高中数学解题技巧归纳

合集下载

高中数学解题技巧方法总结(必备19篇)

高中数学解题技巧方法总结(必备19篇)

高中数学解题技巧方法总结第1篇(1)利用y=sin x和y=cos x的值域直接求.(2)把所给的三角函数式变换成y=A sin(ωx+φ)+b(或y=A cos(ωx+φ)+b)的形式求值域.(3)把sin x或cos x看作一个整体,将原函数转换成二次函数求值域.(4)利用sin x±cos x和sin x cos x的关系将原函数转换成二次函数求值域.高中数学解题技巧方法总结第2篇(1)分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.(4)倒序相加法如果一个数列{an}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.(5)并项法一个数列的前n项和中,可两两结合求和,称为并项法求和,形如:(-1)nf(n)类型,可考虑利用并项法求和.高中数学解题技巧方法总结第3篇先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.推断数列的通项公式解答此类问题的具体步骤:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项的符号特征和绝对值特征;(5)化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;(6)对于符号交替出现的情况,可用(-1)k或(-1)k+1,k∈N*处理.高中数学解题技巧方法总结第4篇以退求进,立足特殊发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。

高中数学19种答题方法+6种解题思想

高中数学19种答题方法+6种解题思想

高中数学19种答题方法 6种解题思想1.函数函数题目,先直接思考后建立三者的联系。

首先考虑定义域,其次使用三合一定理。

2.方程或不等式如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.初等函数面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。

如所过的定点,二次函数的对称轴4.选择与填空中的不等式选择与填空中出现不等式的题目,优选特殊值法;5.参数的取值范围求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线问题圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.曲线方程求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.离心率求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列问题数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何问题立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接心心距创造直角三角形解题;13.导数导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;14.概率概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.换元法遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;16.二项分布注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;17.绝对值问题绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;18.平移与平移有关的,注意口诀左加右减,上加下减只用于函数,沿向量平移一定要使用平移公式完成;19.中心对称关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。

高中数学技巧大全80个小绝招

高中数学技巧大全80个小绝招

(原创实用版3篇)编制人员:_______________审核人员:_______________审批人员:_______________编制单位:_______________编制时间:____年___月___日序言下面是本店铺为大家精心编写的3篇《高中数学技巧大全80个小绝招》,供大家借鉴与参考。

下载后,可根据实际需要进行调整和使用,希望能够帮助到大家,谢射!(3篇)《高中数学技巧大全80个小绝招》篇1以下是一些高中数学技巧的小绝招:1. 熟记各种公式和定理,掌握它们的推导过程。

2. 熟练掌握基本运算法则,包括加减、乘除、乘方、开方等。

3. 解方程时,注意等式两边的对齐,以及解出的根是否满足原方程。

4. 解不等式时,注意解集的表示方法和不等式的基本性质。

5. 解绝对值不等式时,注意使用零点分段法。

6. 解一次函数和二次函数的图像问题,掌握函数图像的平移、拉伸、翻折等变换。

7. 解指数函数和对数函数问题,注意底数的取值范围和函数的定义域。

8. 解对数方程和对数不等式,注意对数函数的单调性。

9. 解三角函数问题,掌握正弦、余弦、正切的定义和基本公式。

10. 解向量问题,注意向量的加减、数乘、向量积等运算。

11. 解平面几何问题,掌握三角形的基本性质、面积公式以及四边形的相关概念。

12. 解立体几何问题,注意空间几何体的表面积和体积公式。

13. 解排列组合问题,掌握排列组合公式和递推关系。

14. 解二项式定理问题,掌握二项式展开式的通项公式。

15. 解概率统计问题,注意随机事件、概率和期望的计算。

16. 解线性规划问题,掌握线性规划的基本概念和求解方法。

17. 解导数问题,注意导数的定义、性质和基本公式。

18. 解常用函数的导数,如幂函数、指数函数、对数函数、三角函数等。

19. 解导数的应用问题,如最值、单调性、凸凹性等。

20. 解积分问题,注意积分的基本性质、常见函数的积分公式和分部积分法。

21. 解定积分问题,掌握定积分的计算和基本性质。

高中数学答题技巧和解题技巧

高中数学答题技巧和解题技巧

高中数学答题技巧和解题技巧高中数学答题技巧和解题技巧一、数学答题技巧1、认真审题解题的第一步,是正确理解题意,把握好题意的要求,包括题目中是否有暗示的关键词,如“证明”、“论证”、“求解”等;并依据题意确定最终要求的答案形式,简单题有求值要求时,要求的答案形式是运算结果,而有证明要求时,要求的答案形式是步骤详解及最终得出的结论等。

2、灵活运用解题思路解答数学题时,有的题目可以灵活运用解题思路,只要正确理解题意,就可以采用多种解题思路,比如给出几组数据,可以采用推理思路推到下一组数据,也可以采用分析思路推出一般性结论;几何题中,可以把多边形分解,将复杂的几何图形分解为若干简单几何图形,从中推出数学结论等。

3、谨慎检验解题时有的题目可能对答案有限制条件,应在解题时注意限制条件,并在计算结果的基础上进行检验,检验的是运算结果是否符合题意,以保证最终答案的正确性。

如果结果不符合题意,应仔细检查推理步骤或运算过程,查错并调整推理过程或运算步骤,直至得出正确结果为止。

二、数学解题技巧1、解方程的技巧(1)把复式方程化为一元一次、二元一次或无穷多次方程;(2)去掉括号、分数化简;(3)运用代数式的等价变换;(4)化简复式表达式;(5)省略不必要的计算;(6)把求出的某个值代入原方程或计算表达式中;(7)运用数字特性估算;(8)求解极限问题;(9)画出函数图像;(10)解方程组。

2、解不等式的技巧(1)不等式的等价变换;(2)用比较法证明结论;(3)数字特性估算;(4)求解极限问题;(5)画出函数图像。

3、解不定方程的技巧(1)把复式方程化为一元一次、二元一次或无穷多次方程;(2)去掉括号、分数化简;(3)运用代数式的等价变换;(4)化简复式表达式;(5)省略不必要的计算;(6)把求出的某个值代入原方程或计算表达式中;(7)运用数字特性估算;(8)求解极限问题;(9)画出函数图像;(10)解方程组。

数学解决高中数学难题的四大思维技巧

数学解决高中数学难题的四大思维技巧

数学解决高中数学难题的四大思维技巧在高中数学学习中,我们经常会遇到各种各样的数学难题,有些难题看起来很棘手,令人困惑。

然而,只要我们掌握一些有效的思维技巧,就能够更轻松地解决这些难题。

本文将介绍数学解决高中数学难题的四大思维技巧,帮助我们在数学学习中取得更好的成绩。

一、问题分解法解决数学难题的第一个思维技巧就是问题分解法。

当我们面对一个复杂的数学问题时,首先要学会将其分解为几个简单的部分。

可以通过分析问题的结构和特点,将问题逐步分解为更小的子问题,然后逐个解决这些子问题,最终得到整个问题的解答。

通过问题分解法,我们可以将原来看起来复杂的数学难题变得更易于理解和解决。

二、模式识别法数学解决高中数学难题的第二个思维技巧是模式识别法。

在数学学习中,我们经常会遇到一些类似的问题或者模式。

通过观察和思考,我们可以将这些问题归纳为一般性的规律和模式。

当我们遇到类似的问题时,可以运用已经掌握的模式和规律,更加迅速地解决问题。

通过模式识别法,我们可以从大量例题中提取出数学问题的共性,培养出敏锐的观察力和抽象思维的能力。

三、逆向思维法逆向思维法是解决高中数学难题的第三个思维技巧。

有时候我们在正常的思维定势中很难找到问题的解决方法,这时可以尝试从相反的角度来思考。

通过逆向思维,我们可以从问题的解答出发,倒推回问题的出发点,找到其中的规律和关系。

逆向思维法可以帮助我们打破固有的思维模式,开阔思路,找到解决问题的新思路和方法。

四、实践反思法解决高中数学难题的第四个思维技巧是实践反思法。

数学学习需要不断的实践和反思。

当我们解决一个数学难题时,即使我们得到了正确的答案,也要对解题过程进行仔细的反思。

我们可以思考自己使用了哪些方法和规律,是否可以运用其他方法来解决,当中是否存在简化计算的技巧等等。

通过实践反思,我们可以不断总结经验,积累解题技巧,提高解决数学难题的能力。

结语数学解决高中数学难题并不是一件容易的事情,但通过掌握一些有效的思维技巧,我们可以更加轻松地应对各种难题。

高中数学解题方法技巧

高中数学解题方法技巧

高中数学解题方法和技巧有很多,下面列举一些常见的:
1. 理解题目:首先,需要仔细阅读题目,理解题目的意思和需要求解的问题。

2. 分析题目:分析题目的条件和结论,看看是否有什么规律或者特殊的性质。

3. 制定计划:根据题目的难度和复杂度,制定解题的计划和策略。

4. 执行计划:按照计划进行计算和推理,注意每一步的逻辑性和正确性。

5. 检查答案:解完题目后,需要检查答案的正确性和合理性。

6. 总结经验:对于做过的题目,需要总结经验和教训,看看是否有更好的解题方法。

在解题的过程中,也需要掌握一些常用的技巧,比如:
1. 画图:对于一些几何题目或者函数题目,画图可以帮助我们更好地理解题目和解题。

2. 建立方程:对于一些未知数较多的题目,建立方程组可以更好地求解。

3. 利用公式:对于一些常见的数学问题,可以利用公式直接求解。

4. 类比推理:对于一些类似的数学问题,可以利用类比推理的方法求解。

以上就是高中数学解题的一些方法和技巧。

高中数学解题技巧方法有哪些

高中数学解题技巧方法有哪些

高中数学解题技巧方法有哪些(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如学习资料、英语资料、学生作文、教学资源、求职资料、创业资料、工作范文、条据文书、合同协议、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of practical sample essays, such as learning materials, English materials, student essays, teaching resources, job search materials, entrepreneurial materials, work examples, documents, contracts, agreements, other essays, etc. Please pay attention to the different formats and writing methods of the model essay!高中数学解题技巧方法有哪些关于高中数学解题技巧方法有哪些关于高中数学解题技巧方法有哪些?小伙伴们可有了解过?不妨一起来关注下吧!那么,以下是本店铺为大家带来的关于高中数学解题技巧方法有哪些,希望您能喜欢!关于高中数学解题技巧方法有哪些1高中数学解题技巧归纳与总结①背例题:首先背例题的主要原因就是能够在考场上遗忘了一些重要公式的时候,可以用题来套公式,这样可以更好的帮助你理解试题,更好的解决试题中遇到的问题。

高中数学50个解题小技巧

高中数学50个解题小技巧

高中数学 50 个解题小技巧解题要讲究方式方法,考试才能轻松得高分,下面就是小编给大家带来的高中数学 50 个解题小技巧,希望大家喜欢!1 . 适用条件[直线过焦点],必有 ecosA=(x-1)/(x+1),其中A 为直线与焦点所在轴夹角,是锐角。

x 为分离比,必须大于 1。

注:上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2 . 函数的周期性问题(记忆三个)(1)若 f(x)=-f(x+k),则 T=2k ; (2)若 f(x)=m/(x+k) (m 不为 0),则 T=2k ; (3) 若 f(x)=f(x+k)+f(x-k),则 T=6k。

注意点:a.周期函数,周期必无限 b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin 派 x 相加不是周期函数。

3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在 R 上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为 x= (a+b)/2(2) 函数 y=f(a+x)与 y=f(b-x)的图像关于 x= (b-a)/2 对称; (3)若 f(a+x)+f(a- x)=2b,则 f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于 R 上的奇函数有 f(0)=0; (2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S 奇=na 中,例如 S13=13a7(13 和 7 为下角标); (2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述 2 中各项在公比不为负一时成等比,在 q=-1 时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q?mS(n)可以迅速求 q6 . 数列的终极利器,特征根方程首先介绍公式:对于 an+1=pan+q(n+1 为下角标,n 为下角标),a1 已知,那么特征根 x=q/(1-p),则数列通项公式为 an= (a1-x)p?(n-1)+x,这是一阶特征根方程的运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学破题技巧主讲人:徐德桦(绍兴一中)一、列举法【方法阐释】列举法就是通过枚举集合中所有的元素,然后根据集合的基本运算进行求解的方法。

这种方法适用于数集的有关运算以及集合类型的新定义运算问题,也适用于一些集合元素比较少而且类型比较单一类型的题目,如排列组合等等。

【典型实例】设P,Q为两个非空实数集合,定义集合P*Q={z|z=a/b,a∈P,b∈Q},若P={-1,0,1},Q={-2,2},则集合P*Q中元素的个数是()A.2B.3C.4D.5二、定义法【方法阐释】利用定义判断充分条件和必要条件的方法就是最基本的、最常规的方法(回忆一下这些条件的判断方法),一般拿到陌生的题目或者一些新定义类型的题目都需要从定义和性质出发寻找突破口。

【典型实例】“(m-1)(a-1)>0”是“logam>0”的()(logam 意思就是以a为底m的对数)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件三、特殊函数法【方法阐释】对于一些小题目(譬如,选择题和填空题)一般不需要详细的过程和步骤,只要有一种预感和能说服自己的理由可以尝试地使用一些特定的函数或者说特殊值。

给定函数f(x)具备的一些性质来研究它另外的一些性质。

对于能看出来是定值的题目一般也宜用特殊值法。

【典型实例】定义在R上的函数f(x)关于(2,0)对称,且在[2,+无穷)上单调递增,如果x1+x2>4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)与0的大小关系是()A.f(x1)+f(x2)>0B.f(x1)+f(x2)=0C.f(x1)+f(x2)<0D.无法判断四、换元法【方法阐释】这是一种高中阶段最常用的数学解题方法,贯穿于高中所有的阶段。

解题过程就是将复杂的抽象的难以分辨和讨论的问题转化为简单具体直接而且熟悉的问题。

例如,求函数y = x^4+2x^2-8的最值,就可以t=x^2(t>=0),这里t的范围需要特别注意。

【典型实例】若2=<x<=8,则函数y = (log1/4x)^2+log1/4x^2+5 的最大值为______,最小值为_______.五、单调性分析法【方法阐释】单调性一直是函数里面考察的重点,单调性分析方法就是利用函数的单调性来解决零点问题的方法,主要涉及两个方法的问题:一是根据函数在某个范围内的零点个数;二是根据“在单调区间上存在零点的函数,在零点两侧函数值的符号相反”这一性质求解参数的取值范围。

【典型实例】函数f(x)为分段函数,在x>0,为2x-6+lnx,在x<=0,为x^2-2 的零点个数是_________.六、构造函数法【方法阐释】导数是解决函数问题的一个有力的工具,但是有些与函数有关的问题无法直接用导数直接来处理,而需要通过构造新的函数才能解决问题。

特定地,当给定关于导数的不等关系时,常常需要构造对应的函数。

【典型实例】函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f’(x)>2,则f(x)>2x+4的解集( )A.(-1,1)B.(-1,+无穷)C.(-无穷,-1)D.(-无穷,+无穷)已知偶函数f(x)在区间[0,+无穷)上满足f’(x)>0,则满足f(x^2-2x)<f(x)的x的取值范围()A.(-3,1)B.(-无穷,-3)∪(3,+无穷)C.(-3,3)D.(1,3)七、拆分变角法【方法阐释】拆分变角法一般常用于特征比较明显的题目,三角的题目里面,“1”的代换,二倍角公式等等一些应用。

拆分变角法是指将已知角灵活的拆分,配凑成待求角或那种形式的方法。

多做一些题目,都是一个样的解题步骤和模式,熟能生巧。

常见的变换有:(1.)单角变为和差角x=(x-y)+y,y=1/2(x+y)-1/2(x-y)...(2)倍角化为和差角,2x=(x+y)+(x-y),2y=(x+y)-(x-y),(3.)未知和差角化为已知和差角,如:2x+y=(x+y)+x,2x-y=(x-y)+x...【典型实例】已知tan(x+y)=2/5,tan(y-π/4)=1/4,则tan(π/4+x)的值为_______.已知锐角A,B满足2tanA = tan(A+B),则tanB 的最大值()A.二根号二B.根号二C.二分之根号二D.四分之根号二八、变角互化法【方法阐释】这一类型的题目一般有一个特点就是比较烦,计算量可能比较大,但是只要有想法有方法还是很容易拿全分的,一般出现在大题目第一题。

常解决的方法就是利用正弦和余弦定理将已知条件转化为边边的关系或者通过因式分解、配方等得出相应的关系【典型实例】在三角形ABC中,设a,b,c分别是角A,B,C的对边,且直线bx+ycosA+cosB=0与ax+ycosB+cosA=0平行,则三角形ABC一定是()A.锐角三角形B.等腰三角形C.直角三角形D.等腰或直角三角形在三角形ABC中,tanA+tanB+根号三= 根号三tanAtanB,且sinAcosA=根号三/4,则此三角形为()A.锐角三角形B.直角三角形C.等边三角形D.钝角三角形九、特殊值法【方法阐释】由于选择题仅要求结论正确,以至于如何获得这个结论并不重要,虽然特殊代替不了一般情况,但是就像马克思主义哲学里面讲的特殊反应普遍性,所以在特定情况下,特殊值法是一种常用而且高效的一种解决小题的方法。

【典型实例】对于任意向量a,b,c,下列命题中正确的是()A、|ab| = |a||b|B、|a+b| = |a| + |b|C、(ab)c = a(bc)D、aa=|a|^2若a,b,c均为单位向量,且(a+2b)^2 = 5,则|a+b-c|的最小值为()A.根号二-1B.1C.根号二+1D..根号二十、数形结合法【方法阐述】这时高中阶段考察最为频繁的一种数学思想方法,可以说几乎每一张数学试卷都会重点考察这种方法,我们要养成一种习惯就是拿到一道题目要尽量的将其转化为图形模型,因为只有图形是最为客观最容易观察的【典型实例】若直线y= kx+1 与圆x^2+y^2=1相交于P,Q两点,且∠POQ = 120°(其中O为原点),则k值为()A.±根号B.根号三C.±根号二D.根号二“a=3”是“直线ax+2y+2a=0和直线3x+(a-1)y-a+7=0”的()A.充分不必要条件B.必要不充分条件C.冲要条件D.既不充分也不必要十一、判别式法【方法阐释】判别式法就是将直线与曲线方程联立,得到一个一元二次方程,通过判别式建立所含参数的不等式【典型实例】直线y=x+2,与椭圆x^2/m+y^2/3=1,有两个公共点,则m的取值范围是()A.m>1B.m>1且m≠3C.m>3D.m>0且m≠3已知双曲线x^2/14-y^2/2=1,的左右焦点为F1,F2,P为双曲线左支上一点,M为双曲线渐近线上一地(渐近线的斜率大于0),则|PF2|+|PM|的最小值为___________十二、定义法【方法阐释】定义方法就是直接利用我们学习的知识来做题目,一般我们遇到陌生的题目我们就会先采用这种方法【典型实例】已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2、a4的等差中项,则数列{an}的通项公式为()A.2nB.2^nC.2^(n-1)D.2n+1在等比数列{an}中,若a4,a8是方程x^2-3x+2=0的两个根,则a6的值为()A.正负根号二B.负根号二C.根号二D.正负二十三、错位相减法【方法阐释】这是数列里面最常用的一种手法,也是最基本的方法。

必须熟练掌握,仔细运算【典型实例】已知等比数列{an}的首项为a1=1/4,公比q=1/4,设bn+2=3log1/4an (n∈N*),数列{cn}满足cn=an*bn.则数列{cn}的前n项和Sn=___.十四、分类讨论法【方法阐释】分类讨论也是高中数学最基本的数学思想方法,我们运用分类讨论的方法,必须要抓住要讨论的源头在哪里,抓住这个源头再来分情况讨论那么思路就会顺势而来【典型实例】不等式|x-2-|-|x-1|>0的解集()A.(-无穷,3/2)B.(-无穷,-3/2)C.(3/2,+无穷)D.(-3/2,+无穷)设二次函数f(x)=ax^2-4x+c(x∈R)的值域为[0,+无穷),则1/(c+1) +9/(a+9)的最大值()A.6/5B.根号五/4C.4/3D.2十五、等价转化法【方法阐释】等价转化法就是把所求的问题转化为已有的知识法范围内的可解问题的一种极为重要的思想方法【典型实例】一元二次方程x^2+ax+2b=0有两个根,一个根在(0,1)内,一个在区间(1,2)内,则点(a,b)对应的区域面积为()A.1/2B.1C.2D.3/2实数x,y满足y>=|x-1|和y<=1,则不等式所组成的图形的面积为()A.4B.2C.1/2D.1十六、割补法【方法阐释】割补法常用于求解不规则几何体的体积或者用于分析,通过割或者补对几何体的体积之和或差来表示【典型实例】十七、向量法【方法阐释】一般用在空间几何的题目上面,在建立空间直角坐标系后,就可以用坐标表示相关的向量,这样,线面关系的逻辑推理就转化为了相应的直线方向向量和平面的法向量之间的坐标代数运算,用代数运算代替了空间线面关系的逻辑推理,使得证明和运算过程化和程式化【典型实例】十八、正难则反法【方法阐释】求事件A的概率,如果事件A包含的基本事件比较多或者比较复杂,其反面比较简单,这是可以先求出反面,再用1-反面就可以得到解,这就是正难则反思想的体现【典型实例】有四位同学,没人买一张体育彩票,则至少有两位同学所买的彩票的末位数字相同的概率为()A.63/125B.62/125C.60/125D.65/125。

相关文档
最新文档