声光调制实验
声光调制实验报告

声光调制实验一.实验目的1.理解声光作用和声光调制器的基本原理.2.掌握及调制出布拉格衍射.3.观察交流信号及音频信号调制特性.二.实验仪器可调半导体激光、声光晶体盒、声光调制电源及滑座和旋转平台.三.实验原理1.声光互作用声光互作用效应是当超声波传到声光介质内,声光介质发生形变,导致介质的光学性能产生改变,即介质的折射率发生变化的现象。
在超声波的作用下,声光介质的光学折射率发生空间周期性的变化,相当于介质内形成了一个折射率光栅,当激光通过介质是发生衍射。
声光衍射使光波在通过介质后的光学特性发生改变,即光波的传播方向,强度,相位,频率发生了改变。
2.声光器件的基本原理声光调制的工作原理:声光调制是利用声光效应将信息加载于光频载波的一种物理过程。
调制信号是以信号( 调辐) 形式作用于电- 声换能器上,电- 声换能器将相应的电信号转化为变化的超声场,当光波通声光介质时,由于声光作用,使光载波受到调制而成为“携带”信息的强度调制波。
分拉曼—纳斯型声光调制器和布拉格声光调制器。
拉曼—纳斯型声光调制器特点:工作声源频率低于 10MHz只限于低频工作,带宽较小。
布拉格声光调制器特点:衍射效率高,调制带宽较宽。
其中调制带宽是声光调制器的一个重要参量,它是衡量能否无畸变地传输信息的一个重要指标,它受布拉格带宽的限制。
对于给定入射角和波长的光波,只有一个确定的频率和波矢的声波才能满足布拉格条件。
当采用有限的发散光束和声波场时,波束的有限角将会扩展,因此,在一个有限的声频范围内才能产生布拉格衍射。
3.拉曼—纳斯衍射和布拉格衍射(1)布拉格衍射当声波频率较高,声波作用长度较大,而且光束与声波波面间以一定的角斜入射时,光波在介质中要穿过多个声波面,故介质具有“体光栅”的性质。
当入射光与声波面间夹角满足一定条件时,介质内各级衍射光会相互干涉,各高级次衍射光将互相抵消,只出现0 级和+1 级或(-1 级)(视入射光的方向而定)衍射光,即产生布拉格衍射。
声光调制实验

GCS-DSTZ声光调制实验
声光调制实验
用途:
声光效应是指光通过某一受到超声波扰动的介质时发生衍射现象,这种现象是光波与介质中声波相互作用的结果。
声光效应为控制激光束的频率、方向和强度提供了一个有效的手段。
利用声光效应制成的声光器件,如声光调制器、声光偏转器、和可调谐滤光器等,在激光技术、光信号处理和集成光通讯技术等方面有着重要的应用。
基本原理:
当压电换能器产生的超声波信号在介质中传播时,会在介质中产生周期性应变场,使介质的光学参数(例如折射率)产生周期性的变化,形成体光栅。
当激光束以布拉格角度通过光栅时,衍射光能量相对集中于一级衍射波中,称为布拉格衍射。
当外加文字、图像或其它信号输入换能器驱动电源的调制接口端时,衍射光光强将随此信号变化,从而达到控制激光输出特性的目的。
当声-光作用距
离较短时,形成多级衍射光,称拉曼-纳斯衍射。
实验目的:
(1)了解声光效应的原理。
(2)了解拉曼-纳斯衍射和布拉格衍射的实验条件和特点。
(3)测量声光偏转和声光调制曲线。
(4)完成模拟通信实验仪器的安装及调试。
知识点:
声光效应、布拉格衍射、体光栅、拉曼-纳斯衍射、声光调制。
原理示意图:
技术指标
主要配置。
声光调Q实验报告

YAG激光器声光调Q及其参数测量电子科学与技术101班唐衣可俊 20100310391、实验原理声光调Q是利用光的衍射效应实现调Q的。
利用光的衍射现象,使光束偏离,达到声光调Q的目的。
一束光通过由声控的相位光栅时,就会发生衍射,这就是声光效应。
在激光器的光学谐振腔中,放入一个声光调制器,当有超声场作用在调制器上时,由于声光效应,激光束就会发生衍射,偏离谐振腔,从而使激光停止振荡。
当超声波消失后,损耗消失,形成振荡,产生巨脉冲输出,完成超声调Q作用。
图4-1 布拉格衍射在激光器中采用声光调Q技术,主要是利用布拉格衍射型。
因为当超声波的功率足够时,这种衍射可使入射光全部转移到+1或-1级上,且有较高的转换效率。
布拉格衍射现象见图4-1。
在采取布拉格衍射时,入射角称为布拉格角,其满足下式:(4-2)式中:为光在介质中的波长,为声波波长,声波波数,为入射光波波数。
声光调Q中的调制元件是一个由布拉格衍射型的声光调制器,图4-2是调制盒的结构示意图。
调制盒共有四部分组成,第一部分是高频驱动源;第二部分是超声波换能器,在这里将电信号变为超声波;第三部分是声光介质,声场与光场在这里发生相互作用;第四部分是吸声器。
图4-2 声光调Q盒结构示意图超声波的产生有多种方法,如机械振动、气流振动、液体高逆流动以及电振动等。
而激光器用的超声波发生器大都采用高频电信号发生器,也很容易人工控制、产生或消失,而且具有很短的滞后时间,这是调Q所必须的。
图4-4 声光调Q装置图图4-4是声光调Q装置图。
在连续YAG激光器的光学谐振腔内放有声光调制盒和光阑,光阑的通光孔径为2~3mm可调,其作用是限制多模,且使光束全部通过声光作用区。
光学谐振腔一端为全反镜,另一端是透过率T为5%的左右的输出镜。
低透过率是为了使激光器有低的阈值。
激光晶体选用为5×70mm的YAG 晶体。
要求激光晶体有低的阈值,高的转换效率,晶体棒的两端要修磨成几个负光圈,减少热效应引起的输出功率下降。
实验五 声光调制实验(修订)

数据记录
• 1、声光调制幅度特性 (Id为一级衍射光光强)
载波幅度Um(V) 0 0.5 1 1.5 2 2.5
一级衍射光光强Id
载波幅度Um(V) 3 3.5 4 4.5 5 5.5
一级衍射光光强Id
数据记录
• 2、声光调制频率偏转特性(θd~F ) • 零级光位置d0= ; • 声光调制器与接收孔间的距离L=
布拉格衍射
F Sin 2 s
• (式中F与VS分别为超声波的频率与速度, 为光波的波长) • 当满足入射角θi较小,且θi= θB的布拉格衍 射条件下,此时有最强的正一级(或负一 级)的衍射光呈现。
偏转角
• 入射(掠射)角θi与衍射角θB之和称为偏转 角θd K
d i B 2 B
•
•
实验注意事项
•
• •
4、调节半导体激光器功率时,不要用力 过大而损坏功率调节旋钮。 5、调节载物平台的转向应在±10°以内。 6、实验数据的单位和精度要求:角度单 位为rad,螺旋测微器和标尺都需要估读 一位。
载波频率F(MHz) 一级衍射光位置d1 距离d=| d1 - d0 | 60 70 80 90 100
。
偏转角θd≈ d/L
数据记录
• 2、声光调制频率偏转特性(Id~F ) • 改变频率时应随时调节“载波幅度”旋钮, 以尽量保持调制幅度(载波电压表指示读数) 一致。如1、2、3等。
载波频率F(MHz)
一级衍射光光强Id 载波频率F(MHz) 一级衍射光光强Id 80 82 84 86 88 90 92 94 96 98 10 0
60
62
64
66
68
70
72
实验一 声光调制实验资料

实验一 声光调制实验早在本世纪30年代就开始了声光衍射的实验研究。
60年代激光器的问世为声光衍射现象的研究提供了良好的光源,促进了声光效应理论和应用研究的迅速发展。
声光效应为控制激光束的频率、方向和强度提供了一个有效的手段。
利用声光效应制成的声光器件,如声光调制器、声光偏转器和可调谐滤光器等,在激光技术、光信号处理和集成光通讯技术等方面有着重要应用。
声光效应已广泛应用于声学、光学和光电子学。
近年来,随着声光技术的不断发展,人们已广泛地开始采用声光器件在激光腔内进行锁膜或作为连续器件的Q 开关。
由于声光器件具有输入电压低驱动功率小、温度稳定性好、能承受较大光功率、光学系统简单、响应时间快、控制方便等优点,加之新一代的优质声光材料的发现,使声光器件具有良好的发展前景,它将不断地满足工业、科学、军事等方面的需求。
一、实验目的1、掌握声光调制的基本原理。
2、了解声光器件的工作原理。
3、了解布拉格声光衍射和拉曼—奈斯声光衍射的区别。
4、观察布拉格声光衍射现象。
二、实验原理(一)声光调制的物理基础1、弹光效应若有一超声波通过某种均匀介质,介质材料在外力作用下发生形变,分子间因相互作用力发生改变而产生相对位移,将引起介质内部密度的起伏或周期性变化,密度大的地方折射率大,密度小的地方折射率小,即介质折射率发生周期性改变。
这种由于外力作用而引起折射率变化的现象称为弹光效应。
弹光效应存在于一切物质。
2、声光栅当声波通过介质传播时,介质就会产生和声波信号相应的、随时间和空间周期性变化的相位。
这部分受扰动的介质等效为一个“相位光栅”。
其光栅常数就是声波波长λs ,这种光栅称为超声光栅。
声波在介质中传播时,有行波和驻波两种形式。
特点是行波形成的超声光栅的栅面在空间是移动的,而驻波场形成的超声光栅栅面是驻立不动的。
当超声波传播到声光晶体时,它由一端传向另一端。
到达另一端时,如果遇到吸声物质,超声波将被吸声物质吸收,而在声光晶体中形成行波。
声光调q实验报告

声光调q实验报告1. 实验目的本实验旨在通过声光调q实验,探究声音在空气中的传播规律,并研究声音的频率对声音质量的影响。
2. 实验器材- 调频器- 音叉- 光物体- 麦克风- 音频分析仪3. 实验原理声音是由物质的振动产生的机械波,通过空气传播。
可以用频率(频率越高,声音越尖锐)和振幅(振幅越大,声音越响亮)来定量描述声音。
而光是由电磁波产生的,速度在真空中为光速。
实验中利用调频器生成一定频率的声音信号,并用麦克风接收声音信号。
在调频器中,通过调节不同频率,可产生不同音调的声音。
为了定量分析声音的频率,可使用音频分析仪。
同时,利用光物体产生不同频率的光波,通过研究位于光物体处的探测光电池产生的电流信号来分析光波频率的变化。
4. 实验步骤1. 将音叉固定在一个合适的支架上,使其能够自由振动。
调整调频器的频率,使麦克风接收到音叉振动产生的声音信号。
2. 使用音频分析仪,测量接收到的声音信号的频率,并记录下来。
3. 将光物体放置在光电池前方,调节光物体的频率,使光电池能够接收到光波。
记录下光电池接收到的光波的频率。
4. 分析并比较声音信号和光波信号的频率。
5. 实验结果与分析实验数据如下:信号种类频率(Hz)-声音440光波 5 ×10^14从实验数据中可以得出以下结论:1. 声音频率为440Hz,对应了一个特定的音调,这是因为音叉的振动频率为440Hz。
2. 光波频率为5 ×10^14Hz,这是因为光物体发射的光波频率为5 ×10^14Hz。
3. 声音信号和光波信号的频率相差太大,无法直接比较二者的频率。
6. 结论通过声光调q实验,我们可以观察到声音在空气中的传播规律,并研究声音的频率对声音质量的影响。
实验中,我们调节了声音信号和光波信号的频率,并通过音频分析仪和光电池记录了实验数据。
通过分析实验数据,我们得出了声音信号和光波信号的频率不可直接比较的结论。
实验结果对于深入理解声音和光波的特性以及它们在现实生活中的应用具有重要意义。
实验一声光调制实验解析

实验一 声光调制实验早在本世纪30年代就开始了声光衍射的实验研究。
60年代激光器的问世为声光衍射现象的研究提供了良好的光源,促进了声光效应理论和应用研究的迅速发展。
声光效应为控制激光束的频率、方向和强度提供了一个有效的手段。
利用声光效应制成的声光器件,如声光调制器、声光偏转器和可调谐滤光器等,在激光技术、光信号处理和集成光通讯技术等方面有着重要应用。
声光效应已广泛应用于声学、光学和光电子学。
近年来,随着声光技术的不断发展,人们已广泛地开始采用声光器件在激光腔内进行锁膜或作为连续器件的Q 开关。
由于声光器件具有输入电压低驱动功率小、温度稳定性好、能承受较大光功率、光学系统简单、响应时间快、控制方便等优点,加之新一代的优质声光材料的发现,使声光器件具有良好的发展前景,它将不断地满足工业、科学、军事等方面的需求。
一、实验目的1、掌握声光调制的基本原理。
2、了解声光器件的工作原理。
3、了解布拉格声光衍射和拉曼—奈斯声光衍射的区别。
4、观察布拉格声光衍射现象。
二、实验原理(一)声光调制的物理基础1、弹光效应若有一超声波通过某种均匀介质,介质材料在外力作用下发生形变,分子间因相互作用力发生改变而产生相对位移,将引起介质内部密度的起伏或周期性变化,密度大的地方折射率大,密度小的地方折射率小,即介质折射率发生周期性改变。
这种由于外力作用而引起折射率变化的现象称为弹光效应。
弹光效应存在于一切物质。
2、声光栅当声波通过介质传播时,介质就会产生和声波信号相应的、随时间和空间周期性变化的相位。
这部分受扰动的介质等效为一个“相位光栅”。
其光栅常数就是声波波长λs ,这种光栅称为超声光栅。
声波在介质中传播时,有行波和驻波两种形式。
特点是行波形成的超声光栅的栅面在空间是移动的,而驻波场形成的超声光栅栅面是驻立不动的。
当超声波传播到声光晶体时,它由一端传向另一端。
到达另一端时,如果遇到吸声物质,超声波将被吸声物质吸收,而在声光晶体中形成行波。
声光调制实验报告

一、实验目的1. 理解声光调制的基本原理和过程;2. 掌握声光调制器的构造和工作原理;3. 熟悉声光调制实验的操作方法和注意事项;4. 通过实验,验证声光调制在实际应用中的效果。
二、实验原理声光调制是一种利用声波对光波进行调制的方法。
当声波在介质中传播时,会引起介质的弹性应变,导致介质的折射率发生周期性变化,从而在光波传播过程中产生衍射现象。
声光调制器正是利用这一原理,通过调节声波的频率、幅度和相位,实现对光波的调制。
三、实验仪器与设备1. 声光调制器;2. 光源;3. 光功率计;4. 信号发生器;5. 电脑及实验软件;6. 电缆线。
四、实验步骤1. 连接声光调制器、光源、光功率计、信号发生器和电脑等设备;2. 打开电脑,运行实验软件;3. 调整光源输出功率,使其达到预设值;4. 调节信号发生器的频率、幅度和相位,分别进行以下实验:(1)频率调制:观察光功率计的读数变化,分析频率调制效果;(2)幅度调制:观察光功率计的读数变化,分析幅度调制效果;(3)相位调制:观察光功率计的读数变化,分析相位调制效果;5. 记录实验数据,分析实验结果。
五、实验结果与分析1. 频率调制实验:当信号发生器的频率与声光调制器的共振频率相匹配时,光功率计的读数发生明显变化,说明频率调制效果较好。
2. 幅度调制实验:当信号发生器的幅度变化时,光功率计的读数也随之变化,说明幅度调制效果较好。
3. 相位调制实验:当信号发生器的相位变化时,光功率计的读数也随之变化,说明相位调制效果较好。
六、实验总结1. 通过本次实验,我们了解了声光调制的基本原理和过程;2. 掌握了声光调制器的构造和工作原理;3. 熟悉了声光调制实验的操作方法和注意事项;4. 验证了声光调制在实际应用中的效果。
本次实验表明,声光调制技术具有调制效果好、频率范围宽、非线性失真小等优点,在光通信、光纤传感等领域具有广泛的应用前景。
在实验过程中,我们要注意以下几点:1. 实验前要熟悉实验原理和仪器设备;2. 实验过程中要严格按照实验步骤进行操作;3. 注意安全,防止意外事故发生;4. 实验结束后,认真整理实验器材,清理实验场地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I j ( L) I i ( 0) = sin 2 ( kij L)
由于 ∆
3 1 = pijkl S kl ≈ − 23 ∆nij ,注意到 k ij = n π pijkl S kl = − π ( ∆nij ) 。因此,上式可写为 2 λ n 2λ nij
∆φ π η = sin 2 ( ∆nij ) L = sin 2 ( ) 2 λ
声行波形成的超声光栅
3、声光效应 声光效应是指光波在介质中传播时,被超声波场衍射或散射的 现象。由于声波是一种弹性波,声波在介质中传播会产生弹性 应力或应变,这种现象称为弹光效应。介质弹性形变导致介质 密度交替变化,从而引起介质折射率的周期变化,并形成折射 率光栅。当光波在介质中传播时,就会发生衍射现象,衍射光 的强度、频率和方向等将随着超生场的变化而变化。声光调制 就是基于这种效应来实现其光调制及光偏转的。 4、布拉格衍射 如果声波频率较高,且声光作用长 度较大,此时的声扰动介质也不再 等效于平面位相光栅,而形成了立 体位相光栅。这时,相对声波方向 以一定角度入射的光波,其衍射光 在介质内相互干涉,使高级衍射光 相互抵消,只出现0级和1级的衍射 光,简言之,我们在屏上观察到的 是0级光斑和+1级光非常亮或者0级 光斑和-1级光很亮,而其它各级的 光强却非常弱。
大学物理实验
声光调制
一、实验目的
1、掌握声光调制的基本原理。 掌握声光调制的基本原理。 2、了解声光器件的工作原理。 了解声光器件的工作原理。
奈斯衍射的区别。 3、了解布拉格衍射和拉曼—奈斯衍射的区别。 了解布拉格衍射和拉曼 奈斯衍射的区别
4、观察布拉格声光衍射现象。 观察布拉格声光衍射现象。
二、实验仪器
声波
入射光
ω
ω1+ω
衍射光
2θ
λ
非 衍 射 光
(二)声光调制原理
1、声光调制器的组成
吸声或 反射装 置
(1)声光介质 声光介质 3 声光介 是声光互作用的场所。 质 当一束光通过变化的超 耦合 入射光 1 声场时,由于光和超声 介质 场的作用,其出射光就 5 具有随时间变化的各级 2 衍射光,利用衍射光的 ~ 4 强度随超声波强度的变 化而变化的性质,就可 电声换 驱动电 能器 以制成光强度调制器。 源 (2)电-声换能器(又称超声发生器) 它是利用某些压电晶体(石 英、LiNbO3等)或压电半导体(CdS,ZnO等)的反压电效应,在外 加电场作用下产生机械振动而形成超声波,所以它起着将电功率转 换成声功率的作用。 (3)吸声(或反射)装置 它放置在超声元的对面,用以吸收已通 过介质的声波(工作于行波状态),以免返回介质产生干扰,但要 使超声场工作在驻波状态,则需要将吸声装置换成声反射装置。
2、布拉格声光调制
由于发生布拉格声光衍射时,声光相互作用长度较大,属于体光栅情况。 理论分析表明,在声波场的作用下射光和衍射光之间存在如下关系
Ei ( r ) = Ei (0) cos(kij r ) ' ' E j ( r ) = −iEi (0) sin(kij r )
式中 Ei 和 Ej 分别为入射和衍射光场,这为我们描述两个光场的能量转换效 率提供了方便。定义:在作用距离 L 处衍射光强和入射光强之比为声光衍射 效率,即
式中, M 2
=
n6P 2 ρ vs3
M2
,是声光介质的物理参数组合,是由介质本身性质决定的量,称为声光
材料的品质因数(或声光优质指标),它是选择声光介质的主要指标之一。从(17)式可见: (a)若在超声功率 Ps 一定的情况下,欲使衍射光强尽量大,则要求选择 M2 大的材料,并且, 把换能器做成长面较窄(即 L 大 H 小)的形式;(b)如果超声功率足够大,使
式中Δф是传播距离 L 后位相改变量。引入有效弹光系数 pe 和有效应变 Se,
1 ∆nij = n3 peSe 2
其中有效应变 Se 同声波场强度 Is 的关系是
S
e
2Is = ρv s
1 2
式中 v 是声速, ρ 是介质密度。于是(13)式写成
s
1 2 1 2π n6 pe 2 π 2 2 2 3 = sin L L(MIs )2 η = sin λ ρvs λ
五、思考题
1、什么是弹光效应和声光效应;
2、简述布拉格声光调制实现的过程;
3、产生布拉格声光衍射的条件是什么,布拉 格声光衍射及拉曼-奈斯衍射的区别及联系。
2、观察交流信号调制特性
改变线性直流偏压,观察不同衍射光强下的调制波形
下失真波形
上失
在驱动源输入端加入外调制信号(如音频信号、文字和图像 等),则衍射光强将随次信号变化,从而达到控制激光传输 特性的目的,实现模拟光通信。
不失真音频信号
失真音频信号
1 i
s
π
2λ
L M 2 Ps H
达
到 π 时,=100%(c)当 P 改变时, II 也随之改变,因而通过控制 Ps(即控制加在电声换能器上 2 的电功率)就可以达到控制衍射光强的目的,实现声光调制。
三、实验内容
1、观察声光调制的衍射现象
调节激光束的亮度,使在接收屏(即小孔光阑)上有清晰的光点 呈现; 打开声光调制电压至最大,此时以100MHz为中心频率的超声波开 始对声光晶体进行调制; 微调载物平台上声光调制器的转向,以改变声光调制器的光束入 射角,即可出现因声光调制而出现的衍射光斑; 仔细调节光束对声光调制器的角度,当+1级(或者-1级)衍射 光最强时,声光调制器运转在布拉格衍射条件下
四、注意事项
1、调节过程中必须避免激光直射人眼,以免 对眼睛造成危害。 2、调节四维调整架时要轻调,不可用力过大, 以免损坏调整架。 3、为防止强激光束长时间照射而导致光敏管 疲劳或损坏,调节使用后需要随即用塑盖将 光电接收孔盖好。 4、 声光晶体易碎要轻拿轻放,若两端面上落 灰尘不可用力擦除。若长期不用,晶体要放在 干燥器皿内保存。 5、光电探测器是半导体器件应避免强光照射以 免烧坏。做实验时光强应由弱到强缓慢改变, 当出现饱和时可降低光强。
小孔光 阑
声光晶体
光电探 测器
导轨
半导体 激光器
声光晶体调制、接受电源
三、实验原理
(一)声光调制的物理基础
1、弹光效应 若有一超声波通过某种均匀介质,介质材料在外力作用下发生形变, 分子间因相互作用力发生改变而产生相对位移,将引起介质内部密度 的起伏或周期性变化,密度大的地方折射率大,密度小的地方折射率 小,即介质折射率发生周期性改变。这种由于外力作用而引起折射率 变化的现象称为弹光效应。弹光效应存在于一切物质。 2、声光栅 当声波通过介质传播时,介质就会产生和声波信号相应的、随时间 和空间周期性变化的相位。这部分受扰动的介质等效为一个“相位 光栅”。其光栅常数就是声波波长λ,这种光栅称为超声光栅。