高中数学九大解题技巧

合集下载

高考数学各题型答题技巧

高考数学各题型答题技巧

高考数学各题型答题技巧高考数学各题型答题技巧一、排列组合篇1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5.了解随机事件的发生存在着规律性和随机事件概率的意义。

6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

8.会计算事件在n次独立重复试验中恰好发生k次的概率.二、立体几何篇1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2.判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。

三、数列问题篇1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

高中数学解题技巧方法总结(必备19篇)

高中数学解题技巧方法总结(必备19篇)

高中数学解题技巧方法总结第1篇(1)利用y=sin x和y=cos x的值域直接求.(2)把所给的三角函数式变换成y=A sin(ωx+φ)+b(或y=A cos(ωx+φ)+b)的形式求值域.(3)把sin x或cos x看作一个整体,将原函数转换成二次函数求值域.(4)利用sin x±cos x和sin x cos x的关系将原函数转换成二次函数求值域.高中数学解题技巧方法总结第2篇(1)分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.(4)倒序相加法如果一个数列{an}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.(5)并项法一个数列的前n项和中,可两两结合求和,称为并项法求和,形如:(-1)nf(n)类型,可考虑利用并项法求和.高中数学解题技巧方法总结第3篇先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.推断数列的通项公式解答此类问题的具体步骤:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项的符号特征和绝对值特征;(5)化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;(6)对于符号交替出现的情况,可用(-1)k或(-1)k+1,k∈N*处理.高中数学解题技巧方法总结第4篇以退求进,立足特殊发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。

高中数学解题方法与技巧

高中数学解题方法与技巧

高中数学解题方法与技巧高中数学是一门重要而复杂的学科,它不仅在高中数学考试中占有重要的比例,同时也是许多高考和各类外部考试的必要组成部分。

为了帮助学生在数学课堂中取得更好的成绩,下面将介绍一些高中数学解题方法与技巧。

一、问题分解法在解决复杂问题时,问题分解法是非常有用的一种方法。

这种方法的基本思路是,将问题按照各个部分进行分解,分别考虑每个部分,然后将所有的结果合并起来得到终极结果。

例如,在解决题目“一支船航行了一段距离之后返回原点,它来回所用的时间是8小时,来回的速度比为3:2,求船航行了多少距离?”时,可以将问题分解成为若干个小问题,如求往返的时间、速度比、来回的距离等等。

通过逐一解决这些小问题,最终得到整个问题的答案。

二、画图法画图法是解决高中数学问题的另一种重要方法。

它的基本思路是,在纸上画出与问题相应的几何图形,然后通过观察或推导得到问题的解答。

例如,在解决问题“一个长方形的周长为20,它的面积为16,求它的长和宽”时,我们可以通过画出长方形的图形来帮助我们理解和解决这个问题。

图中可以用x和y代替长和宽,然后根据周长和面积的定义式列出方程,最后求解x和y的值。

三、化繁为简法化繁为简法是另一种非常实用的高中数学解题方法。

它的基本思路是,将复杂问题简化成为容易解决的问题,然后逐步加以推导和扩展,最终得到原始问题的解决方案。

例如,在解决问题“证明勾股定理”时,可以先使用勾股定理来证明一个简单的三角形,然后逐步加以推导和扩展,最终得到原始问题的解决方案。

这样的解题方法可以帮助我们理解数学原理,提高我们的数学思维能力。

四、运用辅助工具的方法现代技术的发展使得数学解题不再仅限于传统的纸笔计算。

可以使用图形计算机软件、计算器、手机APP应用程序等现代化工具来辅助解题。

例如,在求解三角函数时,我们可以使用特定的计算器或手机APP来得到计算结果。

这些辅助工具可以缩短解题时间,减少计算错误,提高解题效率。

高中数学九大解题技巧

高中数学九大解题技巧

高中数学九大解题技巧
1、配法通过把一个解析式利用恒等变形的,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的,叫配。

配用的最多的是配成完全平方式,它是数学中一种重要的恒等变形的,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学在代数、几何、三角等的解题中起着重要的作用。

因式分解的有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题。

通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的。

高中数学52个秒杀技巧

高中数学52个秒杀技巧

高中数学52个秒杀技巧,是从大量的数学题目和考试中总结出的快速解题方法,这些技巧可以帮助学生在考试中节省时间,提高解题效率。

以下是一些常用的秒杀技巧:
1. 因式分解法:对于多项式,通过分解成几个一次或二次因式的乘积形式,使其变得更简单。

2. 配方法:将一个多项式通过配方转化为另一个多项式,常常用于解决平方项问题。

3. 代数变换法:通过代数运算,将复杂的问题转化为简单的问题,例如通过移项、合并同类项等。

4. 数形结合法:利用几何图形直观地解决代数问题,或者利用代数方法解决几何问题。

5. 特殊值法:在解决方程或不等式问题时,可以先假设一些特殊值,看看是否能得到有用的信息。

6. 排除法:在做选择题时,可以通过排除明显错误的选项,来找到正确答案。

7. 整体法:将多个变量或者多个方程作为一个整体来处理,简化问题。

8. 方程组解法:对于多个方程组成的方程组,可以利用代入法、消元法等方法求解。

9. 函数性质法:利用函数的性质,如单调性、奇偶性、周期性等,来解决函数问题。

10. 微积分法:在高中数学中,微积分主要用来解决变化率问题,
如求函数的导数和积分。

以上只是部分秒杀技巧,实际上还有很多其他的技巧,如不等式的性质、概率的计算方法、排列组合等。

这些技巧需要学生在平时的学习中不断积累和练习,才能在考试中熟练运用。

66个高中数学秒杀技巧

66个高中数学秒杀技巧

66个高中数学秒杀技巧高中数学一直以来都是学生们的心病,很多人都认为数学难以掌握,难以拿高分。

但实际上,只要我们掌握了一些高中数学的秒杀技巧,就可以事半功倍地学好数学,拿到更高的分数。

下面就为大家介绍66个高中数学秒杀技巧。

一、代数1. 对于同类项的加减问题,先把同类项合并,再求和或差。

2. 带分数运算时,先通分,再运算。

3. 当分母为二次式时,通常要配方化简。

4. 拆分因式时,先将公因式提出,再进行拆分。

5. 求解方程时,可以通过变形、配方、加减、乘除等方式进行。

6. 解三元一次方程组时,可以通过消元、代入、加减等方式进行。

7. 解二元二次方程组时,可以通过公式法、代入法、加减法等方式进行。

8. 利用导数求函数的极值和拐点时,先求一、二阶导数,然后令导数为0求解。

9. 利用等比数列的性质求解问题时,需要掌握公比、首项、通项公式等基本概念。

10. 利用等差数列的性质求解问题时,需要掌握公差、首项、通项公式等基本概念。

二、几何11. 判断两个角是否相等,可以通过其对应的弧长、扇形面积、弦长等方式进行。

12. 判断两个三角形是否全等,可以通过边边边、边角边、角边角等方式进行。

13. 判断两个三角形是否相似,可以通过对应角相等、对应边成比例等方式进行。

14. 当三角形两边和夹角已知时,可以通过余弦定理求第三边。

15. 当三角形两角和一边已知时,可以通过正弦定理求另外两边的比例。

16. 当三角形一边和两角已知时,可以通过正弦定理求第三角。

17. 计算圆的面积时,可以通过半径、直径、弧长等方式进行。

18. 计算圆的周长时,可以通过直径或半径进行计算。

19. 计算球体的表面积时,可以通过半径进行计算。

20. 计算球体的体积时,可以通过半径进行计算。

三、数列21. 求等差数列的通项公式时,可以通过首项、公差、项数等方式进行。

22. 求等比数列的通项公式时,可以通过首项、公比、项数等方式进行。

23. 求等差数列的和时,可以通过项数、首项、末项等方式进行。

高中数学常考题型答题技巧与方法超全整合版

高中数学常考题型答题技巧与方法超全整合版

高中数学常考题型答题技巧与方法超全整合版高中数学常考题型答题技巧与方法1、解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2、因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3、配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。

配方法的主要根据有:4、换元法解某些复杂的特型方程要用到“换元法”。

换元法解方程的一般步骤是:设元→换元→解元→还元5、待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。

适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。

其解题步骤是:①设②列③解④写6、复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:(-----)(----)=0两种情况为或型②配成平方型:(----)2+(----)2=0两种情况为且型7、数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组8、化简二次根式基本思路是:把√m化成完全平方式。

即:9、观察法10、代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

11、解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。

解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论12、恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

高中数学50个解题小技巧

高中数学50个解题小技巧

高中数学 50 个解题小技巧解题要讲究方式方法,考试才能轻松得高分,下面就是小编给大家带来的高中数学 50 个解题小技巧,希望大家喜欢!1 . 适用条件[直线过焦点],必有 ecosA=(x-1)/(x+1),其中A 为直线与焦点所在轴夹角,是锐角。

x 为分离比,必须大于 1。

注:上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2 . 函数的周期性问题(记忆三个)(1)若 f(x)=-f(x+k),则 T=2k ; (2)若 f(x)=m/(x+k) (m 不为 0),则 T=2k ; (3) 若 f(x)=f(x+k)+f(x-k),则 T=6k。

注意点:a.周期函数,周期必无限 b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin 派 x 相加不是周期函数。

3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在 R 上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为 x= (a+b)/2(2) 函数 y=f(a+x)与 y=f(b-x)的图像关于 x= (b-a)/2 对称; (3)若 f(a+x)+f(a- x)=2b,则 f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于 R 上的奇函数有 f(0)=0; (2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S 奇=na 中,例如 S13=13a7(13 和 7 为下角标); (2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述 2 中各项在公比不为负一时成等比,在 q=-1 时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q?mS(n)可以迅速求 q6 . 数列的终极利器,特征根方程首先介绍公式:对于 an+1=pan+q(n+1 为下角标,n 为下角标),a1 已知,那么特征根 x=q/(1-p),则数列通项公式为 an= (a1-x)p?(n-1)+x,这是一阶特征根方程的运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学九大解题技巧
1、配法
通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。

配方法用的最多的是配成完全平方式,它是数学中一种重要的
恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常
用到它。

2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、
几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,
除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相
乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。

通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数
学式子中,用新的变元去代替原式的一个部分或改造原来的式子,
使它简化,使问题易于解决。

4、判别式法与韦达定理
一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别,
△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代
数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算
中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个
数的和与积,求这两个数等简单应用外,还可以求根的对称函数,
计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线
的问题等,都有非常广泛的应用。

5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是中学数学
中常用的方法之一。

6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从
而使问题得以解决,这种解题的数学方法,我们称为构造法。

运用
构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,
有利于问题的解决。

7、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有
时会收到事半功倍的效果。

运用面积关系来证明或计算平面几何题
的方法,称为面积方法,它是几何中的一种常用方法。

用归纳法或分析法证明平面几何题,其困难在添置辅助线。

面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到
求证的结果。

所以用面积法来解几何题,几何元素之间关系变成数
量之间的关系,只需要计算,有时可以不添置补助线,即使需要添
置辅助线,也很容易考虑到。

8、几何变换法
在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。

所谓变换是一个集合的任一元素到同一集
合的元素的一个一一映射。

中学数学中所涉及的变换主要是初等变
换。

有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。

另一方面,也可将变换的观点渗透到中学数
学教学中。

将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

几何变换包括:(1)平移;(2)旋转;(3)对称。

9、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否
定相反的假设,达到肯定原命题正确的一种方法。

反证法可以分为
归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。

用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行
于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。

推理必须严谨。

导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

一、学会审题,才会解题
很多考生对审题重视不够,往往要做的题目都没有看清楚就急于下笔,审好题是做题的关键,审题一一定要逐字逐句的看清楚,通
过审题发现题目有无易漏、易错点,只有仔细审题才能从题目中获
取更多的信息,只有挖掘题目中的隐含条件、启发解题思路,提醒
常见解题误区和自己易出现的错误,才能提高解题能力。

只有认真
的审题,谨慎的态度,才能准确地揣摩出题者的意图,发现更多的
信息,从而快速找到解题方向。

考前保持头脑清醒,要摒弃杂念,不断进行积极的心理暗示,创设宽松的氛围,创设数学情境,进而酝酿数学思维,静能生慧,满
怀信心的进行针对性的自我安慰,以平稳自信、积极主动的心态准
备应考。

这就要求我们要善于观察。

二、先做简单题,后做难题
从我们的心理学角度来讲,一般拿到试卷以后,心情比较紧张,此时不要急于下手解题,可以先对试题多少、分布、难易程度从头
到尾浏览一遍,做题要先易后难,做到心中有数,一般简单的题目
占全卷60%,这是很重要的一部分分数,见到简单题要细心解题,
尽量使用数学语言,而且要更加严谨以振奋精神,养成良好的审题
习惯鼓舞信心。

如果顺序做题既耗费时间又拿不到分,会做的题又被耽误了。

所以先做简单题,多年的经验告诉我们,当你解题不顺利时,更要冷静,静下心来,沉住气,根据自己的实际情况,果断跳过自己不会
做的题目,把简单的都做完,如果我们能把这部分的分数拿到,就
已经打了胜仗,再集中精力做比较难的题,有了胜利的信心,面对
住偏难的题更要有耐心,不要着急,可以先放弃,但也要注意认真
对待每一道题,不能走马观花,要相信自己。

到应有的分数。

最好
还有善于把难题转换成简单的题目的能力。

三、多做练习,提升能力
整体而言高考数学要想考好,一定要做大量的练习,要有扎实的理论基础,在此基础上辅以做题技巧,才不会出现考试时间不够用,自己会做的题最后没时间做,得不偿失。

就要求我们在大量的练习
的基础上,认真总结方程的思想,数形结合的思想,函数的思想等等,掌握各种类型题目的规律。

我们还要求考生不但会做题还要准确快速地解答出来通过练习掌握解题技巧,利用解题技巧快速解题,通过多做练习,做到熟能生巧,这才是我们练习的目的。

做题还要集中注意力,这是是考试成
功的保证。

有时精神紧张,会做的题也会变的不会做,平时要有针
对性的训练一些难题,有益于积极思维,树立信心。

因此,对于大部分高考生来说,平时加强训练,养成准确的解题习惯,熟练掌握解题技巧是非常有必要的。

四、会做的题保证做对
这一点很重要,实践中发现,考试我们会做的题丢分率是百分之十,也就是说由于大意每次考试大家都要丢掉这么多的分,怎么将
你的解题策略转化为得分点,虽然解题思路正确甚至很巧妙,但是
最后可能做不对,这一点往往被一些考生所忽视,但是由于不善于
把图形语言变成自己理解的语言,因此卷面上出现大量会又做不对
的情况,我们自己的估分和得分相差甚远。

如立体几何论证中的跳步,大总分人会丢掉三分之一以上的分数,代数论证中,得分更是
少的可怜。

所心我们要边做边检查解题思路正确与否,做完后认真
核对。

不仅把题目做完,更要保证准确率,会做的一定要保证做对,要能得到分。

猜你感兴趣的:。

相关文档
最新文档