高中数学压轴题解法

合集下载

高考数学压轴题的设计理念与解题策略

高考数学压轴题的设计理念与解题策略

感到恶心的不等式呢?这需要命题的智慧与方法.通常是采用“穿马甲”的方式对它
进行改造和包装.首先考虑到把两个分母弄复杂,比如,令 x ab ,y a2 ab ,就

a2
1 ab
a2
1
ab
4
(其中
a
b
0
).
但参加过竞赛培训的学生一眼可以看出两个分式的分母之和为a2 ,就容易用熟知
的公式 1 1 4 ( m 0, n 0 ), m n mn
得到
a2
1 ab
a2

1
ab
a2
ab
4 (a2
ab)
a2
4 a2
,这就不会有较大的难
度,并且让参加过竞赛培训的学生“占便宜”.
因此,有必要对第二个分式的分母继续“穿马甲”,就是把 a2
1 ab
a2
1
ab
4
变成 a2 1 1 4 (其中 a b 0 ). ab a(a b)
至此,这道高考题就基本编成了,剩下的工作是完善及设计选择支.案例 1 的测
确; ③易知,数域至少含有 0 和 1 这两个数,从而有
11 2, 2 1 3, 3 1 4, , k 1 k 1, ,
因此所有的正整数都在“数域”之中,所以数域必为无限集,故③正确;
④在数域 a b 2 a,b Q 中,把 2 换成任意一个质数后所得的数集仍为数域,又
因为质数有无穷多个,故④正确; 故填③④.
3 1 3. n
1 n (n 1)
又由
(1
1 2
)(1
1 22
)(1
1 23
)
135 64
2

所以当

高中数学_函数类压轴题6大题型精讲

高中数学_函数类压轴题6大题型精讲

导数与函数类压轴题精讲(前三讲)题型一切线型1.求在某处的切线方程2.求过某点的切线方程3.已知切线方程求参数题型二单调型1.主导函数需“二次求导”型2.主导函数为“一次函数”型3.主导函数为“二次函数”型4.已知函数单调性,求参数范围题型三极值最值型1.求函数的极值2.求函数的最值3.已知极值求参数4.已知最值求参数题型四零点型1.零点(交点,根)的个数问题2.零点存在性定理的应用3.极值点偏移问题题型五恒成立与存在性问题1.单变量型恒成立问题2.单变量型存在性问题3.双变量型的恒成立与存在性问题4.等式型恒成立与存在性问题题型六与不等式有关的证明问题1.单变量型不等式证明2.含有e x 与lnx 的不等式证明技巧3.多元函数不等式的证明4.数列型不等式证明的构造方法题型一切线型1.求在某处的切线方程例1.【2015重庆理20】求函数f (x )=3x ²e x 在点(1,f (1))处的切线方程.解:由f (x )=3x ²e x ,得f ′(x )=6x -3x ²e x,切点为(1,3e ),斜率为f ′(1)=3e 由f (1)=3e ,得切点坐标为(1,3e ),由f ′(1)=3e ,得切线斜率为3e ;∴切线方程为y -3e =3e (x -1),即3x -ey =0.例2.求f (x )=e x (1x+2)在点(1,f (1))处的切线方程.解:由f (x )=e x (1x +2),得f ′(x )=e x (-1x ²+1x+2)由f (1)=3e ,得切点坐标为(1,3e ),由f ′(1)=2e ,得切线斜率为2e ;∴切线方程为y -3e =2e (x -1),即2ex -y +e =0.例3.求f (x )=ln 1-x 1+x在点(0,f (0))处的切线方程.解:由f (x )=ln 1-x 1+x=ln (1-x )-ln (1+x ),得f ′(x )=-11-x -11+x 由f (0)=0,得切点坐标为(0,0),由f ′(0)=-2,得切线斜率为-2;∴切线方程为y =-2x ,即2x +y =0.例4.【2015全国新课标理20⑴】在直角坐标系xoy 中,曲线C :y =x ²4与直线l :y =kx +a (a >0)交于M ,N 两点,当k =0时,分别求C 在点M 与N 处的切线方程.解:由题意得:a =x ²4,则x =±2a ,即M (-2a ,a ),N (2a ,a ),由f (x )=x ²4,得f ′(x )=x 2,当切点为M (-2a ,a )时,切线斜率为f ′(-2a )=-a ,此时切线方程为:ax +y +a =0;当切点为N (2a ,a )时,切线斜率为f ′(2a )=a ,此时切线方程为:ax -y -a =0;解题模板一求在某处的切线方程⑴写出f (x );⑵求出f ′(x );⑶写出切点(x 0,f (x 0));⑷切线斜率k =f ′(x 0);⑸切线方程为y -f (x 0)=f ′(x 0)(x -x 0).2.求过某点的切线方程Step 1设切点为(x 0,f (x 0)),则切线斜率f ′(x 0),切线方程为:y -f (x 0)=f ′(x 0)(x -x 0)Step 2因为切线过点(a ,b ),所以b -f (x 0)=f ′(x 0)(a -x 0),解得x 0=x 1或x 0=x 2Step 2当x 0=x 1时,切线方程为y -f (x 1)=f ′(x 0)(x -x 1)当x 0=x 2时,切线方程为y -f (x 2)=f ′(x 0)(x -x 2)例1.求f (x )=13x 3+43过点P (2,4)的切线方程.O o O o Oo P P P 点P 不在曲线上不是切点点P 在曲线上不确定是切点点P 在曲线上切点解:设切点为(x 0,13x 03+43),则切线斜率f ′(x 0)=x 0²,所以切线方程为:y -13x 03+43=x 0²(x -x 0),由切线经过点P (2,4),可得4-13x 03+43=x 0²(2-x 0),整理得:x 03-3x 0²+4=0,解得x 0=-1或x 0=2当x 0=-1时,切线方程为:x -y +2=0;当x 0=2时,切线方程为:4x -y -4=0.例2.求f (x )=x 3-4x ²+5x -4过点(2,-2)的切线方程.解:设切点为(x 0,x 03-4x 0²+5x 0-4),则切线斜率f ′(x 0)=3x 0²-8x 0+5,所以切线方程为:y -(x 03-4x 0²+5x 0-4)=(3x 0²-8x 0+5)(x -x 0),由切线经过点P (2,4),可得4-(x 03-4x 0²+5x 0-4)=(3x 0²-8x 0+5)(2-x 0),解得x 0=1或x 0=2当x 0=1时,切线方程为:2x +y -2=0;当x 0=2时,切线方程为:x -y -4=0.例3.过A (1,m )(m ≠2)可作f (x )=x 3-3x 的三条切线,求m 的取值范围.解:设切点为(x 0,x 03-3x 0),则切线斜率f ′(x 0)=3x 0²-3,切线方程为y -(x 03-3x 0)=(3x 0²-3)(x -x 0)∵切线经过点P (1,m ),∴m -(x 03-4x 0²+5x 0-4)=(3x 0²-8x 0+5)(1-x 0),即:-2x 03+3x 0²-3-m =0,即m =-2x 03+3x 0²-3∵过点A (1,m )(m ≠2)可作f (x )=x 3-3x 的三条切线,∴方程m =-2x 03+3x 0²-3,有三个不同的实数根.∴曲线H (x 0)=-2x 03+3x 0²-3与直线y =m 有三个不同交点,H ′(x 0)=-6x 0²+6x 0=-6x 0(x 0-1)令H ′(x 0)>0,则0<x 0<1;令H ′(x 0)<0,则x 0<0或x 0>1∴H (x 0)在(-∞,0)递减,在(0,1)递增,在(1,+∞)递减,∴H (x 0)的极小值=H (0)=-3,H (x 0)的极大值=H (1)=-2,由题意得-3<x <-2.例4.由点(-e ,e -2)可向曲线f (x )=lnx -x -1作几条切线,并说明理由.解:设切点为(x 0,lnx 0-x 0-1),则切线斜率f ′(x 0)=1x 0-1,切线方程为y -(lnx 0-x 0-1)=(1x 0-1)(x -x 0),∵切线经过点(-e ,e -2),∴e -2-(lnx 0-x 0-1)=(1x 0-1)(-e -x 0),即lnx 0=e x 0∵y =lnx 与y =e x 只有一个交点∴方程lnx 0=e x 0有唯一的实数根∴由点(-e ,e -2)可向曲线f (x )=lnx -x -1作一条切线.解题模板二求过某点的切线方程⑴设切点为(x0,f(x0)),则切线斜率f′(x0),切线方程为:y-f(x0)=f′(x0)(x-x0)⑵因为切线过点(a,b),所以b-f(x0)=f′(x0)(a-x0),解得x0=x1或x0=x2⑶当x0=x1时,切线方程为y-f(x1)=f′(x0)(x-x1)当x0=x2时,切线方程为y-f(x2)=f′(x0)(x-x2)3.已知切线方程求参数解题模板三已知切线方程求参数已知直线Ax+By+C=0与曲线y=f(x)相切⑴设切点横坐标为x0,则切线斜率=切线斜率(x0)=-Ax0+CBf′(x0)=-AB⑵解方程组得x0及参数的值.例1.函数f(x)=alnxx+1+bx在(1,f(1))处的切线方程为x+2y-3=0,求a,b的值.解:∵f(x)=alnxx+1+bx,∴f′(x)=a(x+1)x-alnx(x+1)²-bx²f(1)=1′(1)=-12,即b=1b=-12∴a=b=1例2.f(x)=ae x lnx+be x-1x在(1,f(1))处的切线方程为y=e(x-1)+2,求a,b的值.解:∵f(x)=ae x lnx+be x-1x,∴f′(x)=aex(1x+lnx)+bex-1(-1x²+1x)f(1)=2′(1)=-e=2=e∴a=1,b=2例3.若直线y=kx+b是y=lnx+2的切线,也是y=ln(x+1)的切线,求b.解:设y=kx+b与y=lnx+2相切的切点横坐标为x1,y=kx+b与y=ln(x+1)相切的切点横坐标为x2,2=kx1+b①②1)=kx2+b③k④,由②③得:x1=x2+1,由①-③得:lnx1-ln(x2+1)+2=k(x1-x2),将上式代入得:k=2∴x1=12,代入①得:-ln2+2=1+b∴b =1-ln 2.例4.若f (x )=x 与g (x )=a lnx 相交,且在交点处有共同的切线,求a 和该切线方程.解:设切点横坐标为x 0alnx 0①=a x 0②,由②得x 0=2a ,代入①得:x 0=e ²,∴a =e 2∵切点为(e ²,e ),切线斜率为12e,∴切线方程为x -2ey +e ²=0.例5.已知函数f (x )=x 3+ax +14,当a 为何值时,x 轴为曲线方程y =f (x )的切线.例6.已知函数f (x )=x ²+ax +b 和g (x )=e x (cx +d )都过点P (0,2)且在P 处有相同切线y =4x +2,求a ,b ,c ,d 的值.题型二单调型1.主导函数需“二次求导”型I 不含参求单调区间例1.求函数f (x )=x (e x -1)-12x ²的单调区间.解:f (x )的定义域为Rf ′(x )=e x (1+x )-1-x =(x +1)(e x +1)令f ′(x )>0,得x <-1或x >0;令f ′(x )<0,得-1<x <0f (x )的增区间为(-∞,-1)和(0,+∞),减区间为(-1,0)。

压轴题型03 抽象函数问题(解析版)-2023年高考数学压轴题专项训练

压轴题型03 抽象函数问题(解析版)-2023年高考数学压轴题专项训练

压轴题03抽象函数问题抽象函数是高中数学的一个难点,也是近几年来高考的热点。

考查方法往往基于一般函数,综合考查函数的各种性质。

本节给出抽象函数中的函数性质的处理策略,供内同学们参考。

抽象函数是指只给出函数的某些性质,而未给出函数具体的解析式及图象的函数。

由于抽象函数概念抽象,性质隐而不显,技巧性强,因此学生在做有关抽象函数的题目时,往往感觉无处下手。

○热○点○题○型1定义域问题解决抽象函数的定义域问题——明确定义、等价转换。

函数的定义域是指自变量的取值范围,求抽象函数的定义域的关键是括号内式子的地位等同(即同一对应法则后括号内的式子具有相同的取值范围)。

○热○点○题○型2求值问题通过观察已知与未知的联系,巧妙地赋值,赋值法是解此类问题的常用技巧。

○热○点○题○型3值域问题○热○点○题○型4解析式问题通常情况下,给某些变量适当赋值,使之在关系中“消失”,进而保留一个变量,是实现这种转化的重要策略。

○热○点○题○型5单调性与奇偶性问题○热○点○题○型6周期性与对称性问题○热○点○题○型7几类抽象函数解法(1)求解方法:1.借鉴函数模型进行类比探究(化抽象为具体)2.赋值法(令0=x 或1,求出)0(f 或)1(f 、令x y =或x y -=等等)(2)几种抽象函数模型:1.正比例函数:)0()(≠=k kx x f ——————————)()()(y f x f y x f ±=±;2.幂函数:2)(x x f =——————————————)()()(y f x f xy f =,)()()(y f x f y x f =;注:反比例函数:1)(-=x x f 一类的抽象函数也是如此,有部分资料将幂函数模型写成反比例函数模型。

3.指数函数:x a x f =)(———————————)()()(y f x f y x f =+,)()()(y f x f y x f =-4.对数函数:x x f a log )(=————————)()()(y f x f xy f +=,)()()(y f x f yxf -=5.三角函数:x x f tan )(=————————————)()(1)()()(y f x f y f x f y x f -+=+6.余弦函数:x x f cos )(=———————)()(2)()(y f x f y x f y x f =-++一、单选题1.已知定义在()0,∞+上的函数()f x 满足()()()102f xy f x f y +--=,若一组平行线()1,2,...,i x x i n ==分别与()y f x =图象的交点为()11,x y ,()22,x y ,...,(),n n x y ,且()2121n i i x x f -+=⎡⎤⎣⎦,其中1,2,...,i n =,则1nii y n==∑A .1B .12C .2nD .2n 【答案】B【分析】令1x y ==得到()112f =;令1,n i i x x y x -+==得到()()11n i i f x f x -++=,代入计算得(6)()6f x f x +-≥,则(2016)f =A .2015B .2016C .2017D .2018【答案】D【分析】根据递推式可得(6)()6f x f x +-=,再由(2016)f =[(2016)(2010][(2010)(2004)]......[(6)(0)](0)f f f f f f f -+-++-+即可得答案.【详解】解:(2)()2,f x f x +-≤ (4)(2)2,f x f x ∴+-+≤(6)(4)2f x f x ∴+-+≤三是相加得:(6)()6f x f x +-≤,又(6)()6f x f x +-≥,则(6)()6f x f x +-=,当且仅当(2)()2f x f x +-=时等号成立,(2016)f =[(2016)(2010][(2010)(2004)]......[(6)(0)](0)f f f f f f f -+-++-+633622018=⨯+=,故选:D.3.已知定义域为R 的函数()f x 满足()31f x +是奇函数,()21f x -是偶函数,则下列结论错误的是()A .()f x 的图象关于直线=1x -对称B .()f x 的图象关于点(1,0)对称C .()31f -=D .()f x 的一个周期为8【答案】C【分析】根据()31f x +是奇函数,可得()()20f x f x +-+=,判断B;根据()21f x -是偶函数,推出()()2f x f x --=,判断A;继而可得()()4f x f x +=-,可判断D ;利用赋值法求得(1)0f =,根据对称性可判断C.【详解】由题意知()31f x +是奇函数,即()()()()3131,11f x f x f x f x -+=-+∴-+=-+,即()()2f x f x -+=-,即()()20f x f x +-+=,故()f x 的图象关于点(1,0)对称,B 结论正确;又()21f x -是偶函数,故()()()()2121,11f x f x f x f x --=-∴--=-,即()()2f x f x --=,故()f x 的图象关于直线=1x -对称,A 结论正确;由以上可知()()()22f x f x f x =--=--+,即()()22f x f x -=-+,所以()()4f x f x +=-,则()()4()8x x f f f x =-=++,故()f x 的一个周期为8,D 结论正确;由于()()3131f x f x -+=-+,令0x =,可得(1)(1),(1)0f f f =-∴=,而()f x 的图象关于直线=1x -对称,故()30f -=,C 结论错误,故选:C【点睛】方法点睛:此类抽象函数的性质的判断问题,解答时一般要注意根据函数的相关性质的定义去解答,比如奇偶性,采用整体代换的方法,往往还要结合赋值法求得特殊值,进行解决.4.已知定义在R 上的函数()f x 在(),4-∞-上是减函数,若()()4g x f x =-是奇函数,且()40g =,则不等式()0f x ≤的解集是A .(](],84,0-∞-⋃-B .[)[)8,40,--⋃+∞C .[][)8,40,--⋃+∞D .[]8,0-【答案】C【详解】∵()()4g x f x =-是奇函数,∴函数()()4g x f x =-图象的对称中心为(0,0),∴函数()f x 图象的对称中心为()4,0-.又函数()f x 在(),4-∞-上是减函数,∴函数()f x 在()4,-+∞上为减函数,且()()400f g -==.∵()()400g f ==,∴()80f -=.画出函数()f x 图象的草图(如图).结合图象可得()0f x ≤的解集是[][)8,40,--⋃+∞.选C .点睛:本题考查抽象函数的性质及利用数形结合求不等式的解集.解题时要从函数()f x 的性质入手,同时也要把函数()()4g x f x =-的性质转化为函数()f x 的性质,进一步得到函数()f x 的单调性和对称性,进而画出其图象的草图,根据图象写出不等式的解集.其中在解题中不要忘了()f x 是定义在R 上的函数,故应该有()()400f g -==这一结论,即函数()f x 的图象中要有()4,0-这一个点.5.已知函数()y f x =是定义域为R 的偶函数,当0x ≥时()()()5sin ,014211,14xx x f x x π⎧⎛⎫≤≤ ⎪⎪⎝⎭⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若关于x 的方程()()20f x af x b ⎡⎤++=⎣⎦有6个根,则实数a 的取值范围是()A .59,24⎛⎫-- ⎪⎝⎭B .9,14⎛⎫-- ⎪⎝⎭C .59,24⎛⎫-- ⎪⎝⎭9,14⎛⎫⋃-- ⎪⎝⎭D .5,12⎛⎫-- ⎪⎝⎭二、多选题(共0分)6.下列说法中错误的为()A .若函数()f x 的定义域为[]0,2,则函数()2f x 的定义域为[]0,1B .若(121f x =+,则()[)2243,1,f x x x x ∞=++∈+C .函数的421x x y =++值域为:1,4⎡⎫-+∞⎪⎢⎣⎭D .已知()25,1,1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩在R 上是增函数,则实数a 的取值范围是[]3,2--7.若定义在R 上的函数()f x 满足:(ⅰ)存在R a +∈,使得()0f a =;(ⅱ)存在R b ∈,使得()0f b ≠;(ⅲ)任意12,R x x ∈恒有()()()()1212122f x x f x x f x f x ++-=.则下列关于函数()f x 的叙述中正确的是()A .任意x ∈R 恒有()()4f x a f x +=B .函数()f x 是偶函数C .函数()f x 在区间[]0,a 上是减函数D .函数()f x 最大值是1,最小值是-18.已知的定义域为R ,且对任意,有1f x f y f x y ⋅=+-,且当1x >时,()1f x >,则()A .()11f =B .()f x 的图象关于点()()1,1f 中心对称C .()f x 在R 上不单调D .当1x <时,()01f x <<故选:AD9.已知定义域为()0,∞+的函数()f x 满足:①()0,x ∀∈+∞,()()55f x f x =;②当(]1,5x ∈时,()5f x x =-,则()A .105f ⎛⎫= ⎪⎝⎭B .m Z ∀∈,()30mf =C .函数()f x 的值域为[)0,∞+D .n Z ∃∈,()512019nf +=10.已知()f x 为非常值函数,若对任意实数x ,y 均有()()()1f x y f x f y +=+⋅,且当0x >时,()0f x >,则下列说法正确的有()A .()f x 为奇函数B .()f x 是()0,∞+上的增函数C .()1f x <D .()f x 是周期函数对于D:因为()f x 是()0,∞+上的增函数,又因为()f x 为奇函数且()00f =,所以()f x 是(),-∞+∞上的增函数,故()f x 不是周期函数,故D 错误.故选:ABC.11.定义在R 上的函数()f x 满足()()()312f x f x f +++=,()()24f x f x -=+,若1122f ⎛⎫= ⎪⎝⎭,则()A .()f x 是周期函数B .1(2022)2f =C .()f x 的图象关于1x =对称D .200111002k k f k =⎛⎫-=- ⎪⎝⎭∑可得())1(3f x f x +=-,从而可得()f x 是周期为4的周期函数,是解决本题的关键.12.已知函数()f x ,()g x 的定义域均为R ,其导函数分别为()f x ',()g x '.若()()32f x g x -+=,()()1f x g x ''=+,且()()20g x g x -+=,则()A .函数()2g x +为偶函数B .函数()f x 的图像关于点()2,2对称C .()202410i g n ==∑D .()202414048i f n ==-∑【答案】ACD【分析】由()()1f x g x ''=+,可设()()()1,R f x a g x b a b +=++∈,,由()()32f x g x -+=,得()()321g x a g x b --+=++,赋值1x =,则有2a b -=,即()()31g x g x -=+,函数()g x 的图像关于直线2x =对称,又()()20g x g x -+=得()()4g x g x =+,()f x 也是周期为4的函数,通过赋值可判断选项【详解】因为()()1f x g x ''=+,所以()()()1,R f x a g x b a b +=++∈.又因为()()32f x g x -+=,所以()()23f x g x +=-.于是可得()()321g x a g x b --+=++,令1x =,则()()31211g a g b --+=++,所以2a b -=.所以()()31g x g x -=+,即函数()g x 的图像关于直线2x =对称,即()()4g x g x -=+.因为()()20g x g x -+=,所以函数()g x 的图像关于点()1,0对称,即()()20g x g x ++-=,所以()()24g x g x +=-+,即()()2g x g x =-+,于是()()4g x g x =+,所以函数()g x 是周期为4的周期函数.因为函数()g x 的图像关于直线2x =对称,所以()2g x +的图像关于y 轴对称,所以()2g x +为偶函数,所以A 选项正确.将()g x 的图像作关于y 轴对称的图像可得到()y g x =-的图像,再向右平移3个单位长度,可得到()()33y g x g x =--=-⎡⎤⎣⎦的图像,再将所得图像向下平移2个单位长度,即可得到()()32g x f x --=的图像,因此函数()f x 也是周期为4的函数.又()g x 的图像关于点()1,0对称,所以()f x 的图像关于点()2,2-对称,所以B 选项不正确.因为()()20g x g x -+=,令1x =,得()()110g g +=,即()10g =,所以()()130g g ==;令0x =,得()()200g g +=,所以()()240g g +=,所以()()()()12340g g g g +++=,所以()202410i g n ==∑,所以C 选项正确.因为()()32f x g x =--,所以()()0322f g =-=-,()()2122f g =-=-,()()122f g =-,()()302f g =-,()()402f f ==-,则有()()()()()()()123422202f f f f g g +++=-+-+-()28+-=-,可得()202414048i f n ==-∑,所以D 选项正确.故选:ACD .【点睛】方法点睛:一般地,若函数的图像具有双重对称性,则一定可以得到函数具有周期性,且相邻的两条对称轴之间的距离为半个周期;相邻的两个对称中心之间的距离也是半个周期;相邻的一条对称轴和一个对称中心之间的距离为四分之一个周期.三、填空题13.下列命题中所有正确的序号是__________.①函数1()3x f x a -=+(1a >)在R 上是增函数;②函数(1)f x -的定义域是(1,3),则函数()f x 的定义域为(2,4);③已知53()8f x x ax bx =++-,且(2)8f -=,则(2)8f =-;④11()122x f x =--为奇函数.⑤函数()f x =[]0,4(3)构造奇函数求对应的函数值;(4)定义法判断函数奇偶性;(5)直接法求具体函数的值域.14.给出下列四个命题:①函数与函数表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③函数的图像可由的图像向上平移1个单位得到;④若函数的定义域为,则函数的定义域为;⑤设函数是在区间上图象连续的函数,且,则方程在区间上至少有一实根;其中正确命题的序号是_____________.(填上所有正确命题的序号)【答案】③⑤【详解】试题分析:①因为函数的定义域为R ,函数的定义域为{}|>0x x ,所以函数与函数不表示同一个函数;②奇函数的图像一定通过直角坐标系的原点,此命题错误,若奇函数在x=0处没定义,则奇函数的图像就不过原点;③函数的图像可由的图像向上平移1个单位得到;,正确.④因为函数的定义域为,所以0<2<2,0<x<1x 即,所以函数的定义域为[0,1];⑤设函数是在区间上图象连续的函数,且,则方程在区间上至少有一实根,正确.考点:函数的定义;奇函数的性质;图像的变换;抽象函数的定义域;函数零点存在性定理.点评:此题考查的知识点较多,较为综合,属于中档题.抽象函数的有关问题对同学们来说具有一定的难度,特别是求函数的定义域,很多同学解答起来总感棘手,鉴于此,我们在学习时要善于总结.①已知的定义域求的定义域,其解法是:若的定义域为,则在中,,从中解得x 的取值范围即为的定义域;②已知的定义域,求的定义域,其解法是:若的定义域为,则由确定的的范围即为的定义域.15.已知函数()241f x x -+-的定义域为[]0,m ,则可求得函数()21f x -的定义域为[]0,2,求实数m 的取值范围__________.【答案】[]24,【详解】 函数()21f x -的定义域为[]0,2,02,1213x x ∴≤≤∴-≤-≤,令241t x x =-+-,则13t -≤≤,由题意知,当[]0,x m ∈时,[]1,3t ∈-,作出函数241t x x =-+-的图象,如图所示,由图可得,当0x =或4x =时,1t =-,当2x =时,3,24t m =∴≤≤,时[]1,3t ∈-,∴实数m 的取值范围是24m ≤≤,故答案为24m ≤≤.16.给出下列说法:①集合{}1,2,3A =,则它的真子集有8个;②2(),((0,1))f x x x x=+∈的值域为(3,)+∞;③若函数()f x 的定义域为[0,2],则函数(2)()2f xg x x =-的定义域为[)0,2;④函数()f x 的定义在R 上的奇函数,当0x >时,()1f x x =-+,则当0x <时,()1f x x =-⑤设53()=5f x ax bx cx +++(其中,,a b c 为常数,x R ∈),若(2012)3f -=-,则(2012)13f =;其中正确的是_______(只写序号).【答案】②⑤【详解】试题分析:①集合{1,2,3}A =,则它的真子集有个;③由函数()f x 的定义域为[0,2]得:,解得;④设,则,所以,又因为()f x 是定义在R 上的奇函数,所以()f x =-;⑤设g(x)=,则g(x)是奇函数且()f x =g(x)+5,因为(2012)3f -=-,所以,所以.考点:本题考查真子集的性质、抽象函数的定义域、函数的奇偶性.点评:此题主要考查集合子集个数的计算公式、函数的奇偶性和抽象函数定义域的求法,是一道基础题,若一个集合的元素个数为n ,则其子集的个数为2n ,真子集的个数为2n -1个.17.函数()f x 满足()11f x f x ⎛⎫= ⎪+⎝⎭对任意[)0,x ∈+∞都成立,其值域是f A ,已知对任何满足上述条件的()f x 都有(){},0f y y f x x a A =≤≤=,则a 的取值范围为___________.18.对任意集合M ,定义()0,M f x x M⎧=⎨∉⎩,已知集合S 、T X ⊆,则对任意的x X ∈,下列命题中真命题的序号是________.(1)若S T ⊆,则()()S T f x f x ≤;(2)()1()X S S f x f x =-ð;(3)()()()S T S T f x f x f x =⋅ ;(4)()()1()[2S S T T f x f x f x ++= (其中符合[]a 表示不大于a 的最大正数)19.设()1f x -为()cos 488f x x x ππ=-+,[]0,x π∈的反函数,则()()1y f x f x -=+的最大值为_________.R ,对任意的都有且当0x ≥时,则不等式()0xf x <的解集为__________.【答案】(2,0)(0,2)- 【详解】当0x ≥时,由()220f x x x =->,得2x >;由()220f x x x =-<,得02x <<.∵()()f x f x -=-,∴函数()f x 为奇函数.∴当0x <时,由()220f x x x =->,得20x -<<;由()220f x x x =-<,得2x <-.不等式()0xf x <等价于()00x f x >⎧⎨<⎩或()00x f x <⎧⎨>⎩,解得02x <<或20x -<<.∴不等式()0xf x <的解集为()()2,00,2-⋃.答案:()()2,00,2-⋃21.已知函数21,0()21,0,x x f x x x x +≤⎧=⎨-+>⎩若关于x 的方程2()()0f x af x -=恰有5个不同的实数解,则实数a 的取值范围是_____.【答案】01a <<【分析】采用数形结合的方法,由2()()0f x af x -=确定有两个解()0f x =或()f x a =,在通过图象确定a 的范围.【详解】由2()()0f x af x -=得()0f x =或()f x a =,如图,作出函数()f x 的图象,由函数图象,可知()0f x =的解有两个,故要使条件成立,则方程()f x a =的解必有三个,此时0<a <1.所以a 的取值范围是(0,1).故答案为:01a <<.22.已知函数()f x 满足1(1)()f x f x +=-,且()f x 是偶函数,当[1,0]x ∈-时,2()f x x =,若在区间[1,3]-内,函数()()log (2)a g x f x x =-+有个零点,则实数a 的取值范围是______________.【答案】所以可得132a log ≥+(),∴实数a 的取值范围是[5+∞,).故答案为[5+∞,).考点:函数的周期性的应用,函数的零点与方程的根的关系【名师点睛】本题主要考查函数的周期性的应用,函数的零点与方程的根的关系,体现了转化的数学思想,属于基础题.四、双空题23.设函数()f x 是定义在整数集Z 上的函数,且满足()01f =,()10f =,对任意的x ,y ∈Z 都有()()()()2f x y f x y f x f y ++-=,则()3f =______;()()()()22222122023122023f f f f 2++⋅⋅⋅+=++⋅⋅⋅+______.五、解答题24.已知()f x 定义域为R 的函数,S ⊆R ,若对任意1212,,x x x x S ∈-∈R ,均有()()12f x f x S -∈,则称()f x 是S 关联.(1)判断函数()()12112f x xg x x =-=-、是否是[)1,+∞关联,并说明理由:(2)若()f x 是{}2关联,当[)0,2x ∈时,()2f x x x =-,解不等式:()02f x ≤≤;(3)判断“()f x 是{}2关联”是“()f x 是[]1,2关联”的什么条件?试证明你的结论.25.设函数(),f x x x M=⎨-∈⎩其中P ,M 是非空数集.记f (P )={y |y =f (x ),x ∈P },f (M )={y |y =f (x ),x ∈M }.(Ⅰ)若P=[0,3],M=(﹣∞,﹣1),求f(P)∪f(M);(Ⅱ)若P∩M=∅,且f(x)是定义在R上的增函数,求集合P,M;(Ⅲ)判断命题“若P∪M≠R,则f(P)∪f(M)≠R”的真假,并加以证明.【答案】(Ⅰ)[0,+∞);(Ⅱ)P=(﹣∞,0)∪(0,+∞),M={0};(Ⅲ)真命题,证明见解析【解析】(Ⅰ)求出f(P)=[0,3],f(M)=(1,+∞),由此能过求出f(P)∪f(M).(Ⅱ)由f(x)是定义在R上的增函数,且f(0)=0,得到当x<0时,f(x)<0,(﹣∞,0)⊆P.同理可证(0,+∞)⊆P.由此能求出P,M.(Ⅲ)假设存在非空数集P,M,且P∪M≠R,但f(P)∪f(M)=R.证明0∈P∪M.推导出f(﹣x0)=﹣x0,且f(﹣x0)=﹣(﹣x0)=x0,由此能证明命题“若P∪M≠R,则f(P)∪f(M)≠R”是真命题.【详解】(Ⅰ)因为P=[0,3],M=(﹣∞,﹣1),所以f(P)=[0,3],f(M)=(1,+∞),所以f(P)∪f(M)=[0,+∞).(Ⅱ)因为f(x)是定义在R上的增函数,且f(0)=0,所以当x<0时,f(x)<0,所以(﹣∞,0)⊆P.同理可证(0,+∞)⊆P.因为P∩M=∅,所以P=(﹣∞,0)∪(0,+∞),M={0}.(Ⅲ)该命题为真命题.证明如下:假设存在非空数集P,M,且P∪M≠R,但f(P)∪f(M)=R.首先证明0∈P∪M.否则,若0∉P∪M,则0∉P,且0∉M,则0∉f(P),且0∉f(M),即0∉f(P)∪f(M),这与f(P)∪f(M)=R矛盾.若∃x0∉P∪M,且x0≠0,则x0∉P,且x0∉M,所以x0∉f(P),且﹣x0∉f(M).因为f(P)∪f(M)=R,所以﹣x0∈f(P),且x0∈f(M).所以﹣x0∈P,且﹣x0∈M.所以f(-x0)=﹣x0,且f(-x0)=﹣(﹣x0)=x0,根据函数的定义,必有﹣x0=x0,即x0=0,这与x0≠0矛盾.综上,该命题为真命题.【点睛】本题考查函数新定义问题,考查学生的创新意识,考查命题真假的判断与证明,考查并集定义等基础知识,考查运算求解能力,是中档题.26.已知()f x 是定义在[]1,1-上的奇函数,且(1)1f =.若对任意的[],1,1m n ∈-,0m n +≠都有()()0f m f n m n+>+.(1)用函数单调性的定义证明:()f x 在定义域上为增函数;(2)若()()214f a f a +>,求a 的取值范围;(3)若不等式()()122f x a t ≤-+对所有的[]1,1x ∈-和[]1,1a ∈-都恒成立,求实数t 的取值范围.于难题.根据抽象函数的单调性解不等式应注意以下三点:(1)一定注意抽象函数的定义域(这一点是同学们容易疏忽的地方,不能掉以轻心);(2)注意应用函数的奇偶性(往往需要先证明是奇函数还是偶函数);(3)化成()()()()f g x f h x ≥后再利用单调性和定义域列不等式组.27.已知函数()f x ,若存在非零实数a 、b ,使得对定义域内任意的x ,均有()f x a +=()f x b +成立,则称该函数()f x 为阶梯周期函数.(1)判断函数()[]|sin |()f x x x x π=+∈R 是否为阶梯周期函数,请说明理由.(其中[]x 表示不超过x 的最大整数,例如:[3,5]4-=-,[2,1]2=)(2)已知函数()g x ,x ∈R 的图像既关于点(1,0)对称,又关于点(3,2)对称.①求证:函数()g x 为阶梯周期函数;②当[0,4]x ∈时,()[,]g x p q ∈(p 、q 为实数),求函数()g x 的值域.【答案】(1)是,理由见解析;(2)①证明见解析;②[4,4]n p n q ++,n ∈Z .【解析】(1)根据阶梯周期函数的定义求解判断.(2)①根据函数()g x 的图像既关于点(1,0)对称,又关于点(3,2)对称,得到()()()()2064g x g x g x g x ⎧-++=⎪⎨-++=⎪⎩求解.②根据①的结论,分[]()4,44,x n n n N ∈+∈和[]()4,44,x n n n N ∈--+∈两种情况讨论求解.【详解】(1)因为()()(1)[1]|sin 1|[]1|sin |1f x x x x x f x ππ+=+++=++=+,所以存在1,1a b ==,使得函数()f x 为阶梯周期函数(2)①因为函数()g x 的图像既关于点(1,0)对称,又关于点(3,2)对称,所以()()()()2064g x g x g x g x ⎧-++=⎪⎨-++=⎪⎩,两式相减得:()()624g x g x +-+=,即()()44g x g x +=+所以函数()g x 为阶梯周期函数;②当[]()4,44,x n n n N ∈+∈时,[]40,4x n -∈,由()()44g x g x +=+,得()()()444242...g x g x g x =-+=-⨯+⨯=()[]()444,4g x n n n p n q n N =-+∈++∈,当[]()4,44,x n n n N ∈--+∈时,[]40,4x n +∈,由()()44g x g x +=+,得()()()444242...g x g x g x =+-=+⨯-⨯=()[]()444,4g x n n n p n q n N =+-∈-+-+∈,综上:函数()g x 的值域是[4,4]n p n q ++n ∈Z .【点睛】关键点点睛:本题关键是阶梯周期函数定义的理解以及()f x 若关于点(),a b 对称,则()()22f x f a x b -++=结合应用.28.已知函数()f x 对于任意的,x y ∈R ,都有()()()f x y f x f y +=+,当0x >时,()0f x <,且1(1)2f =-.(1)求(0)f ,(1)f -的值;(2)当34x -≤≤时,求函数()f x 的最大值和最小值;(3)设函数2()()3()g x f x m f x =--,判断函数g (x )最多有几个零点,并求出此时实数m的取值范围.29.已知函数,如果存在给定的实数对,使得恒成立,则称()f x 为“S -函数”.(1)判断函数()1f x x =,()23xf x =是否是“S -函数”;(2)若()3tan f x x =是一个“S -函数”,求出所有满足条件的有序实数对(),a b ;(3)若定义域为R 的函数()f x 是“S -函数”,且存在满足条件的有序实数对()0,1和()1,4,当[]0,1x ∈时,()f x 的值域为[]1,2,求当[]2018,2018x ∈-时函数()f x 的值域.1(1)3f =-.(1)求证()f x 是奇函数;(2)求()f x 在区间[3,3]-上的最大值和最小值.【答案】(1)详见解析;(2)最小值-1,最大值1.【分析】(1)利用赋值法,令0x =,0y =代入函数式,可求得(0)f ,再令y x =-代入函数式,即可31.已知函数的定义域为,且同时满足①13f =;②2f x ≥恒成立,③若12120,0,1x x x x ≥≥+≤,则有()()()12122f x x f x f x ++-≥.(1)试求函数()f x 的最大值和最小值;(2)试比较f (12n)与122n +(n ∈N )的大小.(3)某人发现:当12nx =(n ∈N )时,有()22f x x <+,由此他提出猜想:对一切x ∈(0,1],都有()22f x x <+,请你判断此猜想是否正确,并说明理由.32.已知,1,2,n 是定义在M 上的一系列函数,满足:()1f x x =,()()11i i x f x f i x ++-⎛⎫== ⎪⎝⎭N .(1)求()()()234,,f x f x f x 的解析式;(2)若()g x 为定义在M 上的函数,且()11x g x g x x -⎛⎫+=+ ⎪⎝⎭.①求()g x 的解析式;②若方程()()()()222121318420x m x x g x x x x x ---++++++=有且仅有一个实根,求实数m 的取值范围.都有()()f x s f x s +-=,则称()y f x =是S -关联的.(1)判断函数2y x =和函数[]y x =是否是{1}-关联的,无需说明理由.([]x 表示不超过x 的最大整数)(2)若函数()y f x =是{2}-关联的,且在[0,2)上,()2x f x =,解不等式2()4f x <<.(3)已知正实数,a b 满足a b <,且函数()y f x =是[,]a b -关联的,求()f x 的解析式.【答案】(1)函数2y x =不是{1}-关联的,函数[]y x =是{1}-关联的;(2)(1,3)x ∈(3)()f x x C=+【分析】(1)根据()y f x =是S -关联的定义逐个判断可得结果;(2)根据函数()y f x =是{2}-关联的定义求出()f x 在[2,4)上的解析式,将()f x 代入2()4f x <<可解得结果;(3)根据()()f x t f x t +-=,得()()()f x t x t f x x +-+=-,令()()g x f x x =-,得()()g x t g x +=34.已知定义域为的函数y f x =满足:①对0,x ∈+∞,恒有22f x f x =;②当(]1,2x ∈时,()2f x x =-.(1)求18f ⎛⎫⎪⎝⎭的值;(2)求出当(12,2n n x +⎤∈⎦,Z n ∈时的函数解析式;(3)求出方程()12f x x =在(]0,100x ∈中所有解的和.【答案】(1)0;35.f(x)=x3+2ax2+bx+a,g(x)=x2﹣3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.(Ⅰ)求a、b的值,并写出切线l的方程;(Ⅱ)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,求实数m的取值范围.【答案】(Ⅰ)x﹣y﹣2=0(Ⅱ)(﹣,0)【详解】试题分析:(I)利用曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l,可得f(2)=g(2)=0,f'(2)=g'(2)=1.即为关于a、b的方程,解方程即可.(II)把方程f(x)+g(x)=mx有三个互不相同的实根转化为x1,x2是x2﹣3x+2﹣m=0的两相异实根.求出实数m的取值范围以及x1,x2与实数m的关系,再把f(x)+g(x)<m(x ﹣1)恒成立问题转化为求函数f(x)+g(x)﹣mx在x∈[x1,x2]上的最大值,综合在一起即可求出实数m的取值范围.解:(I)f'(x)=3x2+4ax+b,g'(x)=2x﹣3.由于曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.故有f(2)=g(2)=0,f'(2)=g'(2)=1.由此得,解得,所以a=﹣2,b=5..切线的方程为x﹣y﹣2=0.(II)由(I)得f(x)=x3﹣4x2+5x﹣2,所以f(x)+g(x)=x3﹣3x2+2x.依题意,方程x(x2﹣3x+2﹣m)=0,有三个互不相等的实根0,x1,x2,故x1,x2是x2﹣3x+2﹣m=0的两相异实根.所以△=9﹣4(2﹣m)>0,解得m>﹣.又对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,特别地取x=x1时,f(x1)+g(x1)<m(x1﹣1)成立,得m<0.由韦达定理得x1+x2=3>0,x1x2=2﹣m>0.故0<x1<x2.对任意的x∈[x1,x2],x﹣x2≤0,x﹣x1≥0,x>0.则f(x)+g(x)﹣mx=x(x﹣x1)(x﹣x2)≤0,又f(x1)+g(x1)﹣mx1=0.所以f(x)+g(x)﹣mx在x∈[x1,x2]上的最大值为0.于是当m<0,对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,综上得:实数m的取值范围是(﹣,0).点评:本题主要考查函数,导数,不等式等基础知识,同时考查综合运用数学知识进行推理论证的能立,以及函数与方程和特殊与一般的思想.。

压轴题型11 圆锥曲线压轴题的处理策略(解析版)-2023年高考数学压轴题专项训练

压轴题型11 圆锥曲线压轴题的处理策略(解析版)-2023年高考数学压轴题专项训练

压轴题11圆锥曲线压轴题的处理策略从近几年圆锥曲线的命题风格看,既注重知识又注重能力,既突出圆锥曲线的本质特征。

而现在圆锥曲线中面积、弦长、最值等几乎成为研究的常规问题。

“四心”问题进入园锥曲线,让我们更是耳目一新。

因此在高考数学复习中,通过让学生研究三角形的“四心”与圆锥曲线的结合问题,快速提高学生的数学解题能力,增强学生的信心,备战高考.○热○点○题○型1齐次化解决圆锥曲线压轴题○热○点○题○型2极点极线处理圆锥曲线压轴题○热○点○题○型3定点定值问题的处理策略1.已知拋物线2:2(0)C y px p =>,F 为焦点,若圆22:(1)16E x y -+=与拋物线C 交于,A B两点,且AB =(1)求抛物线C 的方程;(2)若点P 为圆E 上任意一点,且过点P 可以作拋物线C 的两条切线,PM PN ,切点分别为,M N .求证:MF NF ⋅恒为定值.(2)令()()0011,,,,P x y M x y N 抛物线在点M 处的切线方程为(1x x m -=与24y x =联立得2114440y my my x -+-=由相切()211164440m my x ∆=--=得4my 代入①得12y m=故在点处的切线方程为()1112y x x y y -=-同理:点N 处的切线方程为222yy x x =+而两切线交于点()00,P x y ,所以有010*******,22y y x x y y x x =+=+,则直线MN 的方程为:00220x y y x -+=,由2004220y x x y y x ⎧=⎨-+=⎩得200240y y y x -+=于是()()221212||||1116y y MF NF x x ⋅=++=+()22001x y =-+,又点()00,P x y 在圆22:(1)16E x y -+=上,所以()2200116x y -+=,即||||16MF NF ⋅=.【点睛】关键点睛:本题的关键在于设切点,写出切线方程,然后将其与抛物线方程联立,再利用Δ0=得到相关等式,再得到直线MN 的方程,将其与抛物线联立,得到韦达定理式,最后利用抛物线定义写出线段长乘积表达式,利用点在圆上进行整体代入即可.2.如图:小明同学先把一根直尺固定在画板上面,把一块三角板的一条直角边紧靠在直尺边沿,再取一根细绳,它的长度与另一直角边相等,让细绳的一端固定在三角板的顶点A 处,另一端固定在画板上点F 处,用铅笔尖扣紧绳子(使两段细绳绷直),靠住三角板,然后将三角板沿着直尺上下滑动,这时笔尖在平面上画出了圆锥曲线C 的一部分图象.已知细绳长度为3,经测量,当笔尖运动到点P 处,此时,30,90FAP AFP ∠∠=︒=︒.设直尺边沿所在直线为a ,以过F 垂直于直尺的直线为x 轴,以过F 垂直于a 的垂线段的中垂线为y 轴,建立平面直角坐标系.(1)求曲线C 的方程;(2)斜率为k 的直线过点(0,3)D -,且与曲线C 交于不同的两点M ,N ,已知k 的取值范围为(0,2),探究:是否存在λ,使得DM DN λ=,若存在,求出λ的范围,若不存在,说明理由.由60FPA ︒∠=得点P 的横坐标得32p =,所以轨迹C 的方程为2y =(2)假设存在λ,使得DM 由233y kx y x=-⎧⎨=⎩消去y 得:k 而(0,2)k ∈,2(63)k ∆=+2121221126((2)x x x x x x x x +++==于是21142k k λλ+=++,令因此1174λλ+>,又0λ>所以存在1(0,)(4,4λ∈⋃+∞【点睛】易错点睛:求解轨迹方程问题,设出动点坐标,根据条件求列出方程,再化简整理求解,还应特别注意:补上在轨迹上而坐标不是方程解的点,解的点.3.在平面直角坐标系xOy 中,已知双曲线E :()2210,0a b a b-=>>的右焦点为F ,离心率为2,且过点()2,3P .(1)求双曲线E 的标准方程;(2)设过原点O 的直线1l 在第一、三象限内分别交双曲线E 于A ,C 两点,过原点O 的直线2l 在第二、四象限内分别交双曲线E 于B ,D 两点,若直线AD 过双曲线的右焦点F ,求四边形ABCD 面积的最小值.4.如图,已知双曲线22:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,O 为坐标原点,过点F 作直线1l 与双曲线的渐近线交于P ,Q 两.点,且点P 在线段FQ 上,OP PQ ⊥,|||||OP OQ PQ +.(1)求C 的方程;(2)设12,A A 是C 的左、右顶点,过点1,02⎛⎫⎪⎝⎭的直线l 与C 交于M ,N 两点,试探究直线1A M 与2A N 的交点S 是否在某条定直线上,若是,求出该定直线方程,若不是,请说明理由.(1)求点P的轨迹C的方程;(2)过点(0,1)且斜率为122k k⎛⎫≤≤⎪⎝⎭的直线l与C交于A,B两点,与x轴交于点M,线段AB的垂直平分线与x轴交于点N,求||||ABMN的取值范围.(1)若第一象限的点P ,Q 是抛物线C 与圆的交点,求证:点F 到直线PQ 的距离大于1;(2)已知直线l :()1y k x =+与抛物线交于M ,N 两点,()0A t ,,若点N ,G 关于x 轴对称,且M ,A ,G 三点始终共线,求t 的值.7.已知双曲线22:1(0,0)C a b a b-=>>,焦点到渐近线20x y -=的距离为2.(1)求双曲线C 的标准方程;(2)记双曲线C 的左、右顶点分别为,A B ,直线l 交双曲线C 于点,M N (点M 在第一象限),记直线MA 斜率为1k ,直线NB 斜率为2k ,过原点O 做直线l 的垂线,垂足为H ,当12k k 为定值13-时,问是否存在定点G ,使得GH 为定值,若存在,求此定点G .若不存在,请说明理由.8.已知双曲线22:1(0,0)x y C a b a b-=>>,若直线l 与双曲线C 交于,A B 两点,线段AB 的中点为M ,且34AB OM k k ⋅=(O 为坐标原点).(1)求双曲线C 的离心率;(2)若直线l 不经过双曲线C 的右顶点()2,0N ,且以AB 为直径的圆经过点N ,证明直线l 恒过定点E ,并求出点E 的坐标.)因为双曲线的右顶点()2,0N ,所以双曲线C 的标准方程为2243x y -34AB OM k k ⋅=,所以直线l 的斜率一定存在,并且3,//2AB OM ±,这不可能)设直线l 的方程为y kx m =+,联立方程)(222841203k xkmx m ---=()(2222Δ644344k m k m =---2430k -+>,21212284,3434km m x x x x k -+=⋅=--因为以AB 为直径的圆经过点N ,NA NB ⊥,所以0NA NB ⋅=,又因为()(1122,,2,NA x y NB x =-=- ()()121222NA NB x x y y ⋅=--+又因为()()1212y y kx m kx m k =++=()(21212NA NB k x x km ⋅=++- )()2241212343m km k --+⨯+-⨯-化简得2216280m km k ++=,即(m 14m k =-或2m k =-,且均满足9.已知椭圆()22:10C a b a b+=>>的长轴长为4,且离心率为12.(1)求椭圆C 的标准方程;(2)若直线y kx m =+与椭圆C 交于M ,N 两点,O 为坐标原点,直线OM ,ON 的斜率之积等于1-,求OMN 的面积的取值范围.F 的直线l 与椭圆C 交于A ,B 两点.(1)求椭圆C 的方程;(2)设O 为坐标原点,求OAB 面积的最大值以及此时直线l 的方程.11.已知双曲线()22:10,0C a b a b-=>>,焦点为12,F F ,其中一条渐近线的倾斜角为150 ,点M 在双曲线上,且124MF MF -= .(1)求双曲线C 的标准方程;(2)设椭圆M 以双曲线C 的顶点为焦点,焦点为顶点,直线():01l y kx m m =+<<交M 于,A B 两点(均不在坐标轴上),若AOB 的面积为1,求222k m -的值.设()()1122,,,A x y B x y ,由2214x y y kx m ⎧+=⎪⎨⎪=+⎩得:()222148440k x kmx m +++-=则()2216140k m ∆=+->,即2214m k <+,122814km x x k ∴+=-+,21224414m x x k -=+,设l 与y 轴交于点T ,则()0,T m ,(1211122AOB AOT BOT S S S m x x m x ∴=+=⋅-=⋅+ 2222222141414121414m k m m k m k k+-=⋅=⋅+-=++,()2222214144k k mm +∴+-=,即()222412k m ⎡⎤+-=⎣⎦整理可得:22122k m -=-.【点睛】思路点睛:求解直线与椭圆综合应用中的三角形面积问题的基本思路如下:①假设直线方程,与椭圆方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出所求三角形的面积.12.如图,过抛物线2:2(0)E x py p =>的焦点F 作直线l 交E 于A ,B 两点,点A ,B 在x 轴上的射影分别为D ,C ,当AB 平行于x 轴时,四边形ABCD 的面积为4.(1)求p 的值;(2)过抛物线上两点的弦和抛物线弧围成一个抛物线弓形,古希腊著名数学家阿基米德建立了这样的理论:以抛物线弓形的弦为底,以抛物线上平行于弦的切线的切点为顶点作抛物线弓形的内接三角形,则抛物线弓形的面积等于该内接三角形面积的43倍.已知点P 在抛物线E 上,且E 在点P 处的切线平行于AB ,根据上述理论,从四边形ABCD 中任取一点,求该点位于图中阴影部分的概率的取值范围.13.已知椭圆:22:1(0)x y E a b a b +=>>的左、右顶点分别为12,A A ,上、下顶点分别为12,B B ,122B B =,四边形1122A B A B 的周长为(1)求椭圆E 的方程;(2)设斜率为k 的直线l 与x 轴交于点P ,与椭圆E 交于不同的两点M ,N ,点M 关于y 轴的对称点为M '、直线M N '与y 轴交于点Q .若OPQ △的面积为2,求k 的值.123((2,2M M M -⎭中恰有两个点在椭圆上.(1)求椭圆C 的方程;(2)若C 的上顶点为E ,右焦点为F ,过点F 的直线交C 于A ,B 两点(与椭圆顶点不重合),直线EA ,EB 分别交直线40x y --=于P ,Q 两点,求EPQ △面积的最小值.⊥两点,O为坐标原点,OA OB(1)求C的方程;(2)在x轴上是否存在点T,使得直线TA与直线TB的斜率之和为定值k.若存在,求出点T的坐标和定值k;若不存在,请说明理由.,抛物线C的准线与x轴的交点为B,且||AB=(1)求抛物线C的标准方程;(2)过点B的直线l与抛物线C交于E,F两点(异于点A),若直线,EA FA分别交准线于点,M N,求||||BMBN的值.17.在直角坐标系xOy 中,已知椭圆2:12+=E y 的右顶点、下顶点、右焦点分别为A ,B ,F .(1)若直线BF 与椭圆E 的另一个交点为C ,求四边形ABOC 的面积;(2)设M ,N 是椭圆E 上的两个动点,直线OM 与ON 的斜率之积为12-,若点P 满足:2OP OM ON =+.问:是否存在两个定点G ,H ,使得PG PH +为定值?若存在,求出G ,H 的坐标;若不存在,请说明理由.18.已知双曲线22:1(0,0)C a b a b -=>>的左、右焦点分别为1F ,2F ,且124F F =,P 是C 上一点.(1)求C 的方程;(2)不垂直于坐标轴的直线l 交C 于M ,N 两点,交x 轴于点A ,线段MN 的垂直平分线交x 轴于点D ,若||||2||AM AN AD ⋅=,证明:直线l 过四个定点()()()()3,0,1,0,1,0,3,0--中的一个.19.已知过点()1,e 的椭圆E :()2210x y a b a b+=>>的焦距为2,其中e 为椭圆E 的离心率.(1)求E 的标准方程;(2)设O 为坐标原点,直线l 与E 交于,A C 两点,以OA ,OC 为邻边作平行四边形OABC ,且点B 恰好在E 上,试问:平行四边形OABC 的面积是否为定值?若是定值,求出此定值;若不是,说明理由.20.已知椭圆Γ:(210,2x y m m m +=>≠,点,A B 分别是椭圆Γ与y 轴的交点(点A 在点B 的上方),过点()0,1D 且斜率为k 的直线l 交椭圆Γ于,E G 两点.(1)若椭圆Γ焦点在x 轴上,且其离心率是2,求实数m 的值;(2)若1m k ==,求BEG 的面积;(3)设直线AE 与直线2y =交于点H ,证明:,,B G H 三点共线.。

洛必达法则巧解高考压轴题(好东西)

洛必达法则巧解高考压轴题(好东西)
许多省市的高考试卷的压轴题都是导数应用问 题,其中求参数的取值范围就是一类重点考查的 题型.这类题目容易让学生想到用分离参数的方 法,一部分题用这种方法很凑效,另一部分题在 高中范围内用分离参数的方法却不能顺利解决, 高中阶段解决它只有华山一条路——分类讨论 和假设反证的方法.
3.洛必达法则
虽然这些压轴题可以用分类讨论和假设反证的方 法求解,但这种方法往往讨论多样、过于繁杂, 学生掌握起来非常困难.研究发现利用分离参数
①当
x
0
时,
a
R
;②当
x
0
时,
ex
1
x
ax2
等价于
a
ex
1 x2
x
.

g(x)
ex
1 x2
x
x
(0,+)
,则
g
'( x)
(x
2)ex x3
x
2
.
记 h(x) (x 2)ex x 2 x (0,+) ,则 h '(x) (x 1)ex 1,当 x (0,+) 时, h ''(x) xex 0 ,

当 x 0 ,且 x 1时, f (x) ln x k ,即 ln x 1 ln x k , x 1 x x 1 x x 1 x
也即 k
x ln x x 1
1 x
x ln x x 1
2x ln x 1 x2
1,记
g(x)
2x ln x 1 x2
1,
x
0 ,且
x
1

g
'( x)
2( x 2
1 x
(Ⅰ)设 a 0 ,讨论 y f x 的单调性;

2022年高考数学全国乙卷导数压轴题解析

2022年高考数学全国乙卷导数压轴题解析

㊀㊀㊀讲题比赛获奖论文之六:2022年高考数学全国乙卷导数压轴题解析◉中央民族大学附属中学呼和浩特分校㊀李雪峰㊀㊀摘要:函数零点问题在高考压轴题中经常出现.在解题过程中,按照一定标准对参数分类讨论㊁把握细节确定方向㊁引入隐零点㊁区间卡根,这些方面都可能成为解决零点问题的障碍.所以,选取适当的角度观察㊁分析,根据题目中的关键信息制定策略㊁拟定解题思路,并在此基础上进行计算㊁推理论证,往往是解题的关键.只有明白了思考的底层逻辑,才能使分析问题㊁解决问题的能力有所提高.关键词:函数零点问题;分类讨论;数形结合;区间卡根1试题呈现(2022年高考数学全国乙卷第21题)已知函数f (x )=l n (1+x )+a x e -x.(1)当a =1时,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)若f (x )在区间(-1,0),(0,+ɕ)各恰有一个零点,求a 的取值范围.2试题解析本题的第(1)问不多赘述,下面给出第(2)问的几种不同的思考角度和解题方法.2.1思路一及解法2.1.1解题思路一的形成因为题中所给条件是函数零点问题,所以我们先观察函数值的正负情况以及何时为零.当a ȡ0时,若x >0,则f (x )=l n (1+x )+a x e -x>0恒成立,与题意不符.因此,下面只讨论a <0时的情形.通过观察易知f (0)=0,当x ң-1时,f (x )ң-ɕ;当x ң+ɕ时,f (x )ң+ɕ.要使f (x )在区间(-1,0),(0,+ɕ)各恰有一个零点,则可以猜测f (x )的图象大致如图1所示.图1由图1可知,fᶄ(0)=a +1<0显然为其必要条件,即a <-1.下面需要说明:①当a ȡ-1时,不符合题意;②当a <-1时,讨论函数f (x )的单调性,再根据零点存在定理说明在区间(-1,0)和(0,+ɕ)上各恰有一个零点.思路一的思维导图如图2所示.函数f (x )零点问题观察函数的零点及正负情况确定讨论a 的标准说明a ȡ0和-1ɤa <0时不符合题意当a <-1时,利用隐零点讨论f (x )的单调性,并区间探点,说明a <-1时符合题意得出结论图22.1.2具体解法解法1:由思路一的分析可知a ȡ0不合题意,下面只讨论a <0时的情形.由f (x )求导,得f ᶄ(x )=e x +a (1-x 2)(x +1)ex.设g (x )=e x +a (1-x 2).当-1ɤa <0时,在区间(0,+ɕ)上,有g (x )=e x +a (1-x 2)=(e x+a )-a x 2>0.所以,在区间(0,+ɕ)上,f ᶄ(x )>0,f (x )单调递增,则f (x )>f (0)=0,这与题意不符.当a <-1时,g ᶄ(x )=e x-2a x ,因为g ᵡ(x )=e x-2a >0,所以g ᶄ(x )在区间(-1,+ɕ)上单调递增.又因为g ᶄ(-1)=e -1+2a <0,gᶄ(0)=1>0,所以存在唯一x 0ɪ(-1,0),使g ᶄ(x 0)=0.因此,当x ɪ(-1,x 0)时,g ᶄ(x )<0,g(x )单调递减;当x ɪ(x 0,+ɕ)时,g ᶄ(x)>0,g (x )单调递增.(为直观起见,下面分别画出函数g ᶄ(x ),g (x ),f (x )的大致图象,如图3~5所示.)图3㊀㊀图4322022年12月上半月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀试题研究命题考试Copyright ©博看网. All Rights Reserved.㊀㊀㊀图5于是g (x 0)<g (0)=a +1<0,又因为g (-1)=1e >0,g (1)=e >0,所以存在x 1ɪ(-1,x 0),x 2ɪ(x 0,1),使g (x 1)=g (x 2)=0.当x ɪ(-1,x 1)时,g (x )>0,f ᶄ(x )>0,f (x )单调递增;当x ɪ(x 1,x 2)时,g (x )<0,f ᶄ(x )<0,f (x )单调递减;当x ɪ(x 2,+ɕ)时,g (x )>0,fᶄ(x )>0,f (x )单调递增.同时可知f (x 1)>f (0)=0,f (x 2)<f (0)=0.(至此,利用隐零点求出了函数f (x )的单调区间.下面利用放缩法进行区间卡根,根据零点存在定理说明在区间(-1,0)和(0,+ɕ)上各恰有一个零点.)当-1<x <0时,因为x e -x>-e(证明略),所以f (x )=l n (1+x )+a x e -x<l n (x +1)-e a .由l n (x +1)-e a <0,得x <e e a -1.取m =e e a-1,则f (m )<0,从而存在唯一s ɪ(m ,x 1),使f (s )=0.当x >0时,因为x e -xɤ1e (证明略),所以f (x )=l n (1+x )+a x e -x>l n (x +1)+a e.由l n (x +1)+a e>0,得x >e -a e-1.取n =e -a e-1,则f (n )>0,从而存在唯一t ɪ(x 2,n ),使f (t )=0.所以,当a <-1时,函数f (x )区间(-1,0)和(0,+ɕ)上各恰有一个零点.综上所述,a 的取值范围是(-ɕ,-1).解法2:当a ȡ0时,在区间(0,+ɕ)上,f (x )=l n (1+x )+a x e -x>0,与题意不符.下面只讨论a <0时的情形.由f (x )求导得f ᶄ(x )=1x +1+a (1-x )ex=1x +1[1+a (1-x 2)e x].(注意常见的变形技巧:对数 单身狗 ,指数 找朋友 .)设g (x )=1+a (1-x 2)ex,x ɪ(-1,+ɕ).求导,得g ᶄ(x )=a (x 2-2x -1)ex,x ɪ(-1,+ɕ).易得g (x )在(-1,1-2)上单调递减,在(1-2,1+2)上单调递增,在(1+2,+ɕ)上单调递增.当-1ɤa <0时,g (0)=a +1ȡ0,又因为当x >1+2时,g (x )=1+a (1-x 2)ex>1,所以当x >0时,g (x )>0,f ᶄ(x )>0,f (x )单调递增,从而f (x )>f (0)=0,这与题意不符.(为直观起见,给出g (x )的图象,如图6所示.)图6当a <-1时,g (0)=a +1<0,因为g (-1)=g (1)=1>0,g (1-2)<g (0)<0,所以存在唯一x 1ɪ(-1,0),x 2ɪ(0,1),使g (x 1)=g (x 2)=0.此时f (x )在(-1,x 1)上单调递增,(x 1,x 2)上单调递减,在(x 2,+ɕ)上单调递增.故f (x 1)>f (0)=0>f (x 2).(为直观起见,给出g (x ),f (x )的图象,如图7.)㊀图7下面找点说明f (x )在区间(-1,0),(0,+ɕ)上有零点.f (x )=l n (1+x )+a xex (a <-1).设m (x )=x e x ,则x ɪ(-1,1)时,m ᶄ(x )=1-xex >0,x ɪ(1,+ɕ)时,m ᶄ(x )<0.于是m (x )ɪ-e ,1e æèçöø÷.所以,可得l n (1+x )+ae<l n (1+x )+a xex <l n (1+x )-a e .由l n (1+x )+a e=0,解得x =e -ae-1>0,f (e -a e-1)>l n (1+e --1)+a e=0.由l n (1+x )-a e =0,解得x =e e a-1.所以可得f (e a e -1)<l n (1+e a e-1)-a e =0.所以f (x )在区间(-1,0),(0,+ɕ)上各恰有一个零点.综上所述,a 的取值范围是(-ɕ,-1).点评:解法1和解法2的基本思路一样,都是按照一定的标准对参数a 进行分类讨论,然后借助隐零点将函数的定义域分成若干个单调区间,最后在每个单调区间上卡根,根据零点存在定理说明函数零点的情况.解法2在求导后将导函数等价变形,使再求导后只需解一个不含参的二次不等式,简化了运算.解题一般是按照由易到难的顺序进行思考,即先42命题考试试题研究㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2022年12月上半月Copyright ©博看网. All Rights Reserved.㊀㊀㊀观察㊁猜想,再分析㊁思辨,最后论证㊁求解.题目越复杂越要注意细节,细节往往是打通解题思路的关键.2.2思路二及解法2.2.1解题思路二的形成函数零点的问题往往可以转化为两个函数图象交点问题,因此该题可以考虑参变分离,将函数零点的问题转化为直线与另一个函数图象交点问题,同时还可以避免参数讨论带来的麻烦.思路二的思维导图,如图8所示.函数f (x )零点问题转化为直线y =-a 与y =F (x )图象交点问题求导后,讨论F ᶄ(x )的符号及F (x )的单调性x >0时,求出F (x )在x =0处的极限,由图可得a <-1当x <0时,利用隐零点,讨论F (x )的单调性,并求出F (x )当x 趋于-1时的极限,由图可得a <-1得出结论图82.2.2具体解法解法3:因为f (0)=0,所以f (x )=0等价于-a =e x l n (1+x )x.令F (x )=e x l n (1+x )x (x >-1),则F ᶄ(x )=e x[(x 2-1)l n (1+x )+x ]x 2(x +1).令g (x )=(x 2-1)l n (1+x )+x ,则gᶄ(x )=x [1+2l n (1+x )].(注意到g (0)=0,所以先讨论g (x )在x >0时的正负情况.)当x >0时,gᶄ(x )>0,则g (x )单调递增,g (x )>g (0)=0,从而当x >0时,F ᶄ(x )>0,F (x )在(0,+ɕ)单调递增.由导数定义,得㊀F (x )>l i m x ң0F (x )=l i m x ң0e xl n (1+x )-e 0l n (1+0)x -0=[e xl n (1+x )]ᶄ|x =0=[e x 11+x +e xl n (1+x )]|x =0=1.(为直观起见,下面给出F (x )的图象.)图9如图9所示,要使直线y =a 与F (x )图象在y 轴右侧恰有一个交点,则必然有-a >1,即a <-1.因为e e l n (1+e -a )e-a+a >l n (1+e -a )+a >l n e -a+a =0,所以由零点存在定理可知,a <-1时,f (x )在区间(0,+ɕ)恰有一个零点.当-1<x <0时,令g ᶄ(x )=0,得x =e --1.易知g (x )在(-1,e -12-1)上单调递增,在(e -12-1,0)上单调递减,则g (e -12-1)>g (0)=0.因为g (e -1-1)=-e 2+3e -1e2<0,所以存在唯一x 0ɪ(e -1-1,e -12-1),使g (x 0)=0.(为直观起见,给出g (x ),F (x )的图象,如图10.)㊀㊀图10当-1<x <x 0时,g (x )<0,F ᶄ(x )<0,F (x )单调递减;当x 0<x <0时,g (x )>0,F ᶄ(x )>0,F (x )单调递增.所以F (x 0)<l i m x ң0F (x )=1.又因为l i m x ң-1F (x )=+ɕ,所以要使直线y =a 与f (x )图象在y 轴左侧恰有一个交点,则必然有-a >1,即a <-1.综上所述,当a <-1时,f (x )在区间(-1,0),(0,+ɕ)各恰有一个零点.点评:解法3的好处在于对F (x )求导后避免了参数的讨论;难点在于当x 趋于0时F (x )的极限值不易求出,虽然可用洛必达法则,但是超出了高中所学.该解法绕开了洛必达法则,利用导数的定义求出F (x )在x =0处的极限,比较巧妙,不易想到.3试题链接下面给出两道高考真题,供读者练习.试题1㊀(2017年全国Ⅰ卷理科)已知函数f (x )=a e 2x +(a -2)e x-x .(1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.试题2㊀(2018年全国Ⅱ卷理科)已知函数f (x )=e x-a x 2.(1)若a =1,证明:当x ȡ0时,f (x )ȡ1;(2)若f (x )在(0,+ɕ)只有一个零点,求a .4总结函数零点问题是高考的常考内容,数形并用㊁合理分类是解题的关键.区间探点是一个难点,常常可以用放缩法解决.上述方法都是解决此类问题的典型方法,由于方法3中的极限值不易求出,考试中绝大多数考生选择了方法1和方法2.该题对学生的逻辑推理能力和运算能力要求较高,解题时要求学生注意细节㊁大胆猜想㊁合理分类㊁准确计算,这样才能将问题顺利解决.Z522022年12月上半月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀试题研究命题考试Copyright ©博看网. All Rights Reserved.。

高考数学复习历年压轴题归类专题讲解: 圆锥曲线解答题突破(解析版)

高考数学复习历年压轴题归类专题讲解: 圆锥曲线解答题突破(解析版)

高考数学复习历年压轴题归类专题讲解 圆锥曲线解答题突破(解析版)1.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为12,F F ,其离心率12e =,点P为椭圆上的一个动点,12PF F △面积的最大值为(1)求椭圆的标准方程;(2)若A ,B ,C ,D 是椭圆上不重合的四个点,AC 与BD 相交于点1F ,0AC BD ⋅=,求+AC BD 的取值范围.【答案】(1)2211612x y +=;(2)96,147⎡⎤⎢⎥⎣⎦. 解:(1)由题意得,当点P 是椭圆的上、下顶点时,12PF F △的面积取最大值此时121212PF F S F F OP bc ∆=⋅⋅=所以bc = 因为12e =,所以b =4a = 所以椭圆方程为2211612x y +=(2)由(1)得椭圆方程为2211612x y +=,则1F 的坐标为(2,0)-因为0AC BD ⋅=,所以AC BD ⊥①当直线AC 与BD 中有一条直线斜率不存在时,易得6814AC BD +=+= ②当直线AC 斜率k 存在且0k ≠,则其方程为(2)y k x =+,设11(,)A x y ,22(,)C x y则点A 、C 的坐标是方程组22(2)11612y k x x y =+⎧⎪⎨+=⎪⎩的两组解所以2222(34)1616480k x k x k +++-=所以212221221634164834k x x k k x x k ⎧+=-⎪⎪+⎨-⎪⋅=⎪+⎩所以212224(1)134k AC x k+=+-=+ 此时直线BD 的方程为()12y x k=-+ 同理由221(2)11612y x k x y ⎧=-+⎪⎪⎨⎪+=⎪⎩可得2224(1)43k BD k +=+ 2222222224(1)24(1)168(1)3443(34)(43)k k k AC BD k k k k ++++=+=++++令21(0)t k k =+≠,则1t >,2168112AC BD t t+=-+ 因为1t >,所以21104t t -<≤ 所以96[,14)7AC BD +∈ 综上96[,14]7AC BD +∈2.已知椭圆C :2212x y +=.(1)曲线D :3y x =与C 相交于A ,B 两点,H 为C 上异于A ,B 的点,若直线HA 的斜率为1,求直线HB 的斜率;(2)若C 的左焦点为F ,右顶点为E ,直线l :4x =.过F 的直线l '与C 相交于P ,Q (P 在第一象限)两点,与l 相交于M ,是否存在l '使PFE △的面积等于△MPE 的面积与QFE △的面积之和.若存在,求直线l '的方程;若不存在,请说明理由.【答案】(1)12-;(2)直线l '不存在,理由见解析(1)由已知设(),H x y ,()11,A x y ,()11,B x y --, 因为点,H A 均在椭圆C 上,所以2222x y +=,221122x y +=,两式相减得()2222112x x y y -=-,又221112211112HA HBy y y y y y k k x x x x x x -+-⋅=⋅==--+-,且1HA k =, ∴12HB k =-;(2)设()04,M y ,()33,P x y ,()44,Q x y ,则()0303111222MPE S FE y FE y FE y y =⋅⋅-⋅⋅=⋅⋅-△,312PFESFE y =⋅⋅, ()412QFESFE y =⋅⋅-, 假设存在l '使得PFE △的面积等于△MPE 的面积与QFE △的面积之和,则PFE MPE QFE S S S =+△△△,即0342y y y =+①, 设l :1x my =-,令4x =,得05y m =,∴3452y y m+=②, 把1x my =-,将之代入2212x y +=,整理得()222210m y my +--=,∴34222my y m +=+③, 34212y y m =-+④,②③联立得32522m y m m =-+,42452m y m m=-+⑤, 把⑤代入④得22252451222m m m m m m m ⎛⎫⎛⎫--=- ⎪⎪+++⎝⎭⎝⎭, 化简得4219500m m ++=,由于此方程无解,故所求直线l '不存在.3.如图,已知椭圆2214y x +=,点()1,0F 是抛物线()220y px p =>的焦点,过点F 作直线l 交抛物线于,M N 两点,延长,MO NO 分别交椭圆于,A B 两点,记OMN ,OAB 的面积分别是12,S S .(Ⅰ)求p 的值及抛物线的准线方程;(Ⅱ)求12S S 的最小值及此时直线l 的方程. 【答案】(Ⅰ)2p =,准线方程1x =-;(2)12S S 的最小值为2,此时:1l x =. (Ⅰ)因为点()1,0F 是抛物线()220y px p =>的焦点,所以12p=,即2p =,因此该抛物线的准线方程为:1x =-; (Ⅱ)由(Ⅰ)得抛物线方程为:24y x =,根据题意,不妨令点M 在第一象限,点N 在第四象限,则点A 在第三象限,点B 在第二象限;若直线l 的斜率不存在,则:1l x =,代入24y x =可得2y =±,即()1,2M ,()1,2N -,则1122OMNS SOF MN ==⋅=;2OM k =,2ON k =-, 则直线:2OM y x =,直线:2ON y x =-,由22214y x y x =⎧⎪⎨+=⎪⎩得22122AA x y ⎧=⎪⎨⎪=⎩,所以2A A x y ⎧=-⎪⎨⎪=⎩,即A ⎛ ⎝;同理:B ⎛ ⎝,则AB x ⊥轴,因此21122OABS S==⨯⨯=; 此时122S S =,:1l x =;若直线l 的斜率存在,设直线l 的方程为()1y k x =-,(1,M x,(2,N x -,由()214y k x y x⎧=-⎨=⎩得()2214k x x -=,整理得()2222240k x k x k -++=, 则212224k x x k++=,121=x x ;()224224416160k k k ∆=+-=+>,所以11sin 2OMNS SOM ON MON MON ==⋅∠=∠MON MON =∠=∠;又1OM k==,2ON k ==, 所以直线:OM y x=,:ON y x =, 由2214y x y x ⎧=⎪⎪⎨⎪+=⎪⎩得1221x x x +=,即2111A x x x =+,则2211441A y x x x ==+,所以OA ==;同理OB =,所以21sin 2OABS SOA OB AOB AOB ==∠=∠A OB ∠=又AOB MON ∠=∠,所以12S S MON ===∠2==>=; 综上,12S S 的最小值为2,此时:1l x =.4.在平面直角坐标系xOy 中,已知椭圆2222:1(0,0)x y C a ba b +=>>短轴的两个顶点与右焦点的连线构成等边三角形,两准线之间的距离为.(1)求椭圆C 的标准方程;(2)直线:(0,0)l y kx m k m =+>≠与椭圆C 交于P ,Q 两点,设直线OP ,OQ 的斜率分别为1k ,2k .已知212·k k k =. ①求k 的值;②当OPQ △的面积最大时,求直线PQ 的方程.【答案】(1)2214x y +=;(2)①12k =;②112y x =±.解:(1)设椭圆的焦距为2c ,则222c a b =-.因为短轴的两个顶点与右焦点的连线构成等边三角形,所以=c .,则22a c = 所以2a =,1b =,所以椭圆C 的标准方程为2214x y +=.(2)①设1(P x ,1)y ,2(Q x ,2)y ,联立22,1,4y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得222(41)8440k x kmx m +++-=, 2222644(41)(44)0k m k m ∆=-+->,化简得2241m k <+,所以122841km x x k -+=+,212244·41m x x k -=+, 又OP 的斜率111y k x =,OQ 的斜率222y k x =,所以2221212121212121212()()()·y y kx m kx m k x x km x x m k k k x x x x x x +++++====,化简得212()0km x x m ++=,所以228·041kmkm m k -+=+.又因为0m ≠,即241k =, 又0k >,所以12k =. ②由①得12k =,直线PQ 的方程为12y x m =+, 且122x x m +=-,212·22x x m =-,22m <. 又0m ≠,所以0m <<所以12PQ x ==-== 点O 到直线PQ的距离d ==,所以221(2)·122OPQm m SPQ d +-===≤=, 当且仅当222m m =-,即1m =±时,OPQ △的面积最大, 所以,直线PQ 的方程为112y x =±. 5.已知椭圆2222:1(0)x y C a b a b+=>>的两焦点为1(F,2F ,且椭圆上一点P ,满足12|||4|PF PF +=,直线:l y kx m =+与椭圆C 交于A 、B 两点,与x 轴、y 轴分别交于点G 、H ,且OA OB OM λ+=.(1)求椭圆C 的方程;(2)若k =||2AB λ==,求||||HG HM ⋅的值;(3)当△OAB 面积取得最大值,且点M 在椭圆C 上时,求λ的值.【答案】(1)2214x y +=(2)3(3)λ=(1)由题意可得2,1a c b ==⇒=,∴椭圆方程为2214x y +=(2)由题意得,此时直线方程为y m =+,将其代入椭圆方程整理可得229440x m ++-=,其中()222212836441441609m m m m ∆=--=->⇒<设()()1122,,,A x y B x y ,则2121244,99m x x x x -+=-=∴12322AB x m =-==⇒=±,由椭圆具有对称性,∴不妨取32m =,则310,,,26H G M ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴3HG HM ⋅ (3)将直线方程y kx m =+代入椭圆方程整理可得()222418440k x kmx m +++-=,其中()()222222644414464160k m k m k m ∆=-+-=-+16>,设()()1122,,,A x y B x y ,则2121222844,4141km m x x x x k k -+=-=++,∴12AB x=-=原点到直线的距离d=,∴()222241141ABCm k mSk∆++-=≤=+,当且仅当22412k m+=时等号成立,又()()121211,M x x y yλλ⎛⎫++⎪⎝⎭代入椭圆方程可得()()2212122214x x y yλλ+++=,其中221114xy+=,222214xy+=,∴整理得212128284x x y yλ++=再将1122,kx m y kx my=+=+代入,()()122128284kx mx m kxxλ+=+++整理得()()2221212828884k x x km x x mλ+++++=,()2222224488288844141m kmk km mk kλ-⎛⎫++-++=⎪++⎝⎭,整理得22λ=,λ=6.已知椭圆2222:1(0)x yC a ba b+=>>的焦距为2,过点(-.(1)求椭圆C的标准方程;(2)设椭圆的右焦点为F,定点()2,0P,过点F且斜率不为零的直线l与椭圆交于A,B两点,以线段AP为直径的圆与直线2x=的另一个交点为Q,证明:直线BQ恒过一定点,并求出该定点的坐标.【答案】(1)2212x y +=;(2)证明见解析,3(,0)2.(1)由题知2211112c a b =⎧⎪⎨+=⎪⎩ , 解得22a =,21b =, 所以椭圆C 的方程为2212x y +=;(2)设11(,)A x y ,22(,)B x y 因为直线l 的斜率不为零,令l 的方程为:1x my =+,由22112x my x y =+⎧⎪⎨+=⎪⎩ 得22(2)210m y my ++-=, 则12222m y y m +=-+,12212y y m ⋅=-+, 因为以AP 为直径的圆与直线2x =的另一个交点为Q ,所以AQ PQ ⊥,则1(2,)Q y ,则2122BQ y y k x -=-,故BQ 的方程为:2112(2)2y y y y x x --=-- , 由椭圆的对称性,则定点必在x 轴上,所以令0y =,则1212121212121(2)(1)222y x y my my y y x y y y y y y -----+=+=+=+---,而12222m y y m +=-+,12212y y m ⋅=-+,12122y y my y +-=-, 所以121211322222y y y x y y +-+=+=-+=-,故直线BQ 恒过定点,且定点为3(,0)2.7.已知()()1122,,,A x y B x y 是抛物线()2:20C x py p =>上不同两点.(1)设直线:4p l y =与y轴交于点M ,若,A B 两点所在的直线方程为1y x =-,且直线:4pl y =恰好平分AMB ∠,求抛物线C 的标准方程. (2)若直线AB 与x 轴交于点P ,与y 轴的正半轴交于点Q ,且2124p y y =,是否存在直线AB ,使得113PA PB PQ+=?若存在,求出直线AB 的方程;若不存在,请说明理由. 【答案】(1)28x y =(2)AB 方程为122py x =±+.(1)设()()1122p A x ,y ,B x ,y ,M 0,4⎛⎫⎪⎝⎭,由2x 2{1py y x ==-,消去y 整理得2x 2px 2p 0-+=,则212124p 80{x x 2x x 2p pp∆=->+==, ∵直线py 4=平分AMB ∠, ∴k k 0AM BM +=, ∴1212p p y y 440x x --+=,即:12121212p px 1x 1x x p 44210x x 4x x ----+⎛⎫+=-+= ⎪⎝⎭,∴p 4=,满足Δ0>,∴抛物线C 标准方程为2x 8y =. (2)由题意知,直线AB 的斜率存在,且不为零, 设直线AB 的方程为:y kx b(k 0b 0)=+≠>,,由2{x 2y kx bpy=+=,得2x 2pkx 2pb 0--=, ∴2212124p k 80{x x 2x x 2pb pkpb∆=+>+==-,∴()2222121222pb x x y y ?b 2p 2p 4p -===, ∵212p y y 4=, ∴22p b 4=, ∵b 0>, ∴p b 2=.∴直线AB 的方程为:p y kx 2=+. 假设存在直线AB ,使得113PA PB PQ +=,即PQ PQ 3PA PB+=, 作AA x '⊥轴,BB x '⊥轴,垂足为A B ''、,∴121212p pPQ PQ OQ OQ y y p 22·PA PB AA BB y y 2y y ++=+'=+=', ∵()21212y y k x x p 2pk p +=++=+,212p y y 4=,∴222PQ PQp 2pk p·4k 2pPA PB 24++==+,由24k 23+=,得1k 2=±, 故存在直线AB ,使得113PA PB PQ +=,直线AB 方程为1p y x 22=±+. 8.已知椭圆E :22221(0)x y a b a b +=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :3y x =-+与椭圆E 有且只有一个公共点T .(Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l '平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P ,证明:存在常数λ,使得2||||||PT PA PB λ=⋅,并求λ的值.【答案】(Ⅰ)22163x y +=,点T 坐标为(2,1);(Ⅱ)45λ=. 【解析】(Ⅰ)由已知,a =,则椭圆E 的方程为222212x y b b+=.由方程组得22312(182)0x x b -+-=.①方程①的判别式为2=24(3)b ∆-,由=0∆,得2=3b , 此时方程①的解为=2x ,所以椭圆E 的方程为22163x y +=.点T 坐标为(2,1).(Ⅱ)由已知可设直线l '的方程为1(0)2y x m m =+≠, 由方程组1{23y x m y x =+=-+,, 可得223{21.3mx my =-=+, 所以P 点坐标为(222,133m m -+),2289PT m =. 设点A ,B 的坐标分别为1122(,)(,)A x y B x y ,.由方程组22163{12x y y x m +==+,,可得2234(412)0x mx m ++-=.②方程②的判别式为2=16(92)m ∆-,由>0∆,解得m <<. 由②得212124412=,33m m x x x x -+-=.所以123m PA x ==--,同理223m PB x =--, 所以12522(2)(2)433m mPA PB x x ⋅=---- 21212522(2)(2)()433m mx x x x =---++ 225224412(2)(2)()43333m m m m -=----+ 2109m =. 故存在常数45λ=,使得2PT PA PB λ=⋅. 9.已知椭圆()2222:10x y C a b a b+=>>的左,右焦点分别为1F ,2F ,若椭圆经过点)1P-,且12PF F △的面积为2.(1)求椭圆C 的标准方程;(2)设斜率为1的直线l 与圆22:O x y b +=交于A ,B 两点,与椭圆C 交于C ,D 两点,且()R CD AB λλ=∈,当λ取得最小值时,求直线l 的方程并求此时λ的值.【答案】(1)22184x y +=;(2)3,y x =. 解:(1)由12PF F △的面积可得12122c ⨯⨯=.即2c =,∴224a b -=.①又椭圆C 过点)1P,∴22611a b +=.②由①②解得a =2b =.故椭圆C 的标准方程为22184x y +=.(2)由题知圆221:2O x y +=,设直线l 的方程为y x m =+,则原点到直线l的距离d =,由弦长公式可得AB ==.将y x m =+代入椭圆方程22184x y+=,得2234280x mx m ++-=,由判别式()221612280m m ∆=-->,解得m -<由直线和圆相交的条件可得d r <<,也即22m -<<,综上可得m 的取值范围是()2,2-. 设()11,C x y ,()22,D x y ,则1243m x x +=-,212283m x x -=,由弦长公式,得CD === 由CD AB λ=,得CD AB λ===∵22m -<<,∴2044m <-≤,则当0m =时,λ取得最小值3,此时直线l 的方程为y x =.10.在平面直角坐标系中,已知椭圆()2222:10x y C a b a b +=>>,直线():,R,0l y kx t k t k =+∈≠.(1)若椭圆C 的一条准线方程为4x =,且焦距为2,求椭圆C 的方程;(2)设椭圆C 的左焦点为F ,上顶点为A ,直线l 过点F ,且与FA 垂直,交椭圆C 于M ,N (M 在x 轴上方),若2NF FM =,求椭圆C 的离心率;(3)在(1)的条件下,若椭圆C 上存在相异两点P ,Q 关于直线l 对称,求2t 的取值范围(用k 表示).【答案】(1)22143x y +=;(2)e =(3)220,34k k ⎡⎫⎪⎢+⎣⎭.(1)设椭圆C 的半焦距为c ,因为椭圆C 的一条准线方程为4x =,且焦距为2,所以22224,22a c c a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得2,1a b c =⎧⎪=⎨⎪=⎩C 的方程为22143x y +=.(2)如图,因为()0,A b ,(),0F c -,所以AF b k c=, 因为直线l 过点F ,且与FA 垂直,所以直线l 的方程为bx y c c=--,与椭圆C 的方程联立得()4222324220b a c y b c y b c ++-=,因为l 过左焦点F , 所以>0∆恒成立,设()11,M x y ,()22,N x y ,则321242242124222,b c y y b a cb c y y b a c ⎧+=-⎪⎪+⎨⎪=-⎪+⎩(*), 因为2NF FM =, 所以212y y =-,代入(*)得32142242214222,2b c y b a cb cy b a c ⎧-=-⎪⎪+⎨⎪-=-⎪+⎩, 消去1y 并化简得4222280b a c b c +-=, 因为222b a c =-, 所以()()2222222280a ca c a a c c -+--=,即4224990c a c a -+=, 因为c e a=,所以429910e e -+=,解得2e =,所以6e ==.(3)如图,设()11,P x y ,()22,Q x y ,PQ 的中点()00,x y ,则221122221,43143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减并化简得 2121212134y y y y x x x x -+⋅=--+,即0034PQ y k x ⋅=-,因为1PQ k k=-,所以0034ky x =, 又00y kx t =+,所以004,3t x k y t⎧=-⎪⎨⎪=-⎩, 因为点()00,x y 在椭圆C 的内部,所以()2243143t t k ⎛⎫- ⎪-⎝⎭+<,化简得22234k t k <+.故2t 的取值范围为220,34kk ⎡⎫⎪⎢+⎣⎭.11.已知椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12,F F,离心率为2,P 是椭圆上一点,且△12PF F 面积的最大值为1.(1)求椭圆C 的方程;(2)过2F 且不垂直坐标轴的直线l 交椭圆C 于A ,B 两点,在x 轴上是否存在一点(,0)N n ,使得22||:||:AN BN AF BF =,若存在,求出点(,0)N n ,若不存在,说明理由.【答案】(1)2212x y +=;(2)(1,0)N ,过程见解析(1)121212PF F P SF F y =,由椭圆性质知当=P y b 时,△12PF F 面积最大. 由题得:22212122c b c a a b c ⎧⨯⨯=⎪⎪⎪=⎨⎪⎪=+⎪⎩解得1a b ⎧=⎪⎨=⎪⎩所以椭圆方程为:2212x y +=(2)设直线方程为(1)y k x =-,1122(,),(,)A x y B x y22(1)21y x x y k =-+=⎧⎪⎨⎪⎩ 化简得2222(21)4220k x k x k +-+-= 22121222422,2121k k x x x x k k -+==++ 22||:||:AN BN AF BF =,如图,作//AM BN 交2NF 延长线与M 点, 易证得22||||AF AM BN BF =,22||:||:AN BN AF BF = AM AN ∴= 22ANF BNF ∴∠=∠所以2F N 是ANB ∠的角平分线,则有0NB NA k k +=12120y yx n x n+=-- ,1221(1)(1)0y x y x ∴-+-= 1122,y kx k y kx k =-=-1221()(1)()(1)0kx k x kx k x ∴--+--= 12212()(+)20kx x kn k x x kn ∴+++=22222242()202121k k k kn k kn k k -∴⨯+++=++ 化简得1n =所以存在点(1,0)N 满足题意.12.已知椭圆()2222:10x y E a b a b +=>>的上顶点为P ,4,33b Q ⎛⎫ ⎪⎝⎭是椭圆E 上的一点,以PQ 为直径的圆经过椭圆E 的右焦点F .(1)求椭圆E 的方程;(2)过椭圆E 右焦点F 且与坐标轴不垂直的直线l 与椭圆E 交于A ,B 两点,在直线2x =上是否存在一点D ,使得ABD △为等边三角形?若存在,求出等边三角形ABD △的面积;若不存在,请说明理由.【答案】(1)2212x y +=;(2.解:依据题意得22224331b a b⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+=,得22a =,()0,P b ,(),0F c 又2220a b c PF QF ⎧=+⎨⋅=⎩, 22224033b cb c c ⎧=+⎪⎨⎛⎫---= ⎪⎪⎝⎭⎩, 1b c ∴==, ∴椭圆的方程为2212x y +=.(2)假设在直线2x =上存在一点D 使得ABD ∆为等边三角形,设直线():1l y k x =-由()22112y k x x y ⎧=-⎪⎨+=⎪⎩得,()2222214220k x k x k +-+-= ()()()42221642122810k k k k ∆=-+-=+>,设()11,A x y ,()22,B x y ,AB 的中点为()00,M x y则2122421k x x k ,21222221k x x k -=+ 202221k x k =+,()002121k y k x k -=-=+ )22121k AB k +∴=+.DBA △为等边三角形,所以MD 的斜率为1k-,又D 点的横坐标为2,2022221D k x k MD +∴=-=+DBA △为等边三角形,DM B ∴=)222212221221k k k k ++=++,得22k =.AB ∴=,DBA ∴△的面积为2513.已知椭圆()2222:10x y C a b a b+=>>的短轴长为13.(1)求椭圆C 的标准方程;(2)设椭圆C 的左,右焦点分别为1F ,2F 左,右顶点分别为A ,B ,点M ,N ,为椭圆C 上位于x 轴上方的两点,且12//F M F N ,记直线AM ,BN 的斜率分别为1k ,2k ,若12320k k +=,求直线1F M 的方程.【答案】(1)22198x y (2)0y -+=(1)由题意,得2b =c 1a 3=.又222a c b -=,∴a 3=,b =c 1=.∴椭圆C 的标准方程为22x y 198+=(2)由(1),可知()A 3,0-,()B 3,0,()1F 1,0-. 据题意,直线1F M 的方程为x my 1=-记直线1F M 与椭圆的另一交点为M ',设()()111M x ,y y 0>,()22M x ,y '.∵12FM //F N ,根据对称性,得()22N x ,y --. 联立228x 9y 721x my ⎧+=⎨=-⎩,消去x ,得()228m 9y 16my 640+--=,其判别式Δ0>,∴12216m y y 8m 9+=+,12264y y 8m 9=-+.① 由123k 2k 0+=,得12123y 2y 0my 2my 2+=++,即12125my y 6y 4y 0++=.② 由①②,解得12128m y 8m 9=+,22112my 8m 9-=+ ∵1y 0>,∴m 0>.∴()()12222128m?112m 64y y 8m 98m 9--==++.∴m = ∴直线1F M的方程为x y 1=-,即y 0-+=. 14.已知椭圆22221(0)x y a b a b +=>>的右焦点为F ,T 为椭圆上一点,O 为坐标原点,椭圆的离心率为,且TFO △面积的最大值为12.(1)求椭圆的方程;(2)设点()0,1A ,直线l :(1)y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ;直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若2OM ON ⋅=,求证:直线l 经过定点.【答案】(1)2212x y +=;(2)证明见解析.(1)设()00,T x y ,(c,0)F,由2c a =,可得222a c =, 依题意max 1122S cb =⋅=,所以a =1b =,所以椭圆C 的方程为2212x y +=.(2)设()11,P x y ,()22,Q x y .联立2212(1)x y y kx t t ⎧+=⎪⎨⎪=+≠⎩得()222124220k x ktx t +++-=,>0∆,122412kt x x k +=-+,21222212t x x k -=+,直线AP :1111y y x x --=,令0y =得111x x y -=-,即111x OM y -=-;同理可得221x ON y -=-. 因为2OM ON =,所以()12121212122111x x x x y y y y y y --==---++化简得221121t t t -=-+,解得只有0t =满足题意, 所以直线方程为y kx =,所以直线l 恒过定点(0,0).15.已知抛物线C :24y x =的焦点为F ,过F 的直线l 与抛物线C 交于A ,B 两点,其中点A 在第一象限,AD DB =.(1)若49OD k =(O 为坐标原点),求直线l 的方程; (2)点P 在x 轴上运动,若0,2FAP π⎛⎫∠∈ ⎪⎝⎭,求点P 横坐标的取值范围.【答案】(1) 210x y --=或440x y --=;(2) [)()0,11,9;解:(1)由题意得(1,0)F ,设直线l 的方程为:1x ty =+,设()()1122,,,A x y B x y ,线段MN 的中点()00,D x y ,联立直线与抛物线的方程:214x ty y x=+⎧⎨=⎩,整理可得:2440y ty --=,可得124y y t +=,124y y =-,所以02y t =,200121x ty t =+=+,即()221,2D t t +,所以2221OD t k t =+,由题意可得224219t t =+,解得2t =或14t =, 所以直线l 的方程为:210x y --=或440x y --=;(2)0,2FAP π⎛⎫∠∈ ⎪⎝⎭,即FAP ∠恒为锐角,等价于0AF AP ⋅>,设()2110,,(1,0),,0,4y A y F P x ⎛⎫⎪⎝⎭2211011,,1,44y y AP x y AF y ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭,则224222111101103110441644y y y y AP AF x y y x ⎛⎫⎛⎫⎛⎫⋅=--+=++-> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭恒成立, 令214y t =,则0t >,原式等价于203(1)0t t t x ++->,对任意的0t >恒成立,令200()(3)h t t x t x =+-+,①△220000(3)41090x x x x =--=-+<,解得:019x <<,②00302(0)0x h ⎧⎪-⎪⎨⎪⎪⎩,解得:001x , 又01x ≠,故001x <, 综上所述:0x 的取值范围[)()0,11,9.16.已知()1,0F -,Q 是圆K :222150x x y -+-=上的任意一点,线段FQ 的垂直平分线交QK 于点P .(1)求动点P 的轨迹E 的方程;(2)过F 作E 的不垂直于y 轴的弦AB ,M 为AB 的中点,O 为坐标原点,直线OM 与E 交于点C 、D ,求四边形ABCD 面积的取值范围.【答案】(1)22143x y +=;(2)6S ≤< (1)由题意可知42PF PK PQ PK FK +=+=>=, 所以动点P 的轨迹是以F 、K 为焦点且长轴长为4的椭圆.因此E 的方程为22143x y +=.(2)由题意可设AB 的方程为1x ky =-,代入2234120x y +-=,得()2234690k y ky +--=,设()11,A x y ,()22,B x y , 则122634k y y k +=+,122934y y k =-+.设1200023(,),234y y kM x y y k +==+, 2002234113434k x ky k k =-=-=-++, 所以2243,3434k M k k ⎛⎫- ⎪++⎝⎭,OM 的斜率为34k -. 直线OM 的方程为34ky x =-, 代入2234120x y +-=,解得221634x k =+,所以CD ==, 设点A ,B 到OM 的距离分别为1d ,2d ,则1d =,2d =()1212ACBDS CD d d =+===12y =-==== 所以,6S ≤<(当且仅当0k =等号成立).17.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,且12F F =过椭圆的右焦点2F 作长轴的垂线与椭圆,在第一象限交于点P ,且满足127PF PF =.(1)求椭圆的标准方程;(2)若矩形ABCD 的四条边均与椭圆相切,求该矩形面积的取值范围.【答案】(1)2214x y +=(2)[]8,10(1)由12F F =c =设2PF x =,因为127PF PF =,所以17PF x =,在Rt △12PF F 中,2221212PF PF F F =+,即224912x x =+,所以12x =, 所以284a x ==,解得2222,1a b a c ==-=,所以椭圆的标准方程为2214x y +=.(2)记矩形面积为S ,当矩形一边与坐标轴平行时,易知8S =.当矩形的边与坐标轴不平行时,根据对称性,设其中一边所在直线方程为y kx m =+,则对边所在直线方程为y kx m =-,另一边所在的直线方程为1y x n k =-+,则对边所在直线方程为1y x n k=--, 联立2244x y y kx m⎧+=⎨=+⎩,得()()222148410k x kmx m +++-=,由题意知()()222264161140k m m k ∆=--+=,整理得2241k m +=,矩形的一边长为1d =,同理2241n k +=,矩形的另一边长为2d =,122|4|1mnkS d dk=⋅==+44==44==因为0k≠,所以20k>,所以2212kk+≥(当且仅当21k=时等号成立),所以22990,142kk⎛⎤∈ ⎥⎝⎦++52,2⎛⎤⎥⎝⎦,所以(8,10]S∈.综上所述,该矩形面积的取值范围为[]8,10.18.已知椭圆2214yx+=,直线1l y kx=+:分别与x轴y轴交于,M N两点,与椭圆交于,A B两点.(1)若AM NB=,求直线l的方程;(2)若点P的坐标为()0,2,-求PAB△面积的最大值.【答案】(1)21y x=±+;(2(1)设()()1122,,,A x yB x y联立直线方程与椭圆方程有22141yxy kx⎧+=⎪⎨⎪=+⎩有()224230,k x kx++-=有12224x x kk+=-+,()1212224224k x xy yk+++==+,所以AB 中点坐标为224,44k k k ⎛⎫- ⎪++⎝⎭,(0)k ≠ 由1,0M k ⎛⎫- ⎪⎝⎭,()0,1N ,MN 中点坐标为11,22k ⎛⎫- ⎪⎝⎭.因为AM NB =,所以线段MN 的中点与AB 的中点重合,有221241424k k k k ⎧-=-⎪⎪+⎨⎪=⎪+⎩ 解得:2k =± (2)12|3|21PABSx x =⨯⨯-=由(1)中可知12224kx x k +=-+,12243x x k =-+⋅故PABS=661==因为3,43所以6331PAB S ∆=,当0k =时PAB △面积最大.19.如图所示,椭圆()222210x y a b a b +=>>的左、右顶点分别为1A 、2A ,上、下顶点分别为1B 、2B ,右焦点为F ,13A F =,离心率为12.(1)求椭圆的方程;(2)过点()0,1E 作不与y 轴重合的直线l 与椭圆交于点M 、N ,直线1MB 与直线2NB 交于点T ,试讨论点T 是否在某条定直线上,若存在,求出该直线方程,若不存在,请说明理由.【答案】(1)22143x y +=;(2)存在,且定直线方程为3y =. (1)由题意可得1123c e a A F a c ⎧==⎪⎨⎪=+=⎩,解得2a =,1c =,b ∴==因此,椭圆的标准方程为22143x y +=;(2)由题意可知直线l 的斜率存在,设直线l 的方程为1y kx =+,设点()11,M x y 、()22,N x y ,联立2213412y kx x y =+⎧⎨+=⎩,消去x 并整理得()2243880k x kx ++-=, ()()22264324396210k k k ∆=++=+>, 由韦达定理得122843k x x k +=-+,122843x x k =-+.易知点(1B、(20,B ,直线1MB的斜率为(11111kx k x +==,直线1MB的方程为1y k x = 直线2NB的斜率为(222221kx y k x x ++==,直线2NB的方程为2y k x =由1y k x =,2y k x =(112212211kx kx x x k k x ++-===,其中12122843kkx x x x k =-=++,((121221222122x x x x x x x ⎡⎤-+++++====解得3y =.因此,点T 在定直线3y =上.20.如图,焦点在x 轴上的椭圆1C 与焦点在y 轴上的椭圆2C 都过点(0,1)M ,中心都在坐标原点,且椭圆1C 与2C.(1)求椭圆1C 与椭圆2C 的标准方程;(2)过点M 且互相垂直的两直线分别与椭圆1C ,2C 交于点A ,B (点A 、B 不同于点M ),当MAB △的面积取最大值时,求直线MA ,MB 斜率的比值.【答案】(1)2213x y +=,22+31y x =;(2.(1)设椭圆2212211:1x y C a b +=,2222222:1y x C a b +=,依题意得对1C :11b =,222112123a b e e a -=⇒==,得213a ,1C ∴:2213x y +=,同理对2C :21a =,2222222233a b e e a -=⇒==,得2213b , 2C ∴:22+311x y =,即22+31y x=;(2)设直线MA MB ,的斜率分别为12k k ,, 则MA :11y k x =+,与椭圆方程联立得:2222111313031x y x k x y k x ⎧+=⎪⇒++-=⎨⎪=+⎩(), 得22113160k x k x ()++=,得1216=31A k x k -+,212131=31A k y k -++,所以2112211631(,)3131k k A k k -+-++,同理可得222222223,33k k B k k ⎛⎫-- ⎪++⎝⎭, 所以221122222211226622=(,),,313133k k k k MA MB k k k k ⎛⎫----= ⎪++++⎝⎭,MA MB ⊥,从而可以求得611=22S MA MB ⎛⋅=- 112222222242436412334163k k k k k k 121=2313k k ++, 因为121k k =-,所以()()3112216+=31k k S k+,不妨设()()31111221+031k k k f k k >=+,,()()2341112136131k k f kk'--+=+,令()0f k '=,即4211361=0k k --+,解得2113=,3k k -=当1111()0,),(0)k f k k f k ∈'>∈+∞'<,当1k =时,1()f k 取得极大值也是最大值,即S 取得最大值, 此时两直线MA ,MB斜率的比值21123==3k k k --. 21.已知椭圆D :22221x y a b +=(0a b >>)的短轴长为2(1)求椭圆D 的方程;(2)点()0,2E ,轨迹D 上的点A ,B 满足EA EB λ=,求实数λ的取值范围.【答案】(1)2214x y +=(2)1,33⎡⎤⎢⎥⎣⎦(1)由已知2221a b c b c a⎧⎪=+⎪⎪=⇒⎨⎪⎪=⎪⎩ 2a =,1b =,c =所以D 的方程为2214x y +=(2)过()0,2E 的直线若斜率不存在,则13λ=或3.设直线斜率k 存在()11,A x y ,()22,B x y222440y kx x y =+⎧⇒⎨+-=⎩ ()221416120k x kx +++=则()()()()122122120,116,21412,314,4k x x k x x kx x λ⎧∆≥⎪-⎪+=⎪+⎨⎪=⎪+⎪=⎩由(2)(4)解得1x ,2x 代入(3)式得()2222161214141k k k λλ-⎛⎫⋅= ⎪++⎝⎭+ 化简得()22314641k λλ⎛⎫=+ ⎪⎝⎭+ 由(1)0∆≥解得234k ≥代入上式右端得 ()2311641λλ<≤+ 解得133λ<<综上实数λ的取值范围是1,33⎡⎤⎢⎥⎣⎦.点睛:解析中出现EA EB λ=属于 λ问题,由EA EB λ=得出12x x λ=,结合韦达定理找到λ与k的关系,再利用0∆≥建立不等关系即得解.22.已知点F 是抛物线2:2(0)C x py p =>的焦点,点00(3,)(1)P y y >是抛物线C 上一点,且134PF =,Q 的方程为22(3)6x y +-=,过点F 作直线l ,与抛物线C 和Q 依次交于.(如图所示)(1)求抛物线C 的方程; (2)求()MB NA AB +的最小值.【答案】(1);(2).由在抛物线上得,又由得,解得,,又,故.所以抛物线的方程为.由题知直线的斜率一定存在,设直线的方程为.则圆心到直线的距离为,.设,,由得,则,由抛物线定义知,.设,则,,函数在上都是单调递增函数,当时即时,有最小值.23.已知椭圆方程为22163x y +=.(1)设椭圆的左右焦点分别为1F 、2F ,点P 在椭圆上运动,求1122PF PF PF PF +⋅的值;(2)设直线l 和圆222x y +=相切,和椭圆交于A 、B 两点,O 为原点,线段OA 、OB 分别和圆222x y +=交于C 、D 两点,设AOB ∆、COD ∆的面积分别为1S 、2S ,求12S S 的取值范围.【答案】(1)6;(2)2,2⎡⎢⎣⎦.(1)由已知,())12,F F ,设(),P x y ,由1PF x ⎫===⎪⎪⎭,同理22PF x ⎫=⎪⎪⎭,可得21216222PF PF x x x ⎫⋅==-⎪⎪⎭,())2212,,3x y x y x PF y PF ⋅=--⋅-=+-.结合22163x y +=,得22132y x =-,故221212116622PF PF PF PF x x ⋅+⋅=-+=;(2)当直线l 的斜率不存在时,其方程为x=由对称性,不妨设x =,此时()(),,1,1,1,1ABC D -,故12221S S ==. 若直线l 的斜率存在,设其方程为y kx m =+,由已知可得=()2221m k =+,设()11,A x y 、()22,B x y ,将直线l 与椭圆方程联立,得()222214260k x kmx m +++-=,由韦达定理得122421km x x k +=-+,21222621m x x k -=+.结合OC OD ==22221122113,322x y y x =-=-,可知121sin 1212sin 2OA OB AOBS OA OB S OC OD COD ⋅⋅∠==⋅=⋅⋅∠==将根与系数的关系代入整理得:12S S = 结合()2221m k =+,得12S S = 设2211t k =+≥,(]10,1u t=∈,则122,2S S ⎡===⎢⎣⎦. 12S S ∴的取值范围是⎡⎢⎣⎦..24.如图在平面直角坐标系xOy 中,已知椭圆22122:1x y C a b+=,()22222:1044x y C a b a b+=>>,椭圆2C 的右顶点和上顶点分别为A 和B ,过A ,B 分别引椭圆1C 的切线1l,2l ,切点为C ,D .(1)若2a =,1b =,求直线1l 的方程; (2)若直线1l 与2l 的斜率之积为916-,求椭圆1C 的离心率. 【答案】(1))4y x =±-;(2(1)当2a =,1b =,221:14x C y +=,222:1164x y C +=.()4,0A , 设过()4,0A 处的切线方程为()4y k x =-,代入1C ,得()222214326440k x k x k +-+-=.令()()()2222324146440k k k ∆=-+-=,得2112k =,k =, 所以1l的方程为:)4y x =-. (2)设1l ,2l 的斜率分别为1k ,2k ,则12916k k =-, 1l ,2l 的方程分别:()12y k x a =-,22y b k x -=.联立()1222221y k x a x y ab ⎧=-⎪⎨+=⎪⎩,消去y ,得()2222324222111440b a k x a k x a k a b +-+-=. 由()()64222422211116440a k b a k a k a b ∆=-+-=,得22213a k b =.联立2222221y b k x x y ab -=⎧⎪⎨+=⎪⎩,消去y ,得()222222222430b a k x a bk x a b +++=.由()422222222216120a b k b a k a b '∆=-+=,得22223a k b =.故422412a k k b =,344a b e ⇒=⇒=.25.已知椭圆()2222:10x y C a b a b +=>>1)2M -是椭圆C 上的一点.(1)求椭圆C 的方程;(2)过点(4,0)P -作直线l 与椭圆C 交于不同两点A 、B ,A 点关于x 轴的对称点为D ,问直线BD 是否过定点?若是,求出该定点的坐标;若不是,请说明理由.【答案】(1)2214x y +=;(2)是,(1,0)-.(1)∵c a =,222a b c =+,∴224a b =,∴222214x y b b+=,将1)2M -代入椭圆C ,∴21b =,∴22:14xC y +=.(2)显然AB 斜率存在,设AB 方程 为:(4)y k x =+,2222221(14)3264404(4)x y k x k x k y k x ⎧+=⎪⇒+++-=⎨⎪=+⎩, 2161920k ∆=->,∴2112k <. 设11(,)A x y ,22(,)B x y ,11(,)D x y -,∴21223214k x x k +=-+,212264414k x x k -=+,∵()211121:y y BD y y x x x x ++=--,∴0y =时211112*********()()8x y x y kx x k x x x x y y k x x k -++=+=+++2233222332644322()4()1288128141413232832()814k k k k k k k k k k k k k k kk -+---++===--++-++,∴直线BD 过定点(1,0)-.26.已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F,离心率为2,过2F 且与x 轴不重合的直线l 交椭圆C 于A ,B 两点,1ABF ∆的周长为8.(1)求椭圆C 的方程;(2)已知直线1l 的方程为y kx m =+,直线2l 的方程为2()y kx m =+,其中01m <<.设1l 与椭圆C 交于M ,N 两点,2l 与圆22:4O x y +=交于P ,Q 两点,求MONPOQS S ∆∆的值.【答案】(1)2214x y +=;(2)12.(1)由题意,椭圆2222:1(0)x y C a b a b+=>>,且1ABF 的周长为8,根据椭圆的定义,可得1ABF 的周长为12124AF AF BF BF a ,即48a =,即2a =,又因为c e a ==c =1b ==, 所以椭圆C 的标准方程为2214x y +=.(2)设()11,M x y ,()22,N x y ,联立方程组2214x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得()()222418410k x kmx m +++-=.由()()222264164110k m k m ∆=-+->,可得2241k m +>,且2121222844,1414km m x x x x k k-+=-+=++由弦长公式,可得12214MN x k=-=⋅+ 又因为点O 到直线1l的距离1d ==所以112MONS MN d =⋅=△.因为圆O 的方程为224x y +=,所以圆O 的圆心到直线2l的距离2d =所以PQ ==,所以212POQS PQ d =⋅=△,所以12MON POQ S S =△△. 27.已知椭圆C :22221x y a b +=(0a b >>)的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:||||AN BM ⋅为定值.【答案】(1)2214x y +=;(2)证明见解析.(Ⅰ)由题意得解得.所以椭圆的方程为.(Ⅱ)由(Ⅰ)知,,设,则.当时,直线的方程为.令,得,从而.直线的方程为.令,得,从而.所以. 当时,,所以. 综上,为定值.28.已知椭圆C :()222210x y a b a b +=>>的左焦点()1F ,点1,2Q ⎛⎫ ⎪ ⎪⎝⎭在椭圆C 上. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)经过圆O :225x y +=上一动点P 作椭圆C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆O 相交于异于点P 的M ,N 两点.(i )当直线PA ,PB 的斜率都存在时,记直线PA ,PB 的斜率分别为1k ,2k .求证:121k k =-;(ii )求ABMN的取值范围.。

2023-2024学年高考数学专项复习——压轴题(附答案)

2023-2024学年高考数学专项复习——压轴题(附答案)

决胜3.已知函数,曲线在处的切线方程为.()2e xf x ax =-()y f x =()()1,1f 1y bx =+(1)求的值:,a b (2)求在上的最值;()f x []0,1(3)证明:当时,.0x >()e 1e ln 0x x x x +--≥4.已知函数,.()()ln 1f x x x a x =-++R a ∈(1)若,求函数的单调区间;1a =()f x (2)若关于的不等式在上恒成立,求的取值范围;x ()2f x a≤[)2,+∞a (3)若实数满足且,证明.b 21a b <-+1b >()212ln f x b <-5.椭圆的离心率是,点是椭圆上一点,过点2222:1(0)x y E a b a b +=>>22()2,1M E 的动直线与椭圆相交于两点.()0,1P l ,A B (1)求椭圆的方程;E (2)求面积的最大值;AOB (3)在平面直角坐标系中,是否存在与点不同的定点,使恒成立?存在,xOy P Q QA PAQB PB=求出点的坐标;若不存在,请说明理由.Q 6.已知函数,.()21ln 2f x a x x⎛⎫=-+ ⎪⎝⎭()()()2R g x f x ax a =-∈(1)当时,0a =(i )求曲线在点处的切线方程;()y f x =()()22f ,(ii )求的单调区间及在区间上的最值;()f x 1,e e ⎡⎤⎢⎥⎣⎦(2)若对,恒成立,求a 的取值范围.()1,x ∀∈+∞()0g x <(1)求抛物线的表达式和的值;,t k (2)如图1,连接AC ,AP ,PC ,若△APC 是以(3)如图2,若点P 在直线BC 上方的抛物线上,过点的最大值.12CQ PQ +(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l 的方程;22y x =(2)【技能训练】如图2所示,已知抛物线上一点P 到准线l 的距离为6,求点P 的坐218y x =标;(3)【能力提升】如图3所示,已知过抛物线的焦点F 的直线依次交抛物线及准()20y ax a =>线l 于点,若求a 的值;、、A B C 24BC BF AF ==,(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段分为两段和,使得其中较长一段是全线段与另一AB AC CB AC AB 段的比例中项,即满足:,后人把这个数称为“黄金分割”,把CB 512AC BC AB AC -==512-点C 称为线段的黄金分割点.如图4所示,抛物线的焦点,准线l 与y 轴AB 214y x=(0,1)F 交于点,E 为线段的黄金分割点,点M 为y 轴左侧的抛物线上一点.当(0,1)H -HF 时,求出的面积值.2MH MF=HME 10.已知双曲线的一条渐近线方程的倾斜角为,焦距为4.2222:1(0,0)x y C a b a b -=>>60︒(1)求双曲线的标准方程;C (2)A 为双曲线的右顶点,为双曲线上异于点A 的两点,且.C ,M N C AM AN ⊥①证明:直线过定点;MN ②若在双曲线的同一支上,求的面积的最小值.,M N AMN(1)试用解析几何的方法证明:(2)如果将圆分别变为椭圆、双曲线或抛物线,你能得到类似的结论吗?13.对于数集(为给定的正整数),其中,如果{}121,,,,n X x x x =-2n ≥120n x x x <<<< 对任意,都存在,使得,则称X 具有性质P .,a b X ∈,c d X ∈0ac bd +=(1)若,且集合具有性质P ,求x 的值;102x <<11,,,12x ⎧⎫-⎨⎬⎩⎭(2)若X 具有性质P ,求证:;且若成立,则;1X ∈1n x >11x =(3)若X 具有性质P ,且,求数列的通项公式.2023n x =12,,,n x x x 14.已知,是的导函数,其中.()2e xf x ax =-()f x '()f x R a ∈(1)讨论函数的单调性;()f x '(2)设,与x 轴负半轴的交点为点P ,在点P()()()2e 11x g x f x x ax =+-+-()y g x =()y g x =处的切线方程为.()y h x =①求证:对于任意的实数x ,都有;()()g x h x ≥②若关于x 的方程有两个实数根,且,证明:()()0g x t t =>12,x x 12x x <.()2112e 11e t x x --≤+-15.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心xOy 1,02A ⎛⎫ ⎪⎝⎭12x =-的轨迹为曲线K ,P 是曲线K 上一点.(1)求曲线K 的方程;(2)过点A 且斜率为k 的直线l 与曲线K 交于B 、C 两点,若且直线OP 与直线交//l OP 1x =于Q 点.求的值;||||AB ACOP OQ ⋅⋅(3)若点D 、E 在y 轴上,的内切圆的方程为,求面积的最小值.PDE △()2211x y -+=PDE △16.已知椭圆C :,四点中恰有三()222210x y a b a b +=>>()()1234331,1,0,1,1,,1,22P P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线与直线的斜率的和为,2P A 2P B 1-证明:l 过定点.18.给定正整数k ,m ,其中,如果有限数列同时满足下列两个条件.则称2m k ≤≤{}n a 为数列.记数列的项数的最小值为.{}n a (,)k m -(,)k m -(,)G k m 条件①:的每一项都属于集合;{}n a {}1,2,,k 条件②:从集合中任取m 个不同的数排成一列,得到的数列都是的子列.{}1,2,,k {}n a 注:从中选取第项、第项、…、第项()形成的新数列{}n a 1i 2i 5i 125i i i <<<…称为的一个子列.325,,,i i i a a a ⋯{}n a (1)分别判断下面两个数列,是否为数列.并说明理由!(33)-,数列;1:1,2,3,1,2,3,1,2,3A 数列.2:1,2,3,2,1,3,1A (2)求的值;(),2G k (3)求证.234(,)2k k G k k +-≥答案:1.(1)极大值为,无极小值2e (2)证明见解析【分析】(1)求导,根据导函数的符号结合极值的定义即可得解;(2)构造函数,利用导数求出函数的最小值,再()21()()()2ln 12F x f x g x x x x x x =+=+->证明即可或者转换不等式为,通过构造函数可得证.()min0F x >()112ln 012x x x +->>【详解】(1)的定义域为,,()f x (0,)+∞()2(1ln )f x x '=-+当时,,当时,,10e x <<()0f x '>1e x >()0f x '<所以函数在上单调递增,在上单调递减,()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭故在处取得极大值,()f x 1e x =12e e f ⎛⎫= ⎪⎝⎭所以的极大值为,无极小值;()f x 2e (2)设,()21()()()2ln 12F x f x g x x x x x x =+=+->解法一:则,()2ln 1F x x x '=--令,,()()2ln 11h x x x x =-->22()1x h x x x -'=-=当时,,单调递减,当时,,单调递增,12x <<()0h x '<()h x 2x >()0h x '>()h x 又,,,(2)1ln 40h =-<(1)0h =(4)32ln 40h =->所以存在,使得,即.0(2,4)x ∈0()0h x =002ln 10x x --=当时,,即,单调递减,01x x <<()0h x <()0F x '<()F x 当时,,即,单调递增,0x x >()0h x >()0F x '>()F x 所以当时,在处取得极小值,即为最小值,1x >()F x 0x x =故,22000000(11()()12ln )222F x F x x x x x x ≥=+-=-+设,因为,2000122()p x x x =-+0(2,4)x ∈由二次函数的性质得函数在上单调递减,2000122()p x x x =-+(2,4)故,0()(4)0p x p >=所以当时,,即.1x >()0F x >()()0f x g x +>解法二:要证,即证,()0F x >()1()12ln 012p x x x x =+->>因为,所以当时,,单调递减,()124()122x p x x x x -'=-=>()1,4x ∈()0p x '<()p x 当时,,单调递增,()4,x ∞∈+()0p x '>()p x 所以,所以,即.()()4212ln 434ln 20p x p ≥=+-=->()0F x >()()0f x g x +>方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.2.(1)0(2)证明详见解析(3)2a ≤【分析】(1)利用导数求得的最小值.()g x (2)根据(1)的结论得到,利用放缩法以及裂项求和法证得不等式成立.2211ln 1n n ⎛⎫+≤ ⎪⎝⎭(3)由不等式分离参数,利用构造函数法,结合导数求得的取ln (2)10xx x x a x -+--≥a a 值范围.【详解】(1)依题意,,()21ln (,0)2f x x x x t t x =-+∈>R 所以,()()()()ln 1ln 10g x f x x x x x x '==-+=-->,所以在区间上单调递减;()111x g x x x -'=-=()g x ()0,1()()0,g x g x '<在区间上单调递增,()1,+∞()()0,g x g x '>所以当时取得最小值为.1x =()g x ()11ln110g =--=(2)要证明:对任意正整数,都有,(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 即证明,22221111ln 1111ln e234n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 即证明,222111ln 1ln 1ln 1123n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)得,即()()()10f xg x g '=≥=ln 10,ln 1x x x x --≥≤-令,所以, *211,2,N x n n n =+≥∈222111ln 111n n n ⎛⎫+≤+-= ⎪⎝⎭所以222222111111ln 1ln 1ln 12323n n ⎛⎫⎛⎫⎛⎫++++++≤+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()111111111122312231n n n n <+++=-+-++-⨯⨯-- 111n=-<所以对任意正整数,都有.(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)若不等式恒成立,此时,ln (2)10xx x x a x -+--≥0x >则恒成立,ln 21x x x x x a x -+-≤令,()ln 21xx x x x h x x -+-=令,()()()e 10,e 10x x u x x x u x '=--≥=-≥所以在区间上单调递增,()u x[)0,∞+所以,当时等号成立,()0e 010,e 10,e 1x x u x x x ≥--=--≥≥+0x =所以,()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当时等号成立,所以.ln 0,1x x x ==2a ≤利用导数求函数的最值的步骤:求导:对函数进行求导,得到它的导函数.导函数()f x ()f x '表示了原函数在不同点处的斜率或变化率.找出导数为零的点:解方程,找到使得导()0f x '=数为零的点,这些点被称为临界点,可能是函数的极值点(包括最大值和最小值),检查每个临界点以及区间的端点,并确认它们是否对应于函数的最值.3.(1),1a =e 2b =-(2);()max e 1f x =-()min 1f x =(3)证明见解析【分析】(1)利用切点和斜率列方程组,由此求得.,a b (2)利用多次求导的方法求得在区间上的单调性,由此求得在上的最值.()f x []0,1()f x []0,1(3)先证明时,,再结合(2)转化为,从0x >()()e 21f x x ≥-+()21e ln e x x x x x+--≥+而证得不等式成立.【详解】(1),()e 2x f x ax'=-∴,解得:,;()()1e 21e 1f a b f a b ⎧=-=⎪⎨=-=+'⎪⎩1a =e 2b =-(2)由(1)得:,()2e xf x x =-,令,则,()e 2x f x x '=-()e 2x h x x=-()e 2x h x '=-是增函数,令解得.()h x ()0h x '=ln 2x =∴,也即在上单调递减,()h x ()f x '()0,ln2()()0,h x h x '<在上单调递增,()ln2,+∞()()0,h x h x '>∴,∴在递增,()()ln 2ln222ln20h f ==->'()f x []0,1∴;;()()max 1e 1f x f ==-()()min 01f x f ==(3)∵,由(2)得过,()01f =()f x ()1,e 1-且在处的切线方程是,()y f x =1x =()e 21y x =-+故可猜测且时,的图象恒在切线的上方,0x >1x ≠()f x ()e 21y x =-+下面证明时,,设,,0x >()()e 21f x x ≥-+()()()e 21g x f x x =---()0x >∴,∴令,()()e 2e 2x g x x =---'()()()e 2e 2x x x g m x '--==-,()e 2x m x '=-由(2)得:在递减,在递增,()g x '()0,ln2()ln2,+∞∵,,,∴,()03e 0g '=->()10g '=0ln21<<()ln20g '<∴存在,使得,()00,1x ∈()0g x '=∴时,,时,,()()00,1,x x ∈⋃+∞()0g x '>()0,l x x ∈()0g x '<故在递增,在递减,在递增.()g x ()00,x ()0,1x ()1,+∞又,∴当且仅当时取“”,()()010g g ==()0g x ≥1x ==()()2e e 210x g x x x =----≥故,,由(2)得:,故,()e e 21x x xx+--≥0x >e 1x x ≥+()ln 1x x ≥+∴,当且仅当时取“=”,∴,1ln x x -≥1x =()e e 21ln 1x x x x x+--≥≥+即,∴,()21ln 1e e x x x x+--≥+()21e ln e x x x x x+--≥+即成立,当且仅当时“=”成立.()1ln 10e e x x x x +---≥1x =求解切线的有关的问题,关键点就是把握住切点和斜率.利用导数研究函数的单调性,如果一次求导无法求得函数的单调性时,可以考虑利用多次求导来进行求解.利用导数证明不等式恒成立,如果无法一步到位的证明,可以先证明一个中间不等式,然后再证得原不等式成立.4.(1)单调增区间为,单调减区间为;()0,1()1,+∞(2)(],2ln 2-∞(3)证明见解析【分析】(1)求导,再根据导函数的符号即可得解;(2)分离参数可得,构造函数,利用导数求出函数的最小ln 1x x a x ≤-ln (),21x xg x x x =≥-()g x 值即可得解;(3)由,得,则,要证21a b <-+21a b -<-2112()(e )e e 1a a b f x f a b ---≤=+<-+,即证,即证,构造函数()212ln f x b<-222e112ln bb b --+<-22212ln 0eb b b +-<,证明即可.()()()12ln e x h x x x x =>-()1h x <-【详解】(1)当时,,1a =()ln 1,0f x x x x x =-++>,由,得,由,得,()ln f x x '=-()0f x '>01x <<()0f x '<1x >故的单调增区间为,单调减区间为;()f x ()0,1()1,+∞(2),()ln 2,1x xf x a a x ≤∴≤- 令,ln (),21x x g x x x =≥-则,21ln ()(1)x xg x x --'=-令,则,()ln 1t x x x =-+11()1xt x x x -'=-=由,得,由,得,()0t x '>01x <<()0t x '<1x >故在递增,在递减,,()t x ()0,1()1,+∞max ()(1)0t x t ==,所以,()0t x ∴≤ln 1≤-x x 在上单调递增,,()0,()g x g x '≥∴[)2,+∞()min ()2g x g ∴=,(2)2ln 2a g ∴≤=的取值范围;a ∴(],2ln 2-∞(3),221,1b a b a <-+∴-<- 又,在上递增,11()(e )e a a f x f a --≤=+1e a y a -=+ R a ∈所以,2112()(e )e e 1a a b f x f a b ---≤=+<-+下面证明:,222e 112ln b b b --+<-即证,22212ln 0ebb b +-<令,则,21x b =>12ln 0e x x x +-<即,(2ln )e 1xx x -⋅<-令,则,()()()12ln e xh x x x x =>-()22ln 1e xh x x x x '⎛⎫=-+-⋅ ⎪⎝⎭令,则,()2()2ln 11x x x x x ϕ=-+->()()2221122()101x x x x x x ϕ---=--=<>∴函数在上单调递减,()x ϕ()1,+∞,()(1)0x ϕϕ∴<=在递减,()()0,h x h x '∴<(1,)+∞,()()1e 1h x h ∴<=-<-所以.()212ln f x b <-方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.5.(1)22142x y +=(2)2(3)存在,.()0,2Q 【分析】(1)由离心率及过点列方程组求解.()2,1M,a b (2)设直线为与椭圆方程联立,将表达为的函数,由基本不l 1y kx =+1212AOB S x x =⋅- k 等式求最大值即可.(3)先讨论直线水平与竖直情况,求出,设点关于轴的对称点,证得()0,2Q B y B '三点共线得到成立.,,Q A B 'QA PAQB PB=【详解】(1)根据题意,得,解得,椭圆C 的方程为.2222222211c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩222422a b c ⎧=⎪=⎨⎪=⎩22142x y +=(2)依题意,设,直线的斜率显然存在,()()1122,,,A x y B x y l 故设直线为,联立,消去,得,l 1y kx =+221142y kx x y =+⎧⎪⎨+=⎪⎩y ()2212420k x kx ++-=因为直线恒过椭圆内定点,故恒成立,,l ()0,1P 0∆>12122242,1212k x x x x k k +=-=-++故,()2221212221224212111214414222122AOBk S x x x x x x k k k k ⋅+⎛⎫⎛⎫=⋅=⨯-=⨯-⨯= ⎪ ⎪+⎝-+-⎝++⎭⎭- 令,所以,当且仅当,即时取得214,1t k t =+≥22222211AOB t S t t t=×=×£++1t =0k =等号,综上可知:面积的最大值为.AOB 2(3)当平行于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,C D Q 则有,即,所以点在轴上,可设的坐标为;||||1||||QC PC QD PD ==QC QD =Q y Q ()00,y 当垂直于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,M N Q 则有,即,解得或,||||||||QM PM QN PN =00221212y y --=++01y =02y =所以若存在不同于点的定点满足条件,则点的坐标为;P Q Q ()0,2当不平行于轴且不垂直于轴时,设直线方程为,l x x l 1y kx =+由(2)知,12122242,1212k x x x x k k --+==++又因为点关于轴的对称点的坐标为,B y B '()22,x y -又,,11111211QA y kx k k x x x --===-22222211QB y kx k k x x x '--===-+--.方法点睛:直线与椭圆0Ax By C ++=时,取得最大值2222220a A b B C +-=MON S 6.(1)(i );(322ln 220x y +--=(2)11,22⎡⎤-⎢⎥⎣⎦故曲线在点处的切线方程为,()y f x =()()22f ,()()32ln 222y x --+=--即;322ln 220x y +--=(ii ),,()21ln 2f x x x =-+()0,x ∈+∞,()211x f x x x x -'=-+=令,解得,令,解得,()0f x ¢>()0,1x ∈()0f x '<()1,x ∈+∞当时,,1,e e x ⎡⎤∈⎢⎥⎣⎦()()max 112f x f ==-又,,221111ln 1e 2e e 2e f ⎛⎫=-+=-- ⎪⎝⎭()2211e e ln e e 122f =-+=-+其中,()222211111e 1e 1e 20e 2e 222ef f ⎛⎫⎛⎫-=----+=--> ⎪ ⎪⎝⎭⎝⎭故,()()2min 1e e 12f x f ==-+故的单调递增区间为,单调递减区间为;()f x ()0,1()1,+∞在区间上的最大值为,最小值为;()f x 1,e e ⎡⎤⎢⎥⎣⎦12-21e 12-+(2),()21ln 22xg x a x x a ⎭-+⎛=⎪-⎫ ⎝对,恒成立,()1,x ∀∈+∞21ln 202a x x ax ⎛⎫-+-< ⎪⎝⎭变形为对恒成立,ln 122x a xa x<--⎛⎫ ⎪⎝⎭()1,x ∀∈+∞令,则,()(),1,ln x h x x x ∈=+∞()21ln xh x x -'=当时,,单调递增,()1,e x ∈()0h x '>()ln xh x x =当时,,单调递减,()e,+x ∈∞()0h x '<()ln xh x x =其中,,当时,恒成立,()10h =()ln e 1e e e h ==1x >()ln 0x h x x =>故画出的图象如下:()ln x h x x =其中恒过点122y xa a ⎛⎫ ⎪⎝=⎭--(2,1A 又,故在()210111h -'==()ln x h x x =又在上,()2,1A 1y x =-()对于2111644y x x =-+-∴点,即()0,6C -6OC =∵2114,14P m m m ⎛-+- ⎝∴点,3,64N m m ⎛⎫- ⎪⎝⎭∴,22111316624444PN m m m m m⎛⎫=-+---=-+ ⎪⎝⎭∵轴,PN x ⊥∴,//PN OC ∴,PNQ OCB ∠=∠∴,Rt Rt PQN BOC ∴,PN NQ PQ BC OC OB ==∵,8,6,10OB OC BC ===∴,34,55QN PN PQ PN==∵轴,NE y ⊥∴轴,//NE x ∴,CNE CBO ∴,5544CN EN m ==∴,2215111316922444216CQ PQ m m m m ⎛⎫+=-+=--+⎪⎝⎭当时,取得最大值.132m =12CQ PQ+16916关键点点睛:熟练的掌握三角形相似的判断及性质是解决本题的关键.8.(1)详见解析;(2)①具有性质;理由见解析;②P 1346【分析】(1)当时,先求得集合,由题中所给新定义直接判断即可;10n =A (2)当时,先求得集合, 1010n =A ①根据,任取,其中,可得,{}2021|T x x S =-∈02021t x T =-∈0x S ∈0120212020x ≤-≤利用性质的定义加以验证,即可说明集合具有性质;P T P ②设集合有个元素,由(1)可知,任给,,则与中必有个S k x S ∈12020x ≤≤x 2021x -1不超过,从而得到集合与中必有一个集合中至少存在一半元素不超过,然后利1010S T 1010用性质的定义列不等式,由此求得的最大值.P k【详解】(1)当时,,10n ={}1,2,,19,20A = 不具有性质,{}{}|910,11,12,,19,20B x A x =∈>= P 因为对任意不大于的正整数,10m 都可以找到该集合中的两个元素与,使得成立,110b =210b m =+12||b b m -=集合具有性质,{}*|31,N C x A x k k =∈=-∈P 因为可取,对于该集合中任一元素,110m =<,(),都有.112231,31c k c k =-=-*12,N k k ∈121231c c k k -=-≠(2)当时,集合,1010n ={}()*1,2,3,,2019,2020,1010N A m m =≤∈ ①若集合具有性质,那么集合一定具有性质.S P {}2021|T x x S =-∈P 首先因为,任取,其中.{}2021|T x x S =-∈02021t x T =-∈0x S ∈因为,所以.S A ⊆{}01,2,3,,2020x ∈ 从而,即,所以.0120212020x ≤-≤t A ∈T A ⊆由具有性质,可知存在不大于的正整数,S P 1010m 使得对中的任意一对元素,都有.s 12,s s 12s s m -≠对于上述正整数,从集合中任取一对元素,m {}2021|T x x S =-∈112021t x -=,其中,则有.222021t x =-12,x x S ∈1212t t s s m --≠=所以,集合具有性质P ;{}2021|T x x S =-∈②设集合有个元素,由(1)可知,若集合具有性质,S k S P 那么集合一定具有性质.{}2021|T x x S =-∈P 任给,,则与中必有一个不超过.x S ∈12020x ≤≤x 2021x -1010所以集合与中必有一个集合中至少存在一半元素不超过.S T 1010不妨设中有个元素不超过.S 2k t t ⎛⎫≥ ⎪⎝⎭12,,,t b b b 1010由集合具有性质,可知存在正整数.S P 1010m ≤使得对中任意两个元素,都有.S 12,s s 12s s m -≠所以一定有.12,,,t b m b m b m S +++∉ 又,故.100010002000i b m +≤+=121,,,b m b m b m A +++∈ 即集合中至少有个元素不在子集中,A t S 因此,所以,得.20202k k k t +≤+≤20202k k +≤1346k ≤当时,取,{}1,2,,672,673,,1347,,2019,2020S = 673m =则易知对集合中的任意两个元素,都有,即集合具有性质.S 12,y y 12673y y -≠S P 而此时集合S 中有个元素,因此,集合元素个数的最大值为.1346S 1346解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.9.(1),10,8⎛⎫ ⎪⎝⎭18y =-(2)或()42,4()42,4-(3)14a =(4)或51-35-【分析】(1)根据焦点和准线方程的定义求解即可;(2)先求出点P 的纵坐标为4,然后代入到抛物线解析式中求解即可;(3)如图所示,过点B 作轴于D ,过点A 作轴于E ,证明,推BD y ⊥AE y ⊥FDB FHC ∽出,则,点B 的纵坐标为,从而求出,证明16FD a =112OD OF DF a =-=112a 36BD a =,即可求出点A 的坐标为,再把点A 的坐标代入抛物线解析式AEF BDF ∽123,24a ⎛⎫ ⎪⎝+⎭-中求解即可;(4)如图,当E 为靠近点F 的黄金分割点的时候,过点M 作于N ,则,MN l ⊥MN MF=先证明是等腰直角三角形,得到,设点M 的坐标为,则MNH △NH MN=21,4m m ⎛⎫⎪⎝⎭过点B 作轴于D ,过点BD y ⊥由题意得点F 的坐标为F ⎛ ⎝1FH =当E 为靠近点F 的黄金分割点的时候,过点∵在中,Rt MNH △sin MHN ∠∴,∴是等腰直角三角形,45MHN ︒=MNH △双曲线方程联立,利用韦达定理及题目条件可得,后由题意可得AM AN ⋅= ()()222131t t m -+=-所过定点坐标;②结合①及图形可得都在左支上,则可得,后由图象可得,M N 213m <,后通过令,结合单调性229113m S m +=-223113m λλ⎛⎫+=≤< ⎪⎝⎭()423313f x x x x ⎛⎫=-≤< ⎪⎝⎭可得答案.【详解】(1)设双曲线的焦距为,C 2c 由题意有解得.2223,24,,ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩1,3,2a b c ===故双曲线的标准方程为;C 2213y x -=(2)①证明:设直线的方程为,点的坐标分别为,MN my x t =+,M N ()()1122,,,x y x y 由(1)可知点A 的坐标为,()1,0联立方程消去后整理为,2213y x my x t ⎧-=⎪⎨⎪=+⎩x ()222316330m y mty t --+-=可得,2121222633,3131mt t y y y y m m -+==--,()212122262223131m t tx x m y y t t m m +=+-=-=--,()()()()222222222121212122223363313131m t m t m t x x my t my t m y y mt y y t t m m m -+=--=-++=-+=----由,()()11111,,1,AM x y AN x y =-=-有()()()1212121212111AM AN x x y y x x x x y y ⋅=--+=-+++,()()()()22222222222222222132331313131313131t t t t t t m t t t m m m m m m -----++-=--++===------由,可得,有或,AM AN ⊥0AM AN ⋅=1t =-2t =当时,直线的方程为,过点,不合题意,舍去;1t =-MN 1my x =-()1,0当时,直线的方程为,过点,符合题意,2t =MN 2my x =+()2,0-②由①,设所过定点为121224,31x x x x m +==-若在双曲线的同一支上,可知,M N 有12240,31x x x m +=<-关键点睛:求直线所过定点常采取先猜后证或类似于本题处理方式,设出直线方程,通过题一方面:由以上分析可知,设椭圆方程为一方面:同理设双曲线方程为()22221y m x a b +-=,()2222221b x a k x m a b -+=化简并整理得()(2222222112ba k x a mk x a m ---+一方面:同理设抛物线方程为(22x p y =,()212x p k x n =+化简并整理得,由韦达定理可得12220pk x x pn --=2,2x x pk x x pn +=⋅=-(2)构造,故转化为等价于“对任()()()()()13131931x x xx f x k k g x f x +--==+++()()()123g x g x g x +>意,,恒成立”,换元后得到(),分,和1x 2x 3R x ∈()()11k g x q t t -==+3t ≥1k >1k =三种情况,求出实数k 的取值范围.1k <【详解】(1)由条件①知,当时,有,即在R 上单调递增.12x x <()()12f x f x <()f x 再结合条件②,可知存在唯一的,使得,从而有.0R x ∈()013f x =()093x x f x x --=又上式对成立,所以,R x ∀∈()00093x x f x x --=所以,即.0001393x x x --=0009313x x x ++=设,因为,所以单调递增.()93x x x xϕ=++()9ln 93ln 310x x x ϕ'=++>()x ϕ又,所以.()113ϕ=01x =所以;()931x x f x =++(2)构造函数,()()()()()13131931x x xx f x k k g x f x +--==+++由题意“对任意的,,,1x 2x 3R x ∈均存在以,,为三边长的三角形”()()()11113x f x k f x +-()()()22213x f x k f x +-()()()33313x f x k f x +-等价于“对任意,,恒成立”.()()()123g x g x g x +>1x 2x 3R x ∈又,令,()111313x x k g x -=+++1131231333x x x x t ⋅=++≥+=当且仅当时,即时取等号,91x=0x =则(),()()11k g x q t t -==+3t ≥当时,,因为且,1k >()21,3k g x +⎛⎤∈ ⎥⎝⎦()()122423k g x g x +<+≤()3213k g x +<≤所以,解得,223k +≤4k ≤即;14k <≤当时,,满足条件;1k =()()()1231g x g x g x ===当时,,因为且,1k <()2,13k g x +⎡⎫∈⎪⎢⎣⎭()()122423k g x g x ++<≤()3213k g x +<≤所以,即.2413k +≤112k -≤<综上,实数k 的取值范围是.1,42⎡⎤-⎢⎥⎣⎦复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.13.(1)14x =(2)证明过程见解析(3),()112023k n k x --=1k n≤≤【分析】(1)由题意转化为对于,都存在,使得,其中(),m a b =(),n c d =0m n ⋅= ,选取,,通过分析求出;,,,a b c d X ∈()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==- 14x =(2)取,,推理出中有1个为,则另一个为1,即,()()11,,m a b x x == (),n c d =,c d 1-1X ∈再假设,其中,则,推导出矛盾,得到;1k x =1k n <<101n x x <<<11x =(3)由(2)可得,设,,则有,记11x =()11,m s t =()22,n s t =1212s t t s =-,问题转化为X 具有性质P ,当且仅当集合关于原点对称,得到,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B ,共个数,由对称性可知也有个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -()0,B +∞ ()1n -结合三角形数阵得到,得到数列为首项为1的等比123212321n n n n n n x x x x x x x x x x -----===== 12,,,n x x x 数列,设出公比为,结合求出公比,求出通项公式.q 2023n x =【详解】(1)对任意,都存在,使得,,a b X ∈,c d X ∈0ac bd +=即对于,都存在,使得,其中,(),m a b =(),n c d =0m n ⋅= ,,,a b c d X ∈因为集合具有性质P ,11,,,12x ⎧⎫-⎨⎬⎩⎭选取,,()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==-则有,12x d -+=假设,则有,解得,这与矛盾,d x =102x x -+=0x =102x <<假设,则有,解得,这与矛盾,1d =-12x --=12x =-102x <<假设,则有,解得,这与矛盾,1d =12x -+=12x =102x <<假设,则有,解得,满足,12d =14x -+=14x =102x <<故;14x =(2)取,,()()11,,m a b x x == (),n c d =则,()10c d x +=因为,所以,即异号,120n x x x <<<< 0c d +=,c d 显然中有1个为,则另一个为1,即,,c d 1-1X ∈假设,其中,则,1k x =1k n <<101n x x <<<选取,,则有,()()1,,n m a b x x ==(),n s t =10n sx tx +=则异号,从而之中恰有一个为,,s t ,s t 1-若,则,矛盾,1s =-11n x tx t x =>≥若,则,矛盾,1t =-1n n x sx s x =<≤故假设不成立,所以;11x =(3)若X 具有性质P ,且,20231n x =>由(2)可得,11x =设,,则有,()11,m s t =()22,n s t =1212s t t s =-记,则X 具有性质P ,当且仅当集合关于原点对称,,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B 注意到是集合中唯一的负数,1-X 故,共个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -由对称性可知也有个数,()0,B +∞ ()1n -由于,已经有个数,123421n n n n n nn n n n x x x x x x x x x x x x ----<<<<<< ()1n -对于以下三角形数阵:123421n n n n n n n n n n x x x x x xx x x x x x ----<<<<<< 1111123421n n n n n n n n x x x x xx x x x x --------<<<<< ……3321x x x x <21x x 注意到,123211111n n n x x x x x x x x x x -->>>>> 所以有,123212321n n n n n n x x x x x x x x x x -----===== 从而数列为首项为1的等比数列,设公比为,12,,,n x x x q 由于,故,解得,2023n x =112023n nx q x -==()112023n q -=故数列的通项公式为,.12,,,n x x x ()112023k n k x --=1k n ≤≤集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数或数列相结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.14.(1)答案见解析(2)①证明见解析;②证明见解析【分析】(1)求出的导数,结合解不等式可得答案;()e 2x f x ax'=-(2)①,利用导数的几何意义求得的表达式,由此构造函数,()y h x =()()()F x g x h x =-利用导数判断其单调性,求其最小值即可证明结论;②设的根为,求得其表达式,()h x t=1x '并利用函数单调性推出,设曲线在点处的切线方程为,设11x x '≤()y g x =()0,0()y t x =的根为,推出,从而,即可证明结论.()t x t=2x '22x x '≥2121x x x x ''-≤-【详解】(1)由题意得,令,则,()e 2x f x ax'=-()e 2x g x ax=-()e 2x g x a'=-当时,,函数在上单调递增;0a ≤()0g x '>()f x 'R 当时,,得,,得,0a >()0g x '>ln 2x a >()0g x '<ln 2x a <所以函数在上单调递减,在上单调递增.()f x '(),ln 2a -∞()ln 2,a +∞(2)①证明:由(1)可知,令,有或,()()()1e 1x g x x =+-()0g x ==1x -0x =故曲线与x 轴负半轴的唯一交点P 为.()y g x =()1,0-曲线在点处的切线方程为,()1,0P -()y h x =则,令,则,()()()11h x g x '=-+()()()F x g x h x =-()()()()11F x g x g x '=--+所以,.()()()()11e 2e x F x g x g x '''=-=+-()10F '-=当时,若,,1x <-(],2x ∈-∞-()0F x '<若,令,则,()2,1x --()1()e 2e x m x x =+-()()e 30xm x x '=+>故在时单调递增,.()F x '()2,1x ∈--()()10F x F ''<-=故,在上单调递减,()0F x '<()F x (),1-∞-当时,由知在时单调递增,1x >-()()e 30x m x x '=+>()F x '()1,x ∈-+∞,在上单调递增,()()10F x F ''>-=()F x ()1,-+∞设曲线在点处的切线方程为()y g x =()0,0令()()()()(1e x T x g x t x x =-=+当时,2x ≤-()()2e x T x x =+-'()()2e xn x x =+-设,∴()()1122,,,B x y C x y 1x 又1211,22AB x AC x =+=+依题意,即,则,0bc <02x >()()220220004482x y c x x b =+---因为,所以,2002y x =0022x b c x -=-所以,()()00000242248122424S b c x x x x x -⋅=-++≥-⋅+=-=-当且仅当,即时上式取等号,00422x x -=-04x =所以面积的最小值为8.PDE △方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.16.(1)2214x y +=(2)证明见解析(3)存在,7,,777⎛⎫⎛⎫-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 【分析】(1)根据椭圆的对称性,得到三点在椭圆C 上.把的坐标代入椭圆234,,P P P 23,P P C ,求出,即可求出椭圆C 的方程;22,a b (2)当斜率不存在时,不满足;当斜率存在时,设,与椭圆方程联立,利():1l y kx t t =+≠用判别式、根与系数的关系,结合已知条件得到,能证明直线l 过定点;21t k =--()2,1-(3)利用点差法求出直线PQ 的斜率,从而可得直线PQ 的方程,与抛物线方程联14PQ k t =立,由,及点G 在椭圆内部,可求得的取值范围,设直线TD 的方程为,0∆>2t 1x my =+与抛物线方程联立,由根与系数的关系及,可求得m 的取值范围,进而可求得直线11DA TB k k =的斜率k 的取值范围.2l【详解】(1)根据椭圆的对称性,两点必在椭圆C 上,34331,,1,22P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又的横坐标为1,4P ∴椭圆必不过,()11,1P ∴三点在椭圆C 上.()234330,1,1,,1,22P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭把代入椭圆C ,()3231,20,1,P P ⎛⎫- ⎪ ⎪⎝⎭得,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩∴椭圆C 的方程为.2214x y +=(2)证明:①当斜率不存在时,设,,:l x m =()(),,,A A A m y B m y -∵直线与直线的斜率的和为,2P A 2P B 1-∴,221121A A P A P B y y k k m m m ----+=+==-解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设,,,:l y kx t =+1t ≠()()1122,,,A x y B x y 联立,消去y 整理得,22440y kx tx y =+⎧⎨+-=⎩()222148440k x ktx t +++-=则,,122814kt x x k -+=+21224414t x x k -=+则()()()()222112************111111P A P B x y x y x kx t x kx t y y k k x x x x x x -+-+-++---+=+==,()()()()()()12121222222448218114141144411142t k k kx x t tk t k t k k t t x t x x x +-+=--⋅+-⋅-++===--+-+又,∴,此时,1t ≠21t k =--()()222222644144464161664k t k t k t k ∆=-+-=-+=-故存在k ,使得成立,0∆>∴直线l 的方程为,即21y kx k =--()12y k x +=-∴l 过定点.()2,1-(3)∵点P ,Q 在椭圆上,所以,,2214P P x y +=2214Q Q x y +=两式相减可得,()()()()04PQ P Q P Q P Q y xy x x x y y +-++-=又是线段PQ 的中点,()1,G t -∴,2,2P Q P Q x x x x t+=-=∴直线PQ 的斜率,()144P Q P QP Q P QPQ x x k ty y x y y x +==-=--+∴直线PQ 的方程为,与抛物线方程联立消去x 可得,()114y x t t =++()22164410y ty t -++=由题可知,∴,()2161210t ∆=->2112t >又G 在椭圆内部,可知,∴,故,2114t +<234t <213124t <<设,,由图可知,,221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭223434,,,44y y T y D y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2134,y y y y >>∴,()2121216,441y y t y y t +==+当直线TD 的斜率为0时,此时直线TD 与抛物线只有1个交点,不合要求,舍去,设直线TD 的方程为,与抛物线方程联立,消去x 可得,()10x my m =+≠2440y my --=∴,34344,4y y m y y +==-由,可知,即,11//ATB D 11DA TB k k =3142222234214444y y y y y y y y --=--∴,即,1342y y y y +=+1243y y y y -=-∴,()()221212343444y y y y y y y y +-=+-∵,()()()()()222212124161641161210,128y y y y t t t +-=-+=-∈∴,解得,即,()()223434416160,128y y y y m +-=+∈27m <()7,7m ∈-∴直线TD 即的斜率.2l 771,77,k m ⎛⎫⎛⎫=∈-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 思路点睛:处理定点问题的思路:(1)确定题目中的核心变量(此处设为),k (2)利用条件找到与过定点的曲线的联系,得到有关与的等式,k (),0F x y =k ,x y (3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,()00,x y k 此时要将关于与的等式进行变形,直至找到,k ,x y ()00,x y ①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式k ()k ⋅子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.k 17.(1)1y =-(2)2ln23-+【分析】(1)由题意,将代入函数的解析式中,对函数进行求导,得到1m =()f x ()f x 和,代入切线方程中即可求解;()1f '()1f (2)得到函数的解析式,对进行求导,利用根的判别式以及韦达定理对()g x ()g x 进行化简,利用换元法,令,,可得,12122()()y x x b x x =--+12x t x =01t <<2(1)ln 1t y t t -=-+根据,求出的范围,构造函数,对进行求导,利用导数得到322m ≥t 2(1)()ln 1t h t tt -=-+()h t 的单调性和最值,进而即可求解.()h t 【详解】(1)已知(为常数),函数定义域为,()ln f x x mx =-m (0,)+∞当时,函数,1m =()ln f x x x =-可得,此时,又,11()1x f x x x -'=-=()=01f '()11=f -所以曲线在点处的切线方程为,即.()y f x =()()1,1f (1)0(1)y x --=⨯-1y =-(2)因为,函数定义域为,22()2()2ln 2g x f x x x mx x =+=-+(0,)+∞可得,222(1)()22x mx g x m x x x -+=-+='此时的两根,即为方程的两根,()0g x '=1x 2x 210x mx -+=因为,所以,由韦达定理得,,322m ≥240m ∆=->12x x m +=121=x x 又,所以1212lnx x b x x =-121212121212ln 22()()()()xx y x x b x x x x x x x x =--=--++-,11211211222212()ln 2ln 1x x x x x x x x x x x x --=-=⨯-++令,,所以,12x t x =01t <<2(1)ln 1t y t t -=-+因为,整理得,2212()x x m +=22212122x x x x m ++=因为,则,121=x x 2221212122x x x x m x x ++=等式两边同时除以,得,12x x 212212=x x m x x ++可得,因为,212t m t ++=322m ≥所以,,152t t +≥()()2252=2210t t x x -+--≥解得 或,则,12t ≤2t ≥102t <≤不妨设,函数定义域为,2(1)()ln 1t h t t t -=-+10,2⎛⎤⎥⎝⎦可得,22(1)()0(1)t h t t t -'=-<+所以函数在定义域上单调递减,()h t 此时,min 12()()ln223h t h ==-+故的最小值为.12122()()y x x b x x =--+2ln23-+利用导数求解在曲线上某点处的切线方程,关键点有两点,第一是切线的斜率,第二是切点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学压轴题解法
高中数学知识点比较难理解,概念比较抽象,所涉及的范围广泛,很多同学对于高中数学处于被动学习状态,不能全身心投入到数学学习当中去,这样很难将数学学好,因此同学们一定要及时调整自己的心态。

高考数学中压轴题也可以为同学们加分,下面将北京高中数学压轴题解法分享给同学们,希望同学们学好数学。

高中数学压轴题解法(一)
复杂的问题简单化,就是把一个复杂的问题,分解为一系列简单的问题,把复杂的图形,分成几个基本图形,找相似,找直角,找特殊图形,慢慢求解,高考是分步得分的,这种思考方式尤为重要,能算的先算,能证的先证,踏上要点就能得分,就算结论出不来,中间还是有不少分能拿。

高中数学压轴题解法(二)
运动的问题静止化,对于动态的图形,先把不变的线段,不变的角找到,有没有始终相等的线段,始终全等的图形,始终相似的图形,所有的运算都基于它们,在找到变化线段之间的联系,用代数式慢慢求解。

高中数学压轴题解法(三)
一般的问题特殊化,有些一般的结论,找不到一般解法,先看特殊情况,比如动点问题,看看运动到中点怎样,运动到垂直又怎样,变成等腰三角形又会怎样,先找出结论,再慢
慢求解。

另外,还有一些细节要注意,三角比要善于运用,只要有直角就可能用上它,从简化运算的角度来看,三角比优于比例式优于勾股定理,中考命题不会设置太多的计算障碍,如果遇上繁难运算要及时回头,避免钻牛角尖。

死记硬背是一种传统的教学方式,在我国有悠久的历史。

但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。

其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。

相反,它恰是提高学生语文水平的重要前提和基础。

死记硬背是一种传统的教学方式,在我国有悠久的历史。

但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。

其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。

相反,它恰是提高学生语文水平的重要前提和基础。

如果遇到找相似的三角形,要切记先看角,再算边。

遇上找等腰三角形同样也是先看角,再看底边上的高(用三线合一),最后才是边。

这都是能大大简化运算的。

我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟
句酌,琅琅上口,成为满腹经纶的文人。

为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。

特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。

知道“是这样”,就是讲不出“为什么”。

根本原因还是无“米”下“锅”。

于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。

所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。

要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。

相关文档
最新文档