m/s的初速 度沿与磁场垂直的方向射入磁感应强度为0.2T的匀强磁场。求: (1)粒子所受的重力和洛伦兹力的大小之比; (2)粒子在磁场中运动的轨道半径; (3)粒子做匀速圆周运动的周期。
解:(1)粒子所受重力 G mg 1.67 1027 9.8N 1.641026 N
带电粒子在匀强磁场中的运动 课件

二、质谱仪
阅读教材第100页“例题”部分,了解质谱仪的结构和作用。
1.质谱仪的组成
由粒子源容器、加速电场、偏转磁场和底片组成。
2.质谱仪的用途
质谱仪最初是由汤姆生的学生阿斯顿设计的。他用质谱仪发现
了氖20和氖22,证实了同位素的存在。质谱仪是测量带电粒子的
质量和分析同位素的重要工具。
三、回旋加速器
B.两粒子都带负电,质量比 =4
1
C.两粒子都带正电,质量比 =
4
1
D.两粒子都带负电,质量比 =
4
A.两粒子都带正电,质量比
1
解析:由于 qa=qb、Eka=Ekb,动能 Ek=2mv2 和粒子偏转半径 r= ,
2 2 2
可得 m= 2 ,可见 m 与半径
k
r 的二次方成正比,故 ma∶mb=4∶1,
再根据左手定则判知粒子应带负电,故选 B。
答案:B
【例题2】如图所示,一束电荷量为e的电子以垂直于磁场方向
(磁感应强度为B)并垂直于磁场边界的速度v射入宽度为d的磁场中,
穿出磁场时速度方向和原来射入方向的夹角为θ=60°。求电子的
质量和穿越磁场的时间。
解析:过 M、N 作入射方向和出射方向的垂线,
两垂线交于 O 点,O 点即电子在磁场中做匀速圆周运动的圆心,
连结 ON,过 N 作 OM 的垂线,垂足为 P,如图所示。由直角三角形 OPN
2 3
知,电子的轨迹半径 r=sin60° = 3 d
2
由圆周运动知 evB=m
2 3
联立①②解得 m= 3 。
带电粒子在匀强磁场中的运动
高中物理第一章 第3节带电粒子在匀强磁场中的运动

第3节 带电粒子在匀强磁场中的运动核心素养导学一、带电粒子在匀强磁场中的运动1.带电粒子沿着与磁场垂直的方向射入匀强磁场,由于带电粒子初速度的方向和洛伦兹力的方向都在与磁场方向 的平面内。
所以,粒子只能在该平面内运动。
2.洛伦兹力总是与粒子运动方向垂直,只改变粒子速度的方向,不改变粒子速度的大小。
3.粒子速度大小不变,粒子在匀强磁场中所受洛伦兹力大小也不改变,洛伦兹力提供粒子做圆周运动的向心力,粒子做 运动。
带电粒子在匀强磁场中做匀速圆周运动,带电粒子的重力忽略不计,洛伦兹力提供向心力。
二、带电粒子在磁场中做圆周运动的半径和周期1.半径公式由洛伦兹力提供向心力q v B =m v 2r ,可得圆周运动的半径r = 。
2.周期公式匀速圆周运动的周期T =2πr v ,将r =m v qB 代入,可得T = 。
1.电子以某一速度进入洛伦兹力演示仪中。
(1)励磁线圈通电前后电子的运动情况相同吗?提示:①通电前,电子做匀速直线运动。
②通电后,电子做匀速圆周运动。
(2)电子在洛伦兹力演示仪中做匀速圆周运动时,什么力提供向心力?提示:洛伦兹力提供向心力。
2.如图,带电粒子在匀强磁场中做匀速圆周运动。
判断下列说法的正误。
(1)运动电荷在匀强磁场中做匀速圆周运动的周期与速度有关。
( )(2)带电粒子做匀速圆周运动的半径与带电粒子进入匀强磁场时速度的大小有关。
( )(3)带电粒子若垂直进入非匀强磁场后做半径不断变化的运动。
( )新知学习(一)⎪⎪⎪带电粒子做圆周运动的半径和周期[任务驱动]美丽的极光是由来自太阳的高能带电粒子流进入地球高空大气层出现的现象。
科学家发现并证实,向地球两极做螺旋运动的这些高能粒子的旋转半径是不断减小的,这主要与哪些因素有关?提示:一方面磁场在不断增强,另一方面由于大气阻力粒子速度不断减小,根据r =m v qB,半径r 是不断减小的。
[重点释解]1.由公式r =m v qB 可知,带电粒子在匀强磁场中做圆周运动的半径r 与比荷q m 成反比,与速度v 成正比,与磁感应强度B 成反比。
人教版选择性必修第二册 第一章 第3节 带电粒子在匀强磁场中的运动 课件(44张)

1.理解带电粒子在匀强磁场中做匀速圆周运动的条件。 2. 会推导圆周运动的半径公式和周期公式。 3. 掌握利用半径公式和周期公式解决问题的方法。 4.了解洛伦兹力演示仪的结构和使用。
一、带电粒子在匀强磁场中的运动 1.填一填 (1)由于带电粒子初速度的方向和洛伦兹力的方向都在与磁场方向 垂直 的平
即过轨迹上两点作速度的垂线可找到圆心 O 点,如图所示。 由几何关系可知,弧 AC 所对的圆心角 θ=30°,OC 为半径, 则 r=sind30°=2d
由 eBv=mvr2,代入 r=2d 可得 m=2dvBe 因为弧 AC 所对的圆心角是 30°,故电子穿过磁场的时间为 t=112T= 112·2eπBm=6πemB=π3vd。
周期公式 T=2qπBm可判断 D 选项正确。 答案:D
圆周运动的圆心、半径、运动时间的确定
[学透用活] 1.圆心的确定 带电粒子进入一个有界磁场后的轨道是一段圆弧,其圆心一定在与速度 方向垂直的直线上。通常有两种确定方法。 (1)已知入射方向和出射方向时,可以通过入射点和出射点作垂直于入射 方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示, 图中 P 为入射点,M 为出射点,O 为轨道圆心)。
解析:带电粒子在电场中受到的静电力 F=qE,只与电场有关,与粒子的运 动状态无关,做功的正负由 θ 角(力与位移方向的夹角)决定。对选项 A,只有 粒子带正电时才成立,A 错误;垂直射入匀强电场的带电粒子,不管带电性 质如何,静电力都会做正功,动能一定增加,B 错误;带电粒子在磁场中的 受力——洛伦兹力 f 洛=qvBsin θ,其大小除与运动状态有关,还与 θ 角(磁场 方向与速度方向之间的夹角)有关,带电粒子沿磁感线方向射入,不受洛伦兹 力作用,粒子做匀速直线运动,粒子动能不变,C 错误;由于洛伦兹力方向 始终与速度方向垂直,故洛伦兹力对带电粒子始终不做功,粒子动能不变, 选项 D 正确。 答案:D
电荷在磁场中运动的圆心、半径、运动时间的基本求解方法

电荷在磁场中运动的圆心、半径、运动时间的基本求解方法大家知道,当带电粒子进入匀强磁场的速度方向与磁场垂直时,带电粒子做匀速圆周运动。
那么,圆周运动的圆心、半径、以及粒子在磁场中运动的时间都该怎么求呢?下面我们来对这个问题进行总结。
首先来找圆心,常见的有三种不同的情况。
第一种情况,已知粒子运动轨迹上两点的速度方向。
因为速度方向就是轨迹的切线方向,而半径一定与切线垂直,所以做出两速度方向的两条垂线,两垂线的交点就一定是圆心。
第二种情况,已知粒子运动轨迹上一点的速度方向和另一点的位置。
还是要先做出这个速度方向的垂线,这样圆心一定在这条线上。
接着还要找一条线,那就先连接这两点,形成圆的一条弦,接着做出这条弦的中垂线,圆心也一定在这条中垂线上。
两垂线的交点就是圆心。
第三种情况,已知粒子运动轨迹上的三点位置,分别连接两点,得到两条弦,两条弦的中垂线的交点就是圆心。
这就是找圆心时常见的三种情况,解题时要根据具体情况选择方法。
圆心找到以后,半径就很容易确定了。
半径一方面满足公式r=mνqB,另一方面也可以在图中利用几何知识来求。
最后就是粒子运动的时间,关键有两点,先根据公式T=2πm qB求出粒子圆周运动的周期,接着根据几何关系,计算出粒子运动的圆心角θ,然后就可以根据比例关系求时间t 。
再详细说一下圆心角θ的计算。
如图粒子运动的轨迹是一段劣弧,α为弦切角,θ为圆心角,β为偏转角。
圆心角θ就是弦切角α的2倍,也就是θ=2α。
在这个四边形中圆心角θ和β的补角互补,所以θ=β。
如果换一种情况,粒子运动的轨迹是一段优弧,图形跟轨迹是劣弧时几乎完全一样,只是θ和β都换了位置。
这种情况的θ等于2π-2α,但θ和β依然相等。
下面我们来看一个例子,图中是垂直纸面向里的匀强磁场,磁感应强度B=1T,一电子从x轴上与x轴成300角方向以ν=3.2x107m/s速度出发。
已知电子的质量是m=9.0x10-31kg,电荷量大小q=1.6x10-19c。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电荷在匀强磁场中的匀速圆周运动
电荷在匀强磁场中的匀速圆周运动与临界问题
带电粒子在磁场中运动所受的磁场力为洛仑兹力,本节重点研究洛仑兹力作用下的带电粒子在磁场中做圆周运动的情况.
一、垂直于匀强磁场方向射入的带电粒子在磁场中做匀速圆周运动
1、垂直于匀强磁场方向射人的带电粒子,在匀强磁场中作匀速圆周运动,与磁场是否充满整个空间无关,
2、解做匀速圆周运动的问题,关键是在分析物体受力图景后寻找谁提供向心力,从而建立动力学方程.
例 1 两个粒子带电量相等,在同一匀强磁场中只受磁场力而作匀速圆周运动( ).
A.若速率相等,则半径必相等
D.若质量相等,则周期必相等
.若动量大小相等,则半径必相等
D.若动能相等,则周期必相等
例2 质子( )和α粒子( )从静止开始,经相同的电势差加速后垂直进入同一匀强磁场做圆周运动,则这两粒子的动能之比=,轨道半径之比=,周期之比=。
二、在有界磁场中带电粒子作圆弧运动的研究
在有界磁场中,带电粒子在磁场中运动可能不是一个完整的圆,而仅
仅是一段圆弧.这时对带电粒子运动的几何分析则往往成为解题的关键.有界磁场中带电粒子运动的几何分析包括以下几个方面:
1、确定圆弧轨迹的圆心
已知运动粒子在磁场边界射入的速度方向和射出的速度方向时,应根据磁感应强度B的方向和物体运动速度V的方向,运用左手定则,确定射入点和射出点的洛仑兹力的方向,则圆心就在两个洛仑兹力延长线的交点上(如图)
2、确定磁偏转的角度带电粒子射出磁场时的速度方向与射人磁场时的速度方向间的夹角叫磁偏转的磁偏角.磁偏角等于通过射入点和射出点的半径的夹角,即圆心角θ.它又等于与圆心角同弧的圆周角的2倍,即θ=2α.
确定磁偏角有许多意义,例如求带电粒子在有界磁场中运动的时间:,则
例3如图所示,匀强磁场的磁感应强度为B、宽为d,一束电量为e 的电子以速度v0沿垂直于磁感线并平行d的方向射入磁场.已知电子射出磁场时的速度方向和原入射方向的夹角是30°,则电子的质量是,通过磁场的时间是。
例4 如图中虚线N是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B的匀强磁场,方向垂直纸面向外.是N上的一点,从点可以向磁场区域发射电量为+q、质量为、速率为V 的粒子,粒子射人磁场时的速度可在纸面内各个方向,已知先后射入两个粒子恰好在磁场中给定的P点相遇,P到的距离为L.不计重力及粒子间的相互作用。
(1)、所考察的粒子在磁场中的轨道半径.
(2)、求这两个粒子从点射人磁场的时间间隔.
三、带电粒子在匀强磁场中运动的临界问题
带电粒子在局部磁场中运动时常伴随着临界问题出现,这也成了近年高考的热点之一。
1、涉及粒子运动范围的空间临界问题
例如图所示,在X轴的上方(≥0)存在着垂直于纸面向外的匀强磁场,磁感应强度为B.在原点有一个离子向x轴上方的各个方向发射出质量为电量为q的正离子,速率都为v.对那些在x平面内运动的离子,在磁场中可能到达的最大x=,最大=•
2.涉及磁场所占据范围的空间临界问题
例6 如图所示,一带电质点,质量为,电量为q,以平行于x轴的速度v从轴的a点射入图中第一象限所示的区域,为了使该质点能从轴上的b点以垂直于x轴的速度v射出,可在适当的地方加一个垂直于x平面、磁感应强度为B的匀强磁场,若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径,重力忽略不计.
例7绝缘材料制成的圆筒内,有一磁感应强度为B的匀强磁场,方向垂直纸面向里。
一质量为,带电量为+q的粒子,用指向圆筒圆心的速度垂直磁场从小孔D射入,粒子在筒内发生两次碰撞后又从小孔D射出,碰撞时没有机械能损失,不考虑碰时间及重力和阻力的影响,则:P
A粒子在筒内运转顺序为D—P——D;
B.粒子在筒内运转顺序为D——P—D;D
.粒子运动速度为BqR/,R是圆筒半径;
D.粒子在筒内运动的时间为π/Bq;
3.涉及运动电荷相遇的时空临界问题
所谓相遇是指两物体在同一时间恰好出现在同一空间,所以涉及到时
空临界问题.
例8 如图,在某装置中有一匀强磁场,磁感强度为B,方向垂直于X 所在的纸面向外.某时刻在x=l0,=0处,一质子沿轴的负方向进入磁场;同一时刻,在x=-l0,=0处,一个α粒子进入磁场,速度方向与磁场垂直.不考虑质子与α粒子的相互作用.设质子的质量为,电量为e。
(1)、如果质子经过坐标原点,它的速度为多大?
(2)、如果α粒子与质子在坐标原点相遇,α粒子的速度应为何值,方向如何?
例9如图1,L1和L2为两平行的虚线,L1上方和L2下方都是垂直纸面向里的磁感强度相同的匀强磁场,A、B两点都在L2上.带电粒子从A点以初速v与L2成30°角斜向上射出,经过偏转后正好过B点,经过B点时速度方向也斜向上.不计重力,下列说法中正确的是:
A.带电粒子经过B点时速度一定跟在A点时速度相同
B.若将带电粒子在A点时的初速度变大(方向不变),它仍能经过B点
C.若将带电粒子在A点时初速度的方向改为与L2成60°角斜向上,它就不一定经过B点
D.此粒子一定带正电荷。