第三章光电子技术-2(声光调制和声光偏转)
声光偏转器和声光调制器的基本原理

声光偏转器和声光调制器的基本原理下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!声光偏转器和声光调制器的基本原理声光偏转器和声光调制器是光电子学领域中常用的两种器件,它们在光信号处理和通信系统中起着重要作用。
声光调制的原理及应用

在军事上,它也有广泛应用。例如一种新式探测器:雷达波谱分析器。空军飞行员可以利用它分析射到飞机上的雷达信号来判断飞机是否被敌方跟踪。外来的雷达信号与本机内半导体激光器产生的振荡信号经混频、放大后,驱动声光调制器,产生超声波,当外来信号变化时,超声波长也变化,衍射光的角度也变化,反映在二极管列阵上,我们可以很容易的识别敌方雷达信号。
介质中折射率的变化如图1所示,声波在一个周期T内,介质将两次出现疏密层,且在波节处密度保持不变,因而折射率每隔半个周期(T/2)在波腹处变化一次,即由极大值变为极小值,或由极小值变为极大值,在两次变化的某一瞬间介质各部分折射率相同,相当于一个不受超声场作用的均匀介质。 若超声频率(即加在调制器上的信号频率)为fs时,则声光栅出现或消失的次数为2fs,因而调制光的频率为2fs(为超声频率的二倍)。
什么是声光调制
声波是一种纵向机械应力波(弹性波)。若把这种应力波作用到声光介质中时会引起介质密度呈疏密周期性变化,使介质的折射率也发生相应的周期性变化,这样声光介质在超声场的作用下,就变成了一个等效的相位光栅,如果激光作用在该光栅上,就会产生衍射。衍射光的强度、频率和方向将随超声场而变化。所谓“声光调制器”就是利用这一原理而实现光束调制或偏转的。
图4
当光束以入射角θi射入声光介质中时,由镜面产生反射,而衍射光干涉,极大值应满足条件: Δ=mλ(m=0、±1、±2……)。 2λssinθB=λ 式中θB称为布喇格角。 只有入射角θi满足上式的入射光波,才能在θi=θd方向上得到衍射极大值。这个式子通常称为布喇格衍射公式。 可以证明,当入射光强为Ii时。布喇格衍射的零级与1级的衍射光强可分别表示为: I0=Iicos2v/2 I1=Iisin2v/2 式中 v=2π/λΔnL 是光波穿过厚度为L的超声场所产生的相位延迟。
声光偏转器物理原理

声光偏转器物理原理-----主要方程式将具有一个射频信号的压电传感器粘固在合适的晶体上,那么就会产生一个声波。
类似“相位光栅”,声波以介质中的声速穿过晶体,声波波长取决于射频信号频率。
任意入射光束通过该光栅时都会发生衍射,通常都会产生很多条衍射光束。
相互作用条件参数品质因数Q,决定相互作用机制。
Q如下式给出:2兀入丄nA2式中,;•为激光束的波长,n是晶体的折射率,L是光束穿过声波的距离,二是声波波长Q<<1 : Raman-Nath衍射机制。
光束大致垂直入射声波束,会出现一些衍射条纹,其强度可由Bessel函数得出。
RamanQ>>1 : Bragg衍射机制。
以特定角「•入射,只有一条衍射条纹一其他条纹通过干涉相互抵消1 st order0 order在中间情况下,单独的分析处理是不可能的,要通过电脑完成一系列分析。
(In the in termediate situati on, an an alytical treatme nt isn't possible and a numerical analysis would need to be performed by computer ).大多数声光设备运行在Bragg机制下,常见的例外就是声光模式的锁模和Q-开关(Most acousto-optic devices operate in the Bragg regime, the com mon exception being acousto-optic mode lockers and Q-switches.)波矢解释声光效应可以用波矢来描述。
由动量守恒可得:'111 --入射光波矢'■'-衍射光波矢.二节;-声波波矢这里F是声波的频率,声速为v, n i和n d是入射光和衍射光下的折射率(它们并不是一定相同的能量守恒推得:F d = F i +/- F所以衍射光的光频率近似等于声波的频率。
声光调制

声波是一种纵向机械应力波(弹性波).若把这种应力波作用到声光介质中时会引起介质密度呈疏密周期性变化,使介质的折射率也发生相应的周期性变化,这样声光介质在超声场的作用下,就变成了一个等效的相位光栅,如果激光作用在该光栅上,就会产生衍射。
衍射光的强度、频率和方向将随超声场而变化。
激光具有极好的时间相干性和空间相干性,它与无线电波相似,易于调制,且光波的频率极高,能传递信息的容量很大;加之激光束发散角小,光能高度集中,既能传输较远距离,又易于保密,因而为光信息传递提供了一种理想的光源。
激光调制我们把欲传输的信息加载于激光副射的过程称为激光调制。
光调制分为内调制和外调制两类。
外调制是指加载调制信号在激光形成以后进行的,即调制器置于激光谐振腔外,在调制器上加调制信号电压,使调制器的某些物理特性发生相的变化,当激光通过它时即得到调制,所以外调制不是改变激光器参数,而是改变已经输出的激光的参数(强度,频率等)。
声光调制声波是一种纵向机械应力波(弹性波)。
若把这种应力波作用到声光介质中时会引起介质密度呈疏密周期性变化,使介质的折射率也发生相应的周期性变化。
这样声光介质在超声场的作用下,就变成了一个等效的相位光栅,如果激光作用在该光栅上,就会产生衍射。
衍射光的强度、频率和方向将随超声场而变化.所谓“声光调制器”就是利用这一原理而实现光束调制或偏转的。
声光调制的原理1、超声波在声光介质中的作用声波在介质中传播分为行波和驻波两种形式。
行波所形成的声光栅其栅面是在空间移动的。
介质折射率的增大和减小是交替变化的,并且以超声波的速度V向前s推进。
在声光介质中,两列相向而行的超声波(其波长,相位和振幅均相同)产生叠加,在空间将形成超声驻波。
声驻波形成的声光栅在空间是固定的,其相位变化与时间成正弦关系,合成声波方程为:a(z,t)=a1(z,t)+a2(z,t)=2Acos2πz/λs·sin2πt/Ts介质中折射率的变化如图1所示,声波在一个周期T内,介质将两次出现疏密层,且在波节处密度保持不变,因而折射率每隔半个周期(T/2)在波腹处变化一次,即由极大值变为极小值,或由极小值变为极大值,在两次变化的某一瞬间介质各部分折射率相同,相当于一个不受超声场作用的均匀介质。
《声光调制的原理及应用》

《声光调制的原理及应用》声光调制技术是一种利用声音信号控制光的传输和发射的技术。
它利用声音信号的变化来控制光信号的传输,从而实现声音与光的转换和互相影响。
声光调制技术在通信、光学传感、光学计算和生物医学等领域有着广泛的应用。
本文将介绍声光调制的基本原理和其在不同领域的应用。
一、声光调制的原理声光调制原理是基于光的折射现象和声音的振动原理。
当声音信号通过声音传感器转换成电信号后,电信号会控制声光调制器中的光学元件,使得光线的传输、频率、强度等参数发生变化。
声光调制技术主要应用于声光交叉开关、动态光栅、光学调制器等设备中。
声光调制器主要包括声光作用单元和声音调制单元。
声音调制单元负责将声音信号转换成电信号,而声光作用单元则将电信号转换成光信号。
其中,声光晶体是声光作用单元的主要组成部分,它能够根据电信号的变化来调节光的传输,实现声音与光的转换。
声光调制器能够实现声光信号的传输、调制和解调,是光学通信和信息处理领域的重要设备。
二、声光调制的应用1.光学通信声光调制技术在光纤通信和光学网络中有着广泛的应用。
通过声光调制器,可以将电信号转换成光信号,并实现光信号的传输和解调。
声光调制技术提高了光纤通信的带宽和信号传输速度,使得光纤通信系统具有更高的传输效率和稳定性。
2.光学传感声光调制技术在光学传感领域中有着重要的应用。
声光传感器能够实现对声音信号的检测和转换,用于声学信号处理和声音识别。
声光传感器在工业、医疗和环境监测等领域中得到广泛应用,为相关领域的研究和应用提供了重要的技术支持。
3.光学计算声光调制技术在光学计算和信息处理领域中有着重要的应用。
声光调制器能够实现对光信号的调制和解调,用于光学计算和信息传输。
声光调制技术能够提高光学计算系统的速度和效率,为光学计算和信息处理提供了新的技术手段。
4.生物医学声光调制技术在生物医学领域中也有着重要的应用。
声光调制技术能够实现对声音信号的处理和转换,用于医学影像处理和信号采集。
声光调制

2
cos2 B
2M 2
H L
20
可见,声光材料的品质因数M2越大,欲获 得100%的衍射效率所需要的声功率越小。而
且电声换能器的截面应做得长(L大)而窄
(H小)。
2s
f0f
M1
2 2 3 cosB
Ps H
f0:声中心频率,M1
8
入射光
吸声器(或反射器) 声光介质
电声换能器 驱动电源
原理结构
9
1、拉曼-纳斯型声光调制器
调制器的工作原理如图1(a) 所示,工作声源 频率低于 10MHz。只限于低频工作,带宽较小。
入射光
衍射光 调制信号
图1 拉曼-纳斯型声光调制器
10
2、布喇格型声光调制器
布喇格型声光调制器工作原理如图2所示。
3
各级衍射的方位角为(最大值的位置) :
s in m
m ks ki
m s
(m 0, 1, 2,)
各级衍射光的强度为:
Im
J
2 m
(v),
2 v (n)ki L nL
4
衍射效率为:
s
I1 Ii
s
in
2
1 2
( 2
nL)
14
允许的声频带宽与布喇格角的可能变化量 之间的关系为 :
f s
2nvs
c os B
B
15
设入射光束的发散角为i,声波束的发散 角为,对于衍射受限制的波束,这些波束发
散角与波长和束宽的关系分别近似为
i
声光调制的工作原理与应用

声光调制的工作原理与应用1. 声光调制的基本原理声光调制是一种利用声音信号来调制光信号的技术,它基于固体中的声子与光子之间的相互作用。
声光调制器通常由声光晶体和驱动电路组成。
1.1 声光晶体声光晶体是声光调制的关键元件,它能够将声波转换为光波或将光波转换为声波。
常用的声光晶体有硅、锗和砷化镓等。
1.2 驱动电路驱动电路用于产生驱动信号,控制声光晶体的工作状态。
驱动电路通常由放大器、振荡器和滤波器等组成。
2. 声光调制的工作原理声光调制器的工作过程可以简述为:1.输入的声波信号经过放大器放大,得到驱动信号;2.驱动信号进一步经过滤波器,去除高频噪声;3.驱动信号通过连接到声光晶体的电极,使声光晶体发生电光效应,将电信号转换为光信号;4.光信号经过光学系统进行调制,最后输出。
3. 声光调制的应用声光调制技术在许多领域都有广泛的应用,以下列举了一些常见的应用场景:3.1 光通信声光调制器可以用于光通信中的信号调制。
通过将声音信号转换为光信号,可以实现高速、高带宽的光通信传输。
3.2 激光雷达激光雷达是一种通过发射激光束并接收其返回的信号来测量目标距离、速度和方位角的技术。
声光调制器可以用于控制激光的频率和波长,从而实现更精确的测量。
3.3 光学成像声光调制技术可以用于光学成像中的信号处理。
通过调制光信号的相位和强度,可以实现图像的增强和改善。
3.4 光谱分析在光谱分析中,声光调制器可以用于实现光信号的频谱分析。
通过调制光信号的频率,可以得到待测样品的光谱信息。
3.5 光学信号处理声光调制技术还可以用于光学信号处理,如光学调制、光学开关和光学存储等。
4. 总结声光调制技术是一种利用声音信号来调制光信号的技术,它利用声光晶体将声波转换为光波或将光波转换为声波。
它在光通信、雷达、成像等领域都有广泛的应用。
随着技术的发展,声光调制技术将会有更广阔的发展前景。
光电子技术(声光调制和声光偏转)

声光偏转器的性能指标及评价方法
性能指标
声光偏转器的主要性能指标包括衍射效率、偏转角度、工作频率范围、响应时间等。其中,衍射效率 反映了声光相互作用的强弱,偏转角度决定了光波偏转的程度,工作频率范围和响应时间则关系到器 件的适用性和动态性能。
评价方法
通常采用实验测量的方法对声光偏转器的性能指标进行评价。例如,可以通过测量不同频率和声强下 的衍射效率和偏转角度,绘制出器件的频率响应曲线和偏转特性曲线,以全面评估器件的性能。
THANKS FOR WATCHING
感谢您的观看
声光偏转是利用声波在介质中传播时 引起的折射率梯度,使光束发生偏转 的现象。声光偏转器通常由压电晶体 和棱镜组成,当压电晶体受到声波作 用时,其折射率会发生变化,使得通 过棱镜的光束发生偏转。
声光调制和声光偏转 的应用
声光调制和声光偏转在光通信、激光 雷达、光学测量等领域具有广泛的应 用。例如,在光通信中,声光调制器 可用于实现高速光信号的调制和解调 ;在激光雷达中,声光偏转器可用于 实现光束的快速扫描和定位;在光学 测量中,声光调制和声光偏转可用于 实现高精度的光学干涉和衍射测量。
02 声光调制技术
声光调制器的基本结构和工作原理
基本结构
声光调制器主要由声光介质、压电换能器、吸声(或反射)装置及驱动电源等组 成。
工作原理
声光调制器是利用声光效应将信息加载于光频载波上的一种物理器件。当特定频 率的声波作用于声光介质时,会引起介质折射率的变化,从而使通过介质的光波 参数(如振幅、频率、相位等)随之发生变化,实现对光波的调制。
于制作光电探测器。
非线性光学材料
具有非线性光学效应的材料, 如磷酸二氢钾、铌酸锂等,用 于制作光调制器和光开关等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
声波的作用可归结为形成以声速运动的、周期等 于声波周期的相位光栅,因而这种衍射遵循普通 相位光栅的衍射定律。
3.6.4 布拉格衍射
在高声频和相互作用长度较大的情况下,并且光束 与声波波面成一定角度入射时,发生布拉格衍射。其衍 射光谱只出现零级和+1级或零级和-1级。 如果参数选择合适,超声功率足够强,入射光几乎 可以全部转移到+1级或-1级上,因为布拉格衍射有着较 高的转换效率,所以它比拉曼—奈斯衍射应用更为广泛。
3.6.4 布拉格衍射
1、布拉格条件
①同一镜面上任意两点的贡献应同相(图4-16)
AC BD应该为的整数倍
入射光束
vs
s
A D
n( x cosi x cos r ) m nx(cosi cos r ) m
i
B r
i
x
衍射光束 C r
i r
3.6.4 布拉格衍射 2、声光衍射的量子解释
能量守恒——决定了衍射光的频率
i s d
i s d
动量守恒——决定了衍射波的方向
ki k s k d ki k s k d
布拉格衍射波矢图
kd ks θd θi ki θd θi
超声波的应用3
超声清洗。把表面生锈和沾有脏污的物体浸泡在水一类的清洗液中, 送入一定量的超声,使污物从工件表面脱落下来。金银珠宝配带久了,失 去光泽,变得难以入目,化学清洗会损伤饰物表面,而超声清洗可以整旧 如新取得理想的效果。 超声悬浮是借助超声产生的强大声场将颗粒或液滴托起,在密闭装置 内进行实验,保持超纯度,超精度。超声马达是利用压电陶瓷把电信号转 化成超声振动,产生一定的力,带动马达工作,平稳、速度可调、不怕磁 干扰,小的可用于相机的变焦镜头,大的甚至可以代替现有的汽车马达。 超声焊接是利用超声的高频振动,把两个不同的物件连接在一起,因为它 基本不发热、不变形,在微电子工业中用来焊接集成电路芯片,尤其是它 能焊接某些特殊的稀有金属,在核工业、空间技术等领域可以开发更多的 用途。
结论
3.6.4 布拉格衍射
1、布拉格条件
②相邻两镜面的反射光的相位应该相同(图4-17)
n2s sin
布拉格衍射公式
拉曼—奈斯衍射与布拉格衍射的界定
拉曼—奈斯衍射与布拉格衍射的判断依据声 光相互作用特征长度L0来表示:
2 L0 s
拉曼—奈斯衍射
2 1 L L0 s 2 2
声光衍射
根据光波波长、声波波长,以及相互作用区域的 长度等因素,将声光衍射分为:
拉曼——奈斯衍射 布拉格衍射
3.6.3拉曼——奈斯衍射
1、在低声频和声波束的宽度(即声光相互作用)L不大的 情况下且 k⊥ks 时可以将声光介质看成一块普通的位相光 栅。 2、光束在介质中传播时,由于折射率随介质密度的变化, 使得出射光波的波前已不再是平面波的波面,而是波浪 状曲面。波面上的各点作为次波源,发出子波在空间相 互干涉而形成多级衍射条纹。这种类似于普通面光栅的 作用而产生的声光衍射,就称为拉曼——奈斯衍射。
3.6.6 声光偏转
布拉格衍射的前提是动量守恒
kd ks ki
2vs ks
s
ki
θ θ
kd
ks
3.6.6 声光偏转
声波频率(波矢)的改变将引起动量三角形的失配,结果是衍射 光波的大小几乎不变,但其方向将向动量失配最小的方向偏转。偏转角 为: k kd nvs s 通常定义绝对偏转角Δθ同光束发散角的比值为声光偏转器的可分 辨光斑数目N。
声光效应与电光效应
相似之处:
晶体在受到外部作用后,才出现光学性质的变化, 具体表现为折射率的分布发生改变。
区别:
电光效应中,外加电场的加入是起因。 声光效应中,造成折射率变化的因素是应变或应力。
3.6.3拉曼——奈斯衍射
1、声光衍射的定性描述:在晶体中传播的超声波,会造 成晶体的局部压缩或伸长,这种由于机械应力引起的弹 光效应使晶体的介电常量发生变化,因而折射率也发生 变化。 2、在介质中形成了周期性的有不同折射率的间隔层,这 些层以声速运动,层间保持声波波长一半( λs/2)的距 离,当光通过这种分层结构时,就发生衍射,引起光强 度、频率和方向随超声场的变化。
3.6.5 声光调制
从原理上讲,声光效应即可用于光强调制, 也可以用于频率调制。由于衍射光的频率不再与 入射光相同,其改变量决定于声波频率,因而可 以通过控制声波驱动电信号来实现频率调制。但 是,由于声波频率远低于光波频率,频率调制的 意义不大。
3.6.5 声光调制 拉曼—奈斯声光调制器
η
1 0.5 0
超声波的应用4
3.6.2 声光效应
晶体光学性质的变化,不仅可以通过外加电场的作用 实现,外力的作用也能够造成折射率的改变。 弹光效应:由于外力作用而引起介质光学性质变化的 现象。 声波作为一种弹性波,在晶体中传播时,会造成介质 密度的疏密变化,使得介质的折射率分布也随之改变。 声光效应:由于声波作用而引起光学性质变化的现象, 声光效应是弹光效应的一种。
将解带入标量方程,再注意到能量守恒和动量守恒,可得到耦 合波方程:
dEi dt jEd dE d jEi dt
Ei (ri ) Ei (0) cos(ri ) jEi (0) sin(ri ) Ed (rd ) Ed (0) cos(rd ) jEi (0) sin(rd )
超声波的应用1
蝙蝠非常善于使用超声。它们用喉头发出20千赫至120千赫之间的超声 啾鸣,用耳朵接收障碍物的反射回波,以这个回波来判断猎物的距离、方位、 形状和速度。那份灵巧和精确让人瞠目。 模仿蝙蝠使用超声的道理,人类发明了声纳这种装在船只及潜艇上的装 置。 靠超声在水中传播时碰到物体产生回波,来测定距离,确定位置。能 发现对手,或保证航行安全。
N
衍射
D s s =s D s s
3.6.4 布拉格衍射
3、声光相互作用的理论分析
在考虑到只有频率为ωi光束入射,且Ed(0)=0时,最终结果为:
Ei (ri ) Ei (0) cos(ri ) Ed (rd ) jEi (0) sin(rd )
重要结论: 1)、对任意的ri , rd ,光场的总能量是守恒的. 2)、当 ri rd 时,入射波将全部转化成衍射波, 2 这就是布拉格衍射最大的优点。正是这一优点使得布拉 格声光调制器件得到大量的应用。
入射光
e 2 2 e (r , t ) 2 2 pNL (r , t ) t t
2 2
衍射光
ei ei 2 2 (p ) i t t 2 ed 2 2 ed 2 2 (p ) d t t
合成孔径声纳可以用于海底测量,水 下考古和搜寻水下失落物体等,尤其可以 进行高分辨海底测绘,对数字地球研究具 有重要的意义。
可拦截鱼雷的脉冲声波发射系统
在探测到敌方发射的鱼雷后,这些声波转换器可在 瞬间发射出高能脉冲声波,其强度足以摧毁或者提前引 爆被锁定的鱼雷。由于是在水下,声波拦截鱼雷时的速 度可达1.5千米/秒。
3.6.5 声光调制
衍射效率的定义为:
衍射
衍射光强为:
Ed
2 2
Ei (0)
sin 2 (rd )
I d I 0衍射
考虑到声光材料的具体参数,可表示为: l 2 衍射 sin ( MI s ) 2 最终决定衍射光强的是声波的强度Is,通过变化声强可 以达到调制衍射光强的目的。
t
入射光
出射光
Γ
调制信号a
t
3.6.5 声光调制 布拉格声光调制器
η
t
Γ
调制信号b
衍射
l sin ( 2
2
MI s )
t
声光调制器的应用
电视机接收到的图像和声音是由电视台将声光信号调制为电信号 发射出来的。电视机接收到电信号再经过解调,还原成图像和声音。 激光打印机激光器射出的光束也载有数据信息,这些信息的转换过 程也类似于电视机信息传递过程。只是此过程是由声光调制器转换 的。声光调制器的调制频率可达30MHz左右,特性稳定,因此大多 数的激光打印机都采用这种调制器。 声光调制器的工作原理是利用声光效应所产生的布雷格衍射的 特 点,实现对激光束传播方向的控制。激光束欲完成图文信息的映 像任务,必须用图文信息进行调制,恰如电视台将图像及声音信号 调制到无线电波上去,方能在电视机中解调出图像与 声音信号一样。
3.6.3拉曼——奈斯衍射
声波阵面
对于垂直入射情形,相对于0度 方向的衍射极值角度方向由公式
λ s
入射光
sin m m s
m 0,1,2,
λ
式中θ m为第m级衍射极值的偏角。
L
3.6.3拉曼——奈斯衍射
拉曼—奈斯衍射时,入射光在相互作用区内部的 传播方向仍保持直线方向,而与折射率变化有关 的介质的光学不均匀性只对通过声柱的光的相位 发生影响。
kd
ks ki
θi
θi
V
V
3.6.4 布拉格衍射
3、声光相互作用的理论分析
电场对电极化矢量的影响:
2 p 0 (n 1)e
2
折射率变化对电极化矢量的影响:p(r , t ) 2 0 n(r , t )e (r , t )
由麦氏方程,有:
上式对入射波和衍射波均成立,故可写成两个标量方程:
2
3.6.4 布拉格衍射
3、声光相互作用的理论分析
设该波动方程有如下形式的解:
1 j ( i t ki r ) cc ei (r , t ) 2 Ei (ri )e 1 ed (r , t ) Ed (rd )e j 源自 d t kd r ) cc 2