材料力学-第五章 梁弯曲时的位移

合集下载

孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-梁弯曲时的位移(圣才出品)

孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-梁弯曲时的位移(圣才出品)
5 / 41
圣才电子书

ql3/6,D=-ql4/24。
十万种考研考证电子书、题库视频学习平台
故挠曲线方程和转角方程分别为:
w(x)=qx2(x2+6l2-4lx)/(24EI),θ(x)=q(x3-3lx2+3l2x)/(6EI)
则最大挠度 wmax=w(x)|x=l=ql4/(8EI);梁端转角 θB=θ(x)| x=l=ql3/(6EI)。
表 5-1-4 叠加原理计算梁的挠度和转角
四、梁的刚度校核·提高梁的刚度的措施(见表 5-1-5)
表 5-1-5 梁的刚度校核及提高措施
3 / 41
圣才电子书 十万种考研考证电子书、题库视频学习平台

五、梁内的弯曲应变能 定义:由于梁弯曲变形而存储的能量称为梁内的弯曲应变能。梁在弹性变形过程中,其 弯曲应变能与作用在梁上的外力所作的功相等,常见梁内的弯曲应变能见表 5-1-6。
则最大挠度 wmax=w(x)|x=l=Fl3/3EI;梁端转角 θB=θ(x)| x=l=Fl2/2EI。
图 5-2-1(a)(b) (2)建立如图 5-2-1(b)所示坐标系。 首先列弯矩方程:M(x)=-q(l-x)2/2,由此可得挠曲线近似方程: EIw″=-M(x)=q(l-x)2/2 积分得: EIw′=-q(l-x)3/6+C① EIw=q(l-x)4/24+Cx+D② 该梁的边界条件:x=0,w=0,x=0,w'=0。代入式①、②可确定积分常数:C=
圣才电子书

十万种考研考证电子书、题库视频学习平台
第 5 章 梁弯曲时的位移
5.1 复习笔记
梁在承受荷载时发生相应的变形,变形后轴线相对原位置将会发生位移、梁的截面将出 现转角,梁内会因变形存储能量。本章首先介绍梁的位移概念,并基于坐标系统建立挠曲线 方程;接着介绍求解梁的位移的方法,根据挠曲线近似微分方程积分和按叠加原理计算;再 介绍梁刚度校核以及提高梁刚度的方法;最后介绍梁弯曲应变能的概念及计算方法。

《材料力学》 第五章 弯曲内力与弯曲应力

《材料力学》 第五章 弯曲内力与弯曲应力

第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。

二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。

变形特点——杆轴线由直线变为一条平面的曲线。

三、梁的概念:主要产生弯曲变形的杆。

四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。

变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。

五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。

2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。

3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。

4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。

5、按杆的横截面上的应力分——纯弯曲;横力弯曲。

六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。

(二)、梁的简化:以梁的轴线代替梁本身。

(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。

2、分布力——荷载作用的范围与整个杆的长度相比不很小时。

3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。

(四)、支座的简化:1、固定端——有三个约束反力。

2、固定铰支座——有二个约束反力。

3、可动铰支座——有一个约束反力。

(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。

超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。

§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。

求:距A 端x 处截面上内力。

解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。

材料力学第五章梁弯曲时的位移

材料力学第五章梁弯曲时的位移

实例3 :均布载荷
分析受均布载荷作用下梁的位移。
材料力学第五章梁弯曲时 的位移
在材料力学的第五章中,我们将学习有关梁在弯曲时的位移。掌握梁的基本 知识、位移方程和位移计算方法,以及梁的挠度与转角关系。
梁的基本知识
1 定义
梁是一种长条形结构,承受着沿其长度方向的外部力。
2 类型
常见的梁包括简支梁、悬臂梁和受力梁。
3 材料
梁可以由不同类型的材料制成,例如钢、木材或混凝土。
梁的位移方程
1 弯曲位移
2 挠度
3 转角
梁在弯曲时,沿梁的长度方 向发生位移。
挠度是梁的中点相对于其自 由状态的偏移量。
转角是指梁在弯曲时端部角 度的变化。
简支梁的位移计算方法
1
载荷和反力
计算简支梁上的载荷和反力分布。
2
弯矩方程
使用弯矩方程推导出简支梁的位移方程。
3
边界条件
应用适当的边界条件来解决位移方程中的未知量。
悬臂梁的位移计算方法
加载和支座反力
确定悬臂梁上的加载和支座反力。
弯曲力矩方程
通过推导弯曲力矩方程来解决悬臂 梁的位移问题。
解决边界条件
应用边界条件来计算悬臂梁的位移。
受力梁的位移计算方法
1
截面转动方程
2
推导出受力梁的截面转动方程。
3
确定力的分布
分析受力梁上的力分布,包括集中力和均布 力。
边界条件和位移方程
应用边界条件,求解受力梁的位移方程。ຫໍສະໝຸດ 梁的挠度与转角关系挠度
挠度是梁在弯曲时沿其长度方向上的位移。
转角
转角是梁在弯曲时端部偏离初始位置的角度。
关系公式
挠度和转角之间存在一定的关系,可以通过公式计算。

材料力学第五章梁弯曲时的位移

材料力学第五章梁弯曲时的位移
第五章 梁弯曲时的位移
工程实例
7-1
工程实例
工程实例
5-1 梁的位移——挠度及转角
建立坐标系,oxy为梁对称面,外力作用在对 称面内。所以,挠曲线为o xy面内的平面曲线。
挠度
y 向下为正。
y
x
y
转角
x
挠曲线
挠曲线方程:
7-2
w= f (x)
挠度
略去剪力的影响,则平面假设成立,发
y
5.2 积分法求梁的挠度和转角
例1 求梁的转角方程和挠度方程,并求最大转角和最大挠度, 梁的EI已知。
解 1)由梁的整体平衡分析可得:
2)写出x截面的弯矩方程
FAx 0, FAy F (), M A Fl (
)
A
x
l
yB
F B
B
x
M ( x ) F (l x ) F ( x l )
A
FAx 0, FAy
Fb Fa , FBy l l
2)弯矩方程
FAy x1
ymax
x2
FBy
AC 段:
M x1 FAy x1 Fb x1 ,0 x1 a l
y
a
b
CB 段:
Fb M x2 FAy x2 F ( x2 a ) x2 F ( x2 a ), l
目录
a x2 l
5.2 积分法求梁的挠度和转角
A d 2 w1 Fb EI M ( x1 ) x1 2 dx1 l FAy x1 dw1 Fb 2 EI EI ( x1 ) x1 C1 x2 dx1 2l Fb 3 a EIw1 x C1 x1 D1 6l a x2 l CB 段: y d 2 w2 Fb EI M ( x2 ) x2 F ( x2 a) 2 dx2 l dw Fb 2 F EI 2 EI ( x2 ) x 2 ( x2 a ) 2 C 2 dx2 2l 2 Fb 3 F EIw2 x 2 ( x2 a)3 C2 x2 D2 6l 6

第五章 梁弯曲时的位移

第五章  梁弯曲时的位移
利用边界条件确定上面二式中的积分常数C 利用边界条件确定上面二式中的积分常数 1,C2,即可得 梁的挠度方程和转角方程
李田军材料力学课件 10 第五章 梁弯曲时的位移
积分法求解梁位移的思路: 积分法求解梁位移的思路: 建立合适的坐标系; ① 建立合适的坐标系; 求弯矩方程M(x) ; ② 求弯矩方程 ③ 建立近似微分方程: EIw′′ = M ( x ) 建立近似微分方程: 根据本书的规定坐标系,取负号进行分析. 根据本书的规定坐标系,取负号进行分析. ④ 积分求
李田军材料力学课件 9 第五章 梁弯曲时的位移
积分法求梁的变形 对于等刚度梁, 对于等刚度梁,梁挠曲线的二阶微分方程可写为
Ely'' = M(x)
对此方程连续积分两次,可得 对此方程连续积分两次,
Ely' (x) = ∫ M(x)dx + c1 Ely(x) = ∫ M(x)dxdx + c1x + c2
最大转角,显然在支座处
Pab θA =θ (0) = (L + b) 6EIz Pab θB =θ (L) = (L + a) 6EI 6EIz
P a L y
C
b B x
a >b a <b
θmax =θB θmax =θA
A
从A→B, θ + → 中间必经过0
李田军材料力学课件
19
第五章
梁弯曲时的位移
第五章 梁弯曲时的位移
梁的位移——挠度及转角 §5.1 梁的位移 挠度及转角 §5.2 梁的挠曲线近似微分方程及其积分 §5.3 按叠加原理计算梁的挠度和转角 *§5.4 梁挠曲线的初参数方程 § §5.5 梁的刚度校核.提高梁的刚度的措施 §5.6 梁内的弯曲应变能

材料力学(土木类)第五章 梁弯曲时的位移(2)

材料力学(土木类)第五章  梁弯曲时的位移(2)
逆时针) (逆时针)
3 3 3
利用叠加原理求图示弯曲刚度为EI的悬臂梁 例5-6 利用叠加原理求图示弯曲刚度为 的悬臂梁 自由端B截面的挠度和转角 截面的挠度和转角。 自由端 截面的挠度和转角。
F A l C EI l F D l B
原荷载可看成为图a和 两种荷载的叠加 两种荷载的叠加, 解:原荷载可看成为图 和 b两种荷载的叠加,对应 的变形和相关量如图所示。 的变形和相关量如图所示。
Fl θ C1 = 2 EI
2
3
由位移关系可得此时B截面的挠度和转角为: 由位移关系可得此时 截面的挠度和转角为: 截面的挠度和转角为
Fl 3 Fl 2 4 Fl 3 wB1 = wC1 + θ C1 ⋅ BC = + × 2l = 向下) (向下) 3EI 2 EI 3EI Fl θ B1 = θ C1 = 2 EI
q ( x) x 2 dθ B = dθ ( x) = dx 2 EI
范围对q(x)dx的作用进行叠加,相当于 的作用进行叠加, 在x=0, l范围对 范围对 的作用进行叠加 对上两式在前述范围内积分, 对上两式在前述范围内积分,即:
wB = ∫ d wB = ∫
0
l
l
0
11q 0 l q ( x ) x (3l − x ) dx = 6 EI 120 EI
上次课回顾: 上次课回顾:
1、度量梁变形的两个基本位移量:挠度和转角 度量梁变形的两个基本位移量: 2、挠曲线近似微分方程
EIw′′ = − M ( x )
3、挠曲线近似微分方程的积分 、
EIw ' ( x ) = ∫ ( − M ( x )) dx + C1
EIw ( x ) =

材料力学——5梁的变形与刚度计算

材料力学——5梁的变形与刚度计算
3、积分常数由位移边界条件确定。
d
dx
M (x) EI Z
dx
C1
M (x) EI Z
dx

dx
C1 x
C2
可写成:
EIZ M xdx C1
EIz M xdx • dx C1x C2
积分常数C1、C2由边界条件确定
X
x0 xL
0 0
X
y
x0
0
0
y
例题 5.1
求图所示悬臂梁A端的挠度与转角。
Fb 6L
x3
1 6
Fx
a3
Fb
L2 b2 6L
x
EIz1
Fb 2L
x2
Fb
L2 6L
b2
EI z1
Fb 6L
x3
Fb
L2 6L
b2
x
例题 5.3 求图示简支梁在集中荷载F的作用下(F力在右半跨)的最
大挠度。 F
a
b
A
C
Fb
l
L
x
B
x
EI z1
Fb 2L
x2
Fb
L2 6L
b2
Fa
各梁的挠曲线近似微分方程应分几段;将分别出
现几个积分常数,并写出其确定积分常数的边界
条件。
挠曲线方程应分两段AB,BC.
q
EI z
L
Cx
共有四个积分常数
边界条件
xa
xaL
连续条件
yB 0 yC 0
xa
yB1 yB2
B1 B2
例题 5.6
用积分法求图示各梁挠曲线方程时,试问下列
各梁的挠曲线近似微分方程应分几段;将分别

材料力学-- 梁的位移计算.

材料力学-- 梁的位移计算.

D
Fa
q
qa
A

B

C

D
x
y
Fc
方法一:积分法
解:(1)挠曲线方程 有平衡方程可得梁的两个支反力(如图)为
qa FA 4 9qa Fc 4
Fa
q Ⅰ B Ⅱ
qa
A
C Fc

D
x
AB段
弯 矩 方 程 转 角 方 程 挠 度 方 程
BC段
qa 1 2 M x x q x a 4 2
4
积分法和奇异函数法的比较
• 积分法:
积分常数由变形相容的几何条件(边界条件、光 滑连续条件)确定 • 优点:可以求出挠曲线方程和转角方程,因此可 以求任意截面的转角和挠度,使用范围广,直接 求出较精确。 • 缺点:当轴上载荷较复杂时,计算比较麻烦。
• 奇异函数法:
使用奇异函数法求解时必须把坐标原点置 于梁的一端;
边界条件
x0 w0; xl w0
A y
a l
C
F
b
B
x
光滑连续条件
x a w1 w2 x a 1 2
例题1:如图所示简支梁,在C截面承受集中力偶M作用,已知
梁的刚度为 EI,试求梁的挠曲线方程,并确定位移 A 和 max 。

、 B
M
A
C
B
a
b
解:建立坐标系如图所示 1、求约束反力 ᵞ↑
M1
M x ab
M2
Mx M ab
M x2 EI1 ' C1 ab 2
EI1 M x C1 x C2 ab 6
3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
P
A l
Bx
精选课件
23
解:M (x)P (lx) y
Ew I PxPl
A
x
Ew IPx2PlxC
l
2
EIw Px3Plx2C xD 62
由边界条件:x 0 时 w , 0 ,w 0
得: CD 0
精选课件
P
Bx
24
梁的转角方程和挠曲线方程分别为:
Px (x2l)y源自2EIAw Px2 ( x3l ) 6EI
Ew Iqlxqx2 22
A
B x
Ew Iqlx2qx3C
x
l
46
EIw qx l3qx4C xD 12 24
由边界条件:x 0时,w0
x l时,w0
得:
ql3 C , D0
24精选课件
21
q (6lx24x3l3)
24EI
y
w qx(2lx2x3l3)
q
2E 4 I
A
最大转角和最大挠度:
x θA
θB
B x
maxAB2q4lE 3I (
l

wmax wxl 2
5ql4 384EI
(↓)
★转角为正时,表示其转向和由x轴转向y轴的时针相
同;挠度为正时,表示其方向和y轴正向相同。
精选课件
22
例2.已知梁的抗弯刚度为EI。试求图示悬臂梁 在集中力P作用下的转角方程、挠曲线方程, 并确定θmax和wmax。
y
F
A
B
C
x
l
l
2
2
精选课件
28
解:AC 段:M(x)Fx
2 EIw F x
y
2
A
EIw Fx2 C
x
4
l
F
C l
B x
EIw Fx3CxD 12
2
2
思考:c 0 ?
由边界条件: x0时 , w0 由对称条件: xl 时, w0
2 精选课件
得: D0 得: C Fl 2
16 29
AC段梁的转角方程和挠曲线方程分别为:
4
●桥式起重机的横梁变形过大,则会使小车行 走困难,出现爬坡现象。
●传动轴的支座处转角过大,轴承发生磨损。
精选课件
5
★变形的有利方面(工程实例) ●车辆上的板弹簧,要求有足够大的变形,以 缓解车辆受到的冲击和振动作用。
P
P
2
2
P
●求解超静定问题。
精选课件
6
二.梁的位移─挠度及转角 梁对称弯曲时用什么参数表示轴线的变形?
y
F (4x2l2)
16EI
A
F
C
w Fx (4x23l2) 48EI
x l
l
2
2
最大转角和最大挠度分别为:
B x
max AB1P 6lE2I
wmaxwxl 2
Pl3
48EI精选课件
30
例4.已知梁的抗弯刚度为EI。试求图示简支 梁的转角方程、挠曲线方程,并确定θmax和 wmax。(请同学课后思考)
D Pl 3 3EI
精选课件
y
P
x
B
26
梁的转角方程和挠曲线方程分别为:
Px2 Pl2
2EI 2EI
xA
Px3 Pl2x Pl3
x
w
6EI 2EI 3EI
最大转角和最大挠度分别为:
maxB
Pl2 2EI
wmaxwB
Pl3 3EI
精选课件
y
P
B
θB
27
例3已知梁的抗弯刚度为EI。试求图示简支梁 在集中力F作用下的转角方程、挠曲线方程, 并确定θmax和 wmax。
(1w2)3/2
梁纯弯曲时曲率由几何关系得
1 M(x)
(x) EIz
精选课件
12
考虑小变形条件:
(1x)(1w w 2)3/2w
1 M(x)
(x) EIz
Ezw IM (x)
问题的关键:考虑上式中的取正还是取负?
精选课件
13
问题的关键:考虑上式中的取正还是取负?
y M0 Mw0 M
y M0 M w0M
x l
最大转角和最大挠度分别为:
maxB
Pl2 2EI
B
Pl 2 2EI
wmaxwB
Pl3 3EI
wB
Pl 3 3EI
精选课件
P
θBB x
25
另解: M(x)Px Ew IM(x)
Ew IPx
xA
EIwPx2 C 2
EIw Px3CxD 6
边界条件:xl时 , w 0 ,w 0
C Pl 2 2 EI
x
x
Ew IM
精选课件
14
思考:与小挠度微分方程 Ezw I相M 对(x应) 的坐标系 为? ( )
xx
y
x
y
y
(a)
(b)
(c)
教材中采用(a)图坐标系
精选课件
15
2. 积分法求弯曲变形
●弯矩方程不分段时 Ew IM(x)
Ew IM (x)dxC
E Iw M (x )d x d x C D x
9
★工程中测量挠度的方法、仪器
精密水准仪、全站仪、GPS、机电百分表、
光电方法等
精选课件
10
三.挠曲线近似微分方程
1.挠曲线方程(deflection equation)
w
x
挠曲线
y
挠曲线方程:wf(x)
转角方程: ta n w f(x )
精选课件
11
曲线 w = f (x) 的曲率为
w
1
(x)
M(x) EIz
?
w
挠度w:横截面形心处的铅垂位移。
转角:横截面绕中性轴转过的角度。
精选课件
7
挠度w:横截面形心处的铅垂位移。
转角:横截面绕中性轴转过的角度。
w
x
挠曲线
y
挠曲线(deflection curve):变形后的轴线。
精选课件
8
★工程实例
控制截面的挠度、控精制选课桥件 墩的水平位移
连续光滑曲线(A、B处转角、挠度唯一)
精选课件
18
边界条件
固定端约束对位移的影响:B处转角、挠 度?
连续光滑曲线
精选课件
19
例1.已知梁的抗弯刚度为EI。试求图示简 支梁在均布载荷q作用下的转角方程、挠 曲线方程,并确定θmax和wmax。
y
q
l
精选课件
x
20
解:M(x)qlxqx2 y
22
q
式中积分常数C、D由边界条件确定 ●弯矩方程分n段时,积分常数个数为 2n
由边界条件确定的方程需要2n个
方法的局限性:外力复杂或多跨静定梁时计算量过大
精选课件
16
边界条件
光滑连续条件:
F

wc wc c c
C
×
×
约束条件:两端铰处精挠选课度件 为零。
17
边界条件
铰支座对位移的限制(A、B处挠度为零)
在工程中,对某些受弯构件,要求变形不能 过大,即要求构件有足够的刚度,以保证正常 工作。
在另外一些情况下,却要求构件具有较大的 弹性变形,以满足特定的工作需要。
★变形过大的不利影响(工程实例)
精选课件
3
●摇臂钻床的摇臂等变形过大,就会影响 零件的加工精度,甚至会出现废品。
摇臂钻床
(自重、钻头等约精束选课件力影响)
第五章 梁弯曲时的位移
(Displacements of Bending Beam)
廖东斌 编制 13451911061
精选课件
1
第五章 梁弯曲时的位移
一.概 述
二.梁的位移─挠度及转角
三.挠曲线近似微分方程 四.叠加法计算梁的位移
能量法I-静定结构变形计算
五.梁的刚度计算
精选课件
2
一.概 述 1.工程实践中的弯曲变形问题
相关文档
最新文档