第12章 整式的乘除检测题

合集下载

华东师大版初中八年级数学上册第12章整式的乘除素养综合检测课件

华东师大版初中八年级数学上册第12章整式的乘除素养综合检测课件

图1
图2
解析 (1)由题意可得S1=a2-b2, S2=a2-a(a-b)-b(a-b)-b(a-b)=a2-a2+ab-ab+b2-ab+b2=2b2-ab. (2)由(1)得,S1+S2=a2-b2+2b2-ab=a2+b2-ab =(a+b)2-3ab,∵a+b=10,ab=20,∴S1+S2=102-3×20=40.
21.(跨学科·生物)(11分)某公司培养绿藻以制作绿藻粉,再经 过后续的加工步骤,制成绿藻相关的保健食品.已知该公司制 作每1克的绿藻粉需要60亿个绿藻细胞. 请根据上述信息回答下列问题: (1)假设在光照充沛的环境下,1个绿藻细胞每20小时可分裂 成4个绿藻细胞,且分裂后的细胞亦可继续分裂.现从1个绿藻 细胞开始培养,若培养期间绿藻细胞皆未死亡且培养环境的 光照充沛,经过15天后,共分裂成4k个绿藻细胞,则k的值是多 少?
(2)在(1)的条件下,已知60亿介于232与233之间,请判断4k个绿藻 细胞是否足够制作8克的绿藻粉.
解析 (1)15天=15×24小时=360小时, ∵1个绿藻细胞每20小时可分裂成4个绿藻细胞, ∴从1个绿藻细胞开始培养,经过20小时分裂成4个绿藻细胞, 经过20×2=40(小时),分裂成42个绿藻细胞, 经过20×3=60(小时),分裂成43个绿藻细胞, …… 经过20×18=360(小时),分裂成418个绿藻细胞, ∴k的值为18. (2)∵每1克的绿藻粉需要60亿个绿藻细胞,
∴制作8克的绿藻粉需要60×8亿个绿藻细胞, ∵60亿介于232与233之间, ∴232×8<60×8亿<233×8,即235<60×8亿<236, ∵418=(22)18=236, ∴60×8亿<418, ∴418个绿藻细胞足够制作8克的绿藻粉.

第12章 整式的乘除练习题(附参考答案)

第12章  整式的乘除练习题(附参考答案)

第12章整式的乘除练习题资料编号:2020080623261. 计算()23a -的结果是 【 】 (A )5a (B )5a - (C )6a - (D )6a2. 下列运算正确的是 【 】 (A )()42222x x = (B )523x x x =⋅(C )()523x x = (D )()1122+=+x x3. 计算()()22-+x x 的结果是 【 】 (A )42-x (B )24x - (C )24x + (D )22x +4. 下列等式错误的是 【 】 (A )()22242n m mn = (B )()22242n m mn =-(C )()6632282n m n m = (D )()5532282n m n m -=-5. 一种计算机每秒可做8104⨯次运算,则它工作4102⨯秒运算的次数为 【 】 (A )9108⨯ (B )10108⨯ (C )11108⨯ (D )12108⨯6. 下列计算正确的是 【 】 (A )()222b a b a +=+ (B )()2222b ab a b a --=-(C )()()22222b a b a b a -=-+ (D )()2222a ab b a b +-=-7. 若()()n x x mx x ++=-+3152,则m 的值为 【 】 (A )5 (B )5- (C )2 (D )2-8. 若12,7==+mn n m ,则22n mn m +-的值是 【 】 (A )11 (B )13 (C )37 (D )619. 若c b a ,,为三角形的三边长,则代数式()22b c a --的值 【 】(A )一定为正数 (B )一定为负数 (C )可能为正数,也可能为负数 (D )可能为010. 若1,3=+=+y x b a ,则代数式2008222+--++y x b ab a 的值为 【 】(A )2013 (B )2014 (C )2015 (D )2016 11. 已知532,32==n m ,则=+n m 1022__________. 12. 分解因式:=-822a ________________. 13. 计算:()()()=÷⋅524232a a a __________.14. 已知:31=+x x ,则=+221xx __________. 15. 如果3,822=+=+y x y x ,则xy 的值是__________.16. 一个长方形的面积是()942-x 平方米,其长为()32+x 米,用含x 的代数式表示它的宽为_____________米.17. 长为a ,宽为b 的长方形,它的周长为16,面积为12,则22ab b a +的值为__________. 18. 已知()()8,222=-=+b a b a ,则=+22b a __________.19. 已知3=+y x ,则代数式222121y xy x ++的值为__________. 20. 用简便方法计算222015201540322016+⨯-的结果是__________. 21. 计算: (1)()3235236254y x y x x x -÷+⋅; (2)()()()2322++-+a a a .22. 已知y x ,互为相反数,且()()42222=+-+y x ,求y x ,的值.23. (1)先化简,再求值:()()()()xy xy y x y x y x 24433÷---+,其中2,1=-=y x ; (2)实数x 满足0222=--x x ,求代数式()()()()334122-+++--x x x x x 的值.24. 已知2,3-==+ab b a ,求44b a +的值.25. 如图所示,大小两个正方形的边长分别为b a ,. (1)求图中阴影部分的面积S ;(2)如果5,7==+ab b a ,求阴影部分的面积.26. 若()()n x x m x +-+32的积中不含2x 和x 项,求n m ,的值.27. 因式分解:(1)2216ay ax -; (2)()()1662+-+x x ; (3)()()x y b y x a -+-2249.28. 阅读下列解题过程:已知0641322=+-++b a b a ,求b a ,的值. 解:0964422=++++-b b a a()()03222=++-b a∵()22-a ≥0,()23+b ≥0∴03,02=+=-b a ∴3,2-==b a .请用同样的方法解题:已知14642222-=-+-++c b a c b a ,求c b a ,,的值.29. 观察下列各式:()()1112-=+-x x x ; ()()11132-=++-x x x x ; ()()111423-=+++-x x x x x ;……(1)根据上面各式的规律,得()()=+++++----11321x x x x x n n n _____________;(其中n 为正整数)(2)根据这一规律计算63624322222221+++++++ 的值.30. 阅读并解答:在分解因式542--x x 时,李老师是这样做的:542--x x54442--+-=x x 第一步 ()922--=x 第二步()()3232--+-=x x 第三步 ()()51-+=x x . 第四步(1)从第一步到第二步里面运用了__________公式; (2)从第二步到第三步运用了__________公式; (3)仿照上面分解因式322-+x x .整数的乘除练习题参考答案2020.08.0711. 225 12. ()()222-+a a 13. 4a 14. 7 15. 21 16. ()32-x 17. 96 18. 5 19. 2920. 1 21. 计算: (1)()3235236254y x y x x x -÷+⋅; 解:原式3338210x x x =-=; (2)()()()2322++-+a a a .解:原式96422+++-=a a a 136+=a .22. 已知y x ,互为相反数,且()()42222=+-+y x ,求y x ,的值.解:∵y x ,互为相反数 ∴0=+y x∵()()42222=+-+y x∴()()42222=--++++y x y x()()44=-++y x y x()44=-y x∴1=-y x解方程组⎩⎨⎧=-=+10y x y x 得:⎪⎪⎩⎪⎪⎨⎧-==2121y x .23. (1)先化简,再求值:()()()()xy xy y x y x y x 24433÷---+,其中2,1=-=y x ;(2)实数x 满足0222=--x x ,求代数式()()()()334122-+++--x x x x x 的值.解:(1)()()()()xy xy y x y x y x 24433÷---+222222y x y x +--= 22x y -=当2,1=-=y x 时原式()3141222=-=--=;(2)∵0222=--x x∴()()()()334122-+++--x x x x x94144222-+--+-=x x x x x ()0422488422⨯=--=--=x x x x 0=.24. 已知2,3-==+ab b a ,求44b a +的值. 解:∵2,3-==+ab b a ∴()ab b a b a 2222-+=+()13492232=+=-⨯-=.∴()22222442b a b a b a -+=+()1618169221322=-=-⨯-=.25. 如图所示,大小两个正方形的边长分别为b a ,.(1)求图中阴影部分的面积S ;(2)如果5,7==+ab b a ,求阴影部分的面积.解:(1)()b b a a b a S ⋅+--+=2121222 22212121b ab a +-=;(2)∵5,7==+ab b a ∴()ab b a b a 2222-+=+3910495272=-=⨯-=.∴22212121b ab a S +-=()()539212122-⨯=-+=ab b a 3421⨯= 17=.26. 若()()n x x m x +-+32的积中不含2x 和x 项,求n m ,的值. 解:()()n x x m x +-+32mn mx mx nx x x +-++-=33223 ()()mn x m n x m x +-+-+=3323由题意可得:⎩⎨⎧=-=-0303m n m 解之得:⎩⎨⎧==93n m .27. 因式分解: (1)2216ay ax -; 解:原式()2216y x a -= ()()y x y x a 44-+=;(2)()()1662+-+x x ; 解:原式1612262+-+-=x x x 442+-=x x ()22-=x ;(3)()()x y b y x a -+-2249. 解:原式()()y x b y x a ---=2249 ()()2249b a y x --=()()()b a b a y x 2323-+-=.28. 阅读下列解题过程:已知0641322=+-++b a b a ,求b a ,的值.解:0964422=++++-b b a a()()03222=++-b a∵()22-a ≥0,()23+b ≥0∴03,02=+=-b a ∴3,2-==b a .请用同样的方法解题:已知14642222-=-+-++c b a c b a ,求c b a ,,的值.解:14642222-=-+-++c b a c b a014642222=+-+-++c b a c b a ()()()0964412222=+-+++++-c c b b a a()()()0321222=-+++-c b a∵()21-a ≥0,()22+b ≥0,()23-c ≥0 ∴03,02,01=-=+=-c b a ∴3,2,1=-==c b a . 29. 观察下列各式:()()1112-=+-x x x ; ()()11132-=++-x x x x ; ()()111423-=+++-x x x x x ;……(1)根据上面各式的规律,得()()=+++++----11321x x x x x n n n _____________;(其中n 为正整数) (2)根据这一规律计算63624322222221+++++++ 的值.解:(1)1-n x ;(2)63624322222221+++++++()()12222212236263++++++-=1264-=.方法二:设:S =+++++++63624322222221 ①则:S 2222222264635432=+++++++ ②②-①得:1264-=S∴63624322222221+++++++1264-=.23. 解:(1)完全平方差; (2)平方差;(3)解:原式31122--++=x x()()()2121412-+++=-+=x x x()()13-+=x x .。

八年级数学上册 第12章 整式的乘除检测题 (新版)华东师大版

八年级数学上册 第12章 整式的乘除检测题 (新版)华东师大版

第12章检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2017·泰安)下列运算正确的是( D )A .a 2·a 2=2a 2B .a 2+a 2=a 4C .(1+2a)2=1+2a +4a 2D .(-a +1)(a +1)=1-a 22.下列各式中,不能用平方差公式计算的是( B )A .(x -2y)(2y +x)B .(x -2y)(-2y +x)C .(x +y)(y -x)D .(2x -3y)(3y +2x)3.(2017·盘锦)下列等式从左到右的变形,属于因式分解的是( C )A .x 2+2x -1=(x -1)2B .(a +b)(a -b)=a 2-b 2C .x 2+4x +4=(x +2)2D .ax 2-a =a(x 2-1)4.若(x -2y)2=(x +2y)2+m ,则m 等于( D )A .4xyB .-4xyC .8xyD .-8xy5.如图所示,从边长为a 的大正方形中挖去一个边长为b 的小正方形,小明将图①中的阴影部分拼成了一个如图②所示的长方形,这一过程可以验证( D )A .a 2+b 2-2ab =(a -b)2B .a 2+b 2+2ab =(a +b)2C .2a 2+3ab +b 2=(2a -b)(a -b)D .a 2-b 2=(a +b)(a -b)6.已知3a =5,9b =10,则3a +2b 等于( A )A .50B .-5C .15D .27a +b7.已知m +n =5,mn =9,则4m 2+4n 2的值为( A )A .28B .30C .45D .908.设(2x +m)(x -5)的积中不含x 项,则m 等于( D )A .5B .-10C .-5D .109.若x 2+2(m -3)x +16是一个二项式的平方,则m 的值是( C )A .-1B .7C .7或-1D .5或110.若a ,b ,c 是三角形的三边之长,则代数式a 2+2bc -c 2-b 2的值( B )A .小于0B .大于0C .等于0D .以上三种情况均有可能二、填空题(每小题3分,共24分)11.多项式ax 2-a 与多项式x 2-2x +1的公因式是__x -1__.12.若|a -2|+b 2-2b +1=0,则a =__2__,b =__1__.13.已知2x =4y +1,27y =3x -1,则x -y =__3__.14.(2017·达州)因式分解:2a 3-8ab 2=__2a (a +2b )(a -2b )__.15.若一个正方形的面积为a 2+a +14,其中a >0,则此正方形的周长为__4a +2__. 16.(安徽中考)按一定规律排列的一列数:21,22,23,25,28,213,…,若x ,y ,z 表示这列数中的连续三个数,猜想x ,y ,z 满足的关系式是__xy =z __.17.若x 2+mx -15=(x -3)(x +n),则m ,n 的值分别是__2和5__.18.(2017·黔东南州改编)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项式(a +b)n 的展开式的各项系数,此三角形称为“杨辉三角”.(a +b)0……………… ①(a +b)1…………… ① ①(a +b)2………… ① ② ①(a +b)3……… ① ③ ③ ①(a +b)4…… ① ④ ⑥ ④ ①(a +b)5… ① ⑤ ⑩ ⑩ ⑤ ①……根据“杨辉三角”请计算(a +b)20的展开式第三项的系数为__190__.三、解答题(共66分)19.(8分)计算:(1)[3a 2+2b(3a -2b)+b(4b -4a)]÷2a; (2)(2x -y)2-4(y -x)(-x -y). 解:(1)原式=32a +b (2)原式=5y 2-4xy20.(8分)用简便方法计算:(1)99×101×10 001+1; (2)932+232-93×46.解:(1)原式=108 (2)原式=490021.(12分)分解因式:(1)6xy 2-9x 2y -y 3; (2)(x +y)2-8(x +y -2);解:(1)原式=-y (3x -y )2 (2)原式=(x +y -4)2(3)12m 2n 2-8; (4)a 2-b 2-2a +1. 解:(3)原式=12(mn +4)(mn -4) (4)原式=(a +b -1)(a -b -1)22.(6分)已知实数a 满足a 2+2a -8=0,求a(a +2)2-a(a -3)(a -1)+3(5a -2)的值.解:原式=8a 2+16a -6=8(a 2+2a )-6,∵a 2+2a -8=0,∴a 2+2a =8,∴原式=5823.(6分)已知a +b =8,a 2-b 2=48,求a 和b 的值.解:∵a2-b 2=(a +b )(a -b )=48,∴8(a -b )=48,∴a -b =6,∴⎩⎪⎨⎪⎧a +b =8,a -b =6,解得⎩⎪⎨⎪⎧a =7,b =124.(8分)仔细观察下列四个等式:32=2+22+3,42=3+32+4,52=4+42+5,62=5+52+6,…(1)请你写出第5个等式;(2)写出第n 个等式,并证明它是成立的.解:(1)72=6+62+7 (2)(n +2)2=(n +1)+(n +1)2+(n +2).因为左边=n 2+4n +4,右边=n 2+4n +4,所以等式是成立的25.(8分)若x +y =3,且(x +2)(y +2)=12.(1)求xy 的值;(2)求x 2+3xy +y 2的值.解:(1)由(x +2)(y +2)=12得xy +2(x +y )+4=12,∵x +y =3,∴xy =2 (2)∵x+y =3,∴(x +y )2=9,∴x 2+y 2+2xy =9,∴x 2+y 2=9-2xy =9-2×2=5,∴x 2+3xy +y 2=5+3×2=1126.(10分)小明和小红学习了用图形面积研究整式乘法的方法后,分别进行了如下数学探究:把一根铁丝截成两段.(1)探究1:小明截成了两根长度不同的铁丝,并用两根不同长度的铁丝分别围成两个正方形,已知两正方形的边长和为20 cm,它们的面积的差为40 cm2,则这两个正方形的边长差为__2_cm__;(2)探究2:小红截成了两根长度相同的铁丝,并用两根同样长的铁丝分别围成一个长方形与一个正方形,若长方形的长为2x cm,宽为2y cm.①用含x,y的代数式表示正方形的边长为__(x+y)cm__;②设长方形的长大于宽,比较正方形与长方形的面积,哪个的面积大?并说明理由.解:(2)②(x+y)2-2x·2y=(x-y)2.∵x>y,∴(x-y)2>0,∴正方形的面积大。

华师大版八年级数学上册单元测试《第12章 整式的乘除》(解析版)

华师大版八年级数学上册单元测试《第12章 整式的乘除》(解析版)

《第12章整式的乘除》一、选择题1.计算(﹣a)3•(a2)3•(﹣a)2的结果正确的是()A.a11B.﹣a11 C.﹣a10 D.a132.下列计算正确的是()A.x2(m+1)÷x m+1=x2B.(xy)8÷(xy)4=(xy)2C.x10÷(x7÷x2)=x5 D.x4n÷x2n•x2n=13.已知(x+a)(x+b)=x2﹣13x+36,则ab的值是()A.36 B.13 C.﹣13 D.﹣364.若(ax+2y)(x﹣y)展开式中,不含xy项,则a的值为()A.﹣2 B.0 C.1 D.25.已知x+y=1,xy=﹣2,则(2﹣x)(2﹣y)的值为()A.﹣2 B.0 C.2 D.46.若(x+a)(x+b)=x2+px+q,且p>0,q<0,那么a、b必须满足的条件是()A.a、b都是正数B.a、b异号,且正数的绝对值较大C.a、b都是负数D.a、b异号,且负数的绝对值较大7.一个长方体的长、宽、高分别是3x﹣4、2x﹣1和x,则它的体积是()A.6x3﹣5x2+4x B.6x3﹣11x2+4x C.6x3﹣4x2D.6x3﹣4x2+x+48.观察下列多项式的乘法计算:(1)(x+3)(x+4)=x2+7x+12;(2)(x+3)(x﹣4)=x2﹣x﹣12;(3)(x﹣3)(x+4)=x2+x﹣12;(4)(x﹣3)(x﹣4)=x2﹣7x+12根据你发现的规律,若(x+p)(x+q)=x2﹣8x+15,则p+q的值为()A.﹣8 B.﹣2 C.2 D.89.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有()A.①② B.③④ C.①②③D.①②③④二、填空题10.计算:(1)(﹣3ab2c3)2= ;(2)a3b2•(﹣ab3)3= ;(3)(﹣x3y2)(7xy2﹣9x2y)= .11.若3m=81,3n=9,则m+n= .12.若a5•(a m)3=a4m,则m= .13.若x2+kx﹣15=(x+3)(x+b),则k= .三、解答题14.计算:(1)(a2)3•a3﹣(3a3)3+(5a7)•a2;(2)(﹣4x2y)•(﹣x2y2)•(y)3(3)(﹣3ab)(2a2b+ab﹣1);(4)(m﹣)(m+);(5)(﹣xy)2•[xy(x﹣y)+x(xy﹣y2)].15.若多项式x2+ax+8和多项式x2﹣3x+b相乘的积中不含x3项且含x项的系数是﹣3,求a和b的值.16.如图,长为10cm,宽为6cm的长方形,在4个角剪去4个边长为x的小正方形,按折痕做一个有底无盖的长方形盒子,试求盒子的体积.17.化简求值:(3x+2y)(4x﹣5y)﹣11(x+y)(x﹣y)+5xy,其中.18.解方程:(2x+5)(3x﹣1)+(2x+3)(1﹣3x)=28.19.已知x2﹣8x﹣3=0,求(x﹣1)(x﹣3)(x﹣5)(x﹣7)的值.《第12章整式的乘除》参考答案与试题解析一、选择题1.计算(﹣a)3•(a2)3•(﹣a)2的结果正确的是()A.a11B.﹣a11 C.﹣a10 D.a13【考点】单项式乘单项式;幂的乘方与积的乘方.【分析】根据幂的乘方的性质,单项式的乘法法则,计算后直接选取答案即可.【解答】解:(﹣a)3•(a2)3•(﹣a)2=﹣a3•a6•a2=﹣a11.故选B.【点评】本题考查了单项式的乘法的法则,幂的乘方的性质,熟练掌握运算法则和性质是解题的关键.2.下列计算正确的是()A.x2(m+1)÷x m+1=x2B.(xy)8÷(xy)4=(xy)2C.x10÷(x7÷x2)=x5 D.x4n÷x2n•x2n=1【考点】整式的除法.【分析】此题需对各项进行单项式的乘、除运算后再作判断.【解答】解:A、错误,应为x2(m+1)÷x m+1=x m+1;B、错误,应为(xy)8÷(xy)4=(xy)4;C、x10÷(x7÷x2)=x5,正确;D、错误,应为x4n÷x2n•x2n=x4n.故选C.【点评】本题考查了单项式的乘、除运算,比较简单,容易掌握.3.已知(x+a)(x+b)=x2﹣13x+36,则ab的值是()A.36 B.13 C.﹣13 D.﹣36【考点】多项式乘多项式.【专题】计算题.【分析】已知等式左边利用多项式乘多项式法则计算,利用多项式相等的条件求出a与b的值,即可确定出ab的值.【解答】解:(x+a)(x+b)=x2+(a+b)x+ab=x2﹣13x+36,则a+b=﹣13,ab=36,故选A【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.4.若(ax+2y)(x﹣y)展开式中,不含xy项,则a的值为()A.﹣2 B.0 C.1 D.2【考点】多项式乘多项式.【专题】计算题;方程思想.【分析】将(ax+2y)(x﹣y)展开,然后合并同类项,得到含xy的项系数,根据题意列出关于a 的方程,求解即可.【解答】解:(ax+2y)(x﹣y)=ax2+(2﹣a)xy﹣2y2,含xy的项系数是2﹣a.∵展开式中不含xy的项,∴2﹣a=0,解得a=2.故选D.【点评】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.5.已知x+y=1,xy=﹣2,则(2﹣x)(2﹣y)的值为()A.﹣2 B.0 C.2 D.4【考点】多项式乘多项式.【专题】计算题.【分析】所求式子利用多项式乘多项式法则计算,变形后,将已知等式代入计算即可求出值.【解答】解:∵x+y=1,xy=﹣2,∴(2﹣x)(2﹣y)=4﹣2(x+y)+xy=4﹣2﹣2=0.故选B.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.若(x+a)(x+b)=x2+px+q,且p>0,q<0,那么a、b必须满足的条件是()A.a、b都是正数B.a、b异号,且正数的绝对值较大C.a、b都是负数D.a、b异号,且负数的绝对值较大【考点】多项式乘多项式.【专题】计算题.【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件表示出a+b与ab,根据p与q的正负即可做出判断.【解答】解:已知等式变形得:(x+a)(x+b)=x2+(a+b)x+ab=x2+px+q,可得a+b=p>0,ab=q<0,则a、b异号,且正数的绝对值较大,故选B【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.7.一个长方体的长、宽、高分别是3x﹣4、2x﹣1和x,则它的体积是()A.6x3﹣5x2+4x B.6x3﹣11x2+4x C.6x3﹣4x2D.6x3﹣4x2+x+4【考点】多项式乘多项式;单项式乘多项式.【专题】计算题.【分析】根据长方体的体积等于长×宽×高,计算即可得到结果.【解答】解:根据题意得:x(3x﹣4)(2x﹣1)=x(6x2﹣11x+4)=6x3﹣11x2+4x.故选B.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.8.观察下列多项式的乘法计算:(1)(x+3)(x+4)=x2+7x+12;(2)(x+3)(x﹣4)=x2﹣x﹣12;(3)(x﹣3)(x+4)=x2+x﹣12;(4)(x﹣3)(x﹣4)=x2﹣7x+12根据你发现的规律,若(x+p)(x+q)=x2﹣8x+15,则p+q的值为()A.﹣8 B.﹣2 C.2 D.8【考点】多项式乘多项式.【分析】根据观察等式中的规律,可得答案.【解答】解:(x+p)(x+q)=x2﹣8x+15,p+q=﹣8,故选:A.【点评】本题考查了多项式成多项式,观察等式发现规律是解题关键.9.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有()A.①② B.③④ C.①②③D.①②③④【考点】多项式乘多项式.【专题】计算题.【分析】①大长方形的长为2a+b,宽为m+n,利用长方形的面积公式,表示即可;②长方形的面积等于左边,中间及右边的长方形面积之和,表示即可;③长方形的面积等于上下两个长方形面积之和,表示即可;④长方形的面积由6个长方形的面积之和,表示即可.【解答】解:①(2a+b)(m+n),本选项正确;②2a(m+n)+b(m+n),本选项正确;③m(2a+b)+n(2a+b),本选项正确;④2am+2an+bm+bn,本选项正确,则正确的有①②③④.故选D.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.二、填空题10.计算:(1)(﹣3ab2c3)2= 9a2b4c6;(2)a3b2•(﹣ab3)3= ﹣a6b11;(3)(﹣x3y2)(7xy2﹣9x2y)= ﹣7x4y4+9x5y3.【考点】整式的混合运算.【专题】计算题;整式.【分析】(1)原式利用幂的乘方与积的乘方运算法则计算即可得到结果;(2)原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘以单项式法则计算即可得到结果;(3)原式利用单项式乘以多项式法则计算即可得到结果.【解答】解:(1)原式=9a2b4c6;(2)原式=a3b2•(﹣a3b9)=﹣a6b11;(3)原式=﹣7x4y4+9x5y3.故答案为:(1)9a2b4c6;(2)﹣a6b11;(3)﹣7x4y4+9x5y3【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.11.若3m=81,3n=9,则m+n= 6 .【考点】幂的乘方与积的乘方.【分析】先把81,9化为34,32的形式,求出mn的值即可.【解答】解:∵3m=81,3n=9,∴3m=34,3n=32,∴m=4,n=2,∴m+n=4+2=6.故答案为:6.【点评】本题考查的是幂的乘方与积的乘方法则,先根据题意把81,9化为34,32的形式是解答此题的关键.12.若a5•(a m)3=a4m,则m= 5 .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据幂的乘方与积的乘方法则进行计算即可.【解答】解:∵原式可化为a5•a3m=a4m,∴a3m+5=a4m,∴3m+5=4m,解得m=5.故答案为:5.【点评】本题考查的是幂的乘方与积的乘方,熟知幂的乘方法则是底数不变,指数相乘是解答磁体的关键.13.若x2+kx﹣15=(x+3)(x+b),则k= ﹣2 .【考点】多项式乘多项式.【专题】计算题.【分析】已知等式右边利用多项式乘以多项式法则计算,利用多项式相等的条件即可求出k的值.【解答】解:x2+kx﹣15=(x+3)(x+b)=x2+(b+3)x+3b,∴k=b+3,3b=﹣15,解得:b=﹣5,k=﹣2.故答案为:﹣2.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.三、解答题14.计算:(1)(a2)3•a3﹣(3a3)3+(5a7)•a2;(2)(﹣4x2y)•(﹣x2y2)•(y)3(3)(﹣3ab)(2a2b+ab﹣1);(4)(m﹣)(m+);(5)(﹣xy)2•[xy(x﹣y)+x(xy﹣y2)].【考点】整式的混合运算.【分析】(1)根据幂的乘方和同底数幂的乘法进行计算即可;(2)根据积的乘方以及单项式乘以单项式的法则进行计算即可;(3)根据单项式乘以多项式的法则进行计算即可;(4)根据多项式乘以多项式的法则进行计算即可;(5)根据积的乘方以及单项式乘以多项式的法则进行计算即可.【解答】解:(1)原式=﹣21a9;(2)原式=(﹣4x2y)•(﹣x2y2)(y3)=x4y6;(3)原式=(﹣4x2y)•(﹣x2y2)(y3)=x4y6;(3)原式=﹣6a3b2﹣3a2b2+3ab;(4)原式=m2+(﹣m+m)+(﹣)×=m2﹣m﹣;(5)原式=x2y2(2x2y﹣2xy2)=x4y3﹣x3y4.【点评】本题考查了整式的混合运算,掌握幂的乘方和同底数幂的乘法以及单项式乘以多项式的法则是解题的关键.15.若多项式x2+ax+8和多项式x2﹣3x+b相乘的积中不含x3项且含x项的系数是﹣3,求a和b的值.【考点】多项式乘多项式.【分析】多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.根据结果中不含x3项且含x项的系数是﹣3,建立关于a,b等式,即可求出.【解答】解:∵(x2+ax+8)(x2﹣3x+b)=x4+(﹣3+a)x3+(b﹣3a+8)x2﹣(﹣ab+24)x+8b,又∵不含x3项且含x项的系数是﹣3,∴,解得.【点评】本题考查了多项式乘以多项式,根据不含x3项且含x项的系数是﹣3列式求解a、b的值是解题的关键.16.(2009春•江阴市校级期中)如图,长为10cm,宽为6cm的长方形,在4个角剪去4个边长为x的小正方形,按折痕做一个有底无盖的长方形盒子,试求盒子的体积.【考点】多项式乘多项式.【专题】应用题.【分析】根据长方体的体积=长×宽×高,列式利用单项式乘多项式,多项式乘多项式的法则计算.长方体的长是10﹣2x,宽是6﹣2x,高是x.【解答】解:盒子的体积v=x(10﹣2x)(6﹣2x),=x(4x2﹣32x+60),=4x3﹣32x2+60x.【点评】此题考查了长方体的体积的公式,单项式乘以多项式、多项式乘多项式的法则,熟记公式和法则是解题的关键.17.化简求值:(3x+2y)(4x﹣5y)﹣11(x+y)(x﹣y)+5xy,其中.【考点】整式的混合运算—化简求值.【分析】首先利用多项式的乘法法则以及平方差公式计算,然后去括号、合并同类项即可化简,然后代入数值计算即可.【解答】解:原式=(12x2﹣15xy+8xy﹣10y2)﹣11(x2﹣y2)+5xy=12x2﹣15xy+8xy﹣10y2﹣11x2+11y2+5xy=x2﹣2xy+y2=(x﹣y)2.当时.原式=36.【点评】本题考查的是整式的混合运算,主要考查了公式法、单项式与多项式相乘以及合并同类项的知识点.18.解方程:(2x+5)(3x﹣1)+(2x+3)(1﹣3x)=28.【考点】多项式乘多项式;解一元一次方程.【分析】首先利用多项式乘法去括号,进而合并同类项,解方程即可.【解答】解:(2x+5)(3x﹣1)+(2x+3)(1﹣3x)=286x2+13x﹣5﹣6x2﹣9x+2x+3=28,整理得:6x=30,解得:x=5.【点评】此题主要考查了多项式乘以多项式以及解一元一次方程,正确合并同类项是解题关键.19.已知x2﹣8x﹣3=0,求(x﹣1)(x﹣3)(x﹣5)(x﹣7)的值.【考点】整式的混合运算—化简求值.【分析】根据x2﹣8x﹣3=0,可以得到x2﹣8x=3,对所求的式子进行化简,第一个式子与最后一个相乘,中间的两个相乘,然后把x2﹣8x=3代入求解即可.【解答】解:∵x2﹣8x﹣3=0,∴x2﹣8x=3(x﹣1)(x﹣3)(x﹣5)(x﹣7)=(x2﹣8x+7)(x2﹣8x+15),把x2﹣8x=3代入得:原式=(3+7)(3+15)=180.【点评】本题考查了整式的混合运算,正确理解乘法公式,对所求的式子进行变形是关键.。

华师大版八年级数学上册《第12章整式的乘除》章节测试含答案

华师大版八年级数学上册《第12章整式的乘除》章节测试含答案

八年级数学华师版整式的乘除章节测试(满分100分,考试时间60分钟)一、选择题(每小题3分,共24分)1.下列计算正确的是()A .a 4+a 5=a 9B .(-3a 2)3=-9a 6C .(m 2)3∙m =m 6D .(-q )∙(-q )3=q 42.下列因式分解正确的是()A .x (x 2-1)=x 3-xB .-a 2+6a -9=-(a -3)2C .x 2+y 2=(x +y )2D .a 3-2a 2+a =a (a +1)(a -1)3.若代数式y 2+a 可以分解因式,则常数a 不可以取()A .-1B .-3C .-4D .-94.计算(x 2-3x +n )(x 2+mx +8)的结果中不含x 2和x 3的项,则m ,n 的值为()A .m =3,n =1B .m =0,n =0C .m =-3,n =-9D .m =-3,n =85.若关于x 的代数式x 2+3x +2可以表示为(x -1)2+a (x -1)+b ,则a +b 的值为()A .13B .12C .11D .106.若x 2-xy -4m 是完全平方式,则m 为()A .2116yB .2116y -C .218yD .218y -7.已知x 3+3x -2=0,则2x 5+x 4+7x 3-x 2+x +1的值为()A .3B .1C .2D .-38.已知x 2+ax -12能分解成两个整系数的一次因式的乘积,则符合条件的整数a 有()A .3个B .4个C .6个D .8个二、填空题(每小题3分,共21分)9.3211()()=22x x ÷-10.如果a =255,b =344,c =433,判断a ,b ,c 的大小,用“<”连接为.11.已知13a+=,则21a+的值是.12.已知一个多项式与单项式7x3y3的积为28x7y3-21x5y5+2y(7x3y3)2,则这个多项式为.13.计算:1(1)-1(1)-1...(1-1(1-.14.若x m-2∙x3m=x6,求12m2-m+1的值为.15.设P=a2b2+5,Q=2ab-a2-4a,若P=Q,则a+b=_.三、计算题(本大题共8小题,满分55分)16.(9分)把下列各式因式分解.(1)4x2y-4y;(2)2m2-8mn+8n2;(3)1-x2+2xy-y2.17.(8分)计算:(1)(x-2)2-2(2-2x)-(1+x)(1-x);(2)(-2x3y)2·(-2y)+(-8x8y3+4x2)⎪(-2x2).18.(8分)化简求值:(1)已知3x+2 ∙5x+2=153x-4,求(x-1)2-3x(x-2)-4的值;(2)当a=-2,b=1时,求[a2(a3+b)(a3-b)+a2b2]÷231()2a-的值.19.(5分)已知△ABC的三边长分别为a,b,c,且满足a2-16b2-c2+6ab+10bc=0,求证:a+c=2b.20.(5分)如果(x+1)是多项式x2-mx+4的一个因式,求m的值和另一个因式.a -421.(8分)在求1+2+22+23+24+25+26+27+28+29的值时,小林发现:从第二个加数起每一个加数都是前一个加数的2倍,于是她设:S =1+2+22+23+24+25+26+27+28+29①然后在①式的两边都乘以2,得:2S =2+22+23+24+25+26+27+28+29+210②由②-①得2S -S =210-1,即S =210-1.按照小林的思路:(1)请你计算1+6+62+63+64+65+66+67+68+69的值;(2)如果把“2”换成字母“a ”(a ≠0且a ≠1),能否求出1+a +a 2+a 3+a 4+…+a 2016的值?22.(5分)如图,王大妈家有一块边长为a 米的正方形土地租给了邻居李大爷种植.今年,她对李大爷说:“我把你这块地一边减少4米,另一边增加4米,继续租给你,你也没吃亏,你看如何?”李大爷一听,就答应了.同学们,你认为李大爷吃亏了吗,为什么?a -4a 423.(7分)请用几何图形直观地解释(a+2b)(2a+b)=2a2+5ab+2b2.。

第12章 整式的乘除数学八年级上册-单元测试卷-华师大版(含答案)

第12章 整式的乘除数学八年级上册-单元测试卷-华师大版(含答案)

第12章整式的乘除数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、下列运算正确的是()A.a 3+(﹣a)3=﹣a 6B.(a+b)2=a 2+b 2C.2a 2•a=2a3 D.(ab 2)3=a 3b 52、下列计算正确的是().A.(x+y) 2=x 2+y 2B.(-xy 2)3=-x 3y 6C.x 6÷x 3=x2 D. =23、下列计算结果正确的是( )A.2+ =2B. ÷=C.(-2a 2)3=-6a6 D.(x-1)2=x 2-14、下列运算正确的是()A.x 2+x 3=x 5B.C.D.5、下列运算中,正确的是()A.a 3÷a 2=aB.a 2+a 2=a 4C.(ab)3=a 4D.2ab﹣b=2a6、下列运算正确的是().A. B. C. D.7、下列运算正确的是()A.3x﹣x=3B.2x•x=3x 2C.x 6÷x 2=x 3D.(x 3)2=x 68、下列运算中,正确的是()A.x 2+x 3=x 6B.x 3+x 9=x 27C.(x 2)3=x 6D.x÷x 2=x 39、下列因式分解正确的个数是()①x2﹣4=(x+2)(x﹣2)②x2+6x+10=(x+2)(x+4)+2③7x2﹣63=7(x2﹣9)④(a+b)(a﹣b)=a2﹣b2⑤.A.1B.2C.3D.410、下列运算正确的是()A.a+2a=2B. + =C. = ﹣9D.11、下列运算正确的是()A. B. C. D.12、下列计算正确的是()A.(a 4)2=a 6B.a+2a=3a 2C.a 7÷a 2=a 5D.a(a2+a+1)=a 3+a 213、化简a2•a4的结果是()A.aB.C.D.14、下面的计算正确的是A.6a-5a=1B.2(a+b)=2a+bC.-(a-b)=-a+bD.-2(3x-1)=-6x-215、计算(﹣x2n+1)3的结果正确的是()A.﹣x 2n+4B.﹣3x 2n+1C.﹣x 6n+3D.﹣x 2n+3二、填空题(共10题,共计30分)16、已知:,则________17、计算a3•a的结果是________.18、计算:(x+y)(x﹣y)=________.19、如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则另一边长是________.20、已知a+ =,则a2+ 的值是________.21、已知正实数a,满足a﹣=,则a+ =________.22、分解因式:x2-2x=________ .23、因式分解:________.24、分解因式:a2b﹣b=________.25、若9x2-kxy+4y2是一个完全平方式,则k的值是________。

华东师大数学八年级上《第12章整式的乘除》达标检测卷含答案分析

华东师大数学八年级上《第12章整式的乘除》达标检测卷含答案分析

第12章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分) 1.(·日照)计算(-a 3)2的结果是( ) A .a 5 B .-a 5 C .a 6 D .-a 6 2.下列运算正确的是( )A .(a +1)2=a 2+1B .3a 2b 2÷a 2b 2=3abC .(-2ab 2)3=8a 3b 6D .x 3·x =x 43.下列从左边到右边的变形,是因式分解的是( ) A .(3-x)(3+x)=9-x 2 B .(y +1)(y -3)=-(3-y)(y +1) C .4yz -2y 2z +z =2y(2z -yz)+z D .-8x 2+8x -2=-2(2x -1)2 4.计算⎝⎛⎭⎫232 013×⎝⎛⎭⎫322 014×(-1)2 015的结果是( ) A .23 B .32 C .-23 D .-32 5.若a m =2,a n =3,a p =5,则a 2m +n -p的值是( )A .2.4B .2C .1D .06.下列各式中,不能用两数和(差)的平方公式分解因式的个数为( ) ①x 2-10x +25;②4a 2+4a -1;③x 2-2x -1;④-m 2+m -14;⑤4x 4-x 2+14.A .1B .2C .3D .47.已知a ,b 都是整数,则2(a 2+b 2)-(a +b)2的值必是( ) A .正整数 B .负整数 C .非负整数 D .4的整数倍8.已知一个长方形的面积为18x 3y 4+9xy 2-27x 2y 2,长为9xy ,则宽为( ) A .2x 2y 3+y +3xy B .2x 2y 3-2y +3xy C .2x 2y 3+2y -3xy D .2x 2y 3+y -3xy9.因式分解x 2+ax +b ,甲看错了a 的值,分解的结果是(x +6)(x -1),乙看错了b 的值,分解的结果为(x -2)(x +1),那么x 2+ax +b 分解因式正确的结果为( )A .(x -2)(x +3)B .(x +2)(x -3)C .(x -2)(x -3)D .(x +2)(x +3)10.用四个完全一样的长方形(长和宽分别设为x ,y)拼成如图所示的大正方形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则下列关系式中不正确的是( )(第10题)A .x +y =6B .x -y =2C .xy =8D .x 2+y 2=36二、填空题(每题3分,共30分)11.(1)计算:(2a)3·(-3a 2)=____________;(2)若a m =2,a n =3,则a m +n =__________,a m -n =__________. 12.已知x +y =5,x -y =1,则代数式x 2-y 2的值是________. 13.若x +p 与x +2的乘积中不含x 的一次项,则p 的值是________. 14.计算:2 015×2 017-2 0162=__________.15.若|a +2|+a 2-4ab +4b 2=0,则a =________,b =________. 16.若一个正方形的面积为a 2+a +14,则此正方形的周长为________.17.(·东营)分解因式:4+12(x -y)+9(x -y)2=__________. 18.观察下列等式:1×32×5+4=72=(12+4×1+2)2 2×42×6+4=142=(22+4×2+2)2 3×52×7+4=232=(32+4×3+2)2 4×62×8+4=342=(42+4×4+2)2 …根据你发现的规律:可知n(n +2)2(n +4)+4=________.19.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪a b c d ,定义⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,上述记号就叫做2阶行列式.若⎪⎪⎪⎪⎪⎪x +1 1-x 1-x x +1=8,则x =________.20.根据(x -1)(x +1)=x 2-1,(x -1)(x 2+x +1)=x 3-1,(x -1)(x 3+x 2+x +1)=x 4-1,(x -1)(x 4+x 3+x 2+x +1)=x 5-1,…的规律,则可以得出22 014+22 013+22 012+…+23+22+2+1的末位数字是________.三、解答题(27题12分,其余每题8分,共60分)(1)[x(x 2-2x +3)-3x]÷12x 2; (2)x(4x +3y)-(2x +y)(2x -y);(3)5a 2b÷⎝⎛⎭⎫-13ab ·(2ab 2)2; (4)(a -2b -3c)(a -2b +3c).22.先化简,再求值:(1)(x +5)(x -1)+(x -2)2,其中x =-2;23.把下列各式分解因式:(1)6ab 3-24a 3b ; (2)2x 2y -8xy +8y ;(3)a2(x-y)+4b2(y-x); (4)4m2n2-(m2+n2)2.24.已知x3m=2,y2m=3,求(x2m)3+(y m)6-(x2y)3m·y m的值.25.已知a,b,c是△ABC的三边长,且a2+2b2+c2-2b(a+c)=0,你能判断△ABC 的形状吗?请说明理由.26.因为(x+a)(x+b)=x2+(a+b)x+ab,所以x2+(a+b)x+ab=(x+a)(x+b).利用这个公式我们可将形如x2+(a+b)x+ab的二次三项式分解因式.例如:x2+6x+5=x2+(1+5)x+1×5=(x+1)(x+5),x2-6x+5=x2+(-1-5)x+(-1)×(-5)=(x-1)(x-5),x2-4x-5=x2+(-5+1)x+(-5)×1=(x-5)(x+1),x2+4x-5=x2+(5-1)x+5×(-1)=(x+5)(x-1).请你用上述方法把下列多项式分解因式:(1)y2+8y+15;(2)y2-8y+15;(3)y2-2y-15;(4)y2+2y-15.①选取二次项和一次项配方:x 2-4x +2=()x -22-2;②选取二次项和常数项配方:x 2-4x +2=()x -22+()22-4x , 或x 2-4x +2=()x +22-()4+22x ; ③选取一次项和常数项配方:x 2-4x +2=()2x -22-x 2. 根据上述材料,解决下面的问题: (1)写出x 2-8x +4的两种不同形式的配方; (2)已知x 2+y 2+xy -3y +3=0,求x y 的值.答案一、1.C 2.D 3.D 4.D 5.A 6.C 7.C 8.D 9.B 10.D 二、11.(1)-24a 5 (2)6;23 12.5 13.-2 14.-115.-2;-1 16.|4a +2| 17.(3x -3y +2)218.(n 2+4n +2)2 19.220.7 点拨:由题意可知22 014+22 013+22 012+…+23+22+2+1=(2-1)×(22 014+22013+22 012+…+23+22+2+1)=22 015-1,而21=2,22=4,23=8,24=16,25=32,26=64,…,可知2n (n 为正整数)的末位数字按2、4、8、6的顺序循环,而2 015÷4=503……3,所以22 015的末位数字是8,则22 015-1的末位数字是7.三、21.解:(1)原式=(x 3-2x 2+3x -3x)÷12x 2=(x 3-2x 2)÷12x 2=2x -4.(2)原式=4x 2+3xy -(4x 2-y 2)=4x 2+3xy -4x 2+y 2=3xy +y 2. (3)原式=5a 2b÷⎝⎛⎭⎫-13ab ·4a 2b 4=-60a 3b 4. (4)原式=[(a -2b)-3c][(a -2b)+3c]=(a -2b)2-(3c)2=a 2-4ab +4b 2-9c 2. 22.解:(1)原式=x 2-x +5x -5+x 2-4x +4=2x 2-1. 当x =-2时,原式=2×(-2)2-1=7.(2)原式=4-a 2+a 2-5ab +3a 5b 3÷a 4b 2=4-a 2+a 2-5ab +3ab =4-2ab. 当ab =-12时,原式=4-2×⎝⎛⎭⎫-12=5. 23.解:(1)原式=6ab(b 2-4a 2)=6ab(b +2a)(b -2a). (2)原式=2y(x 2-4x +4)=2y(x -2)2.(3)原式=a 2(x -y)-4b 2(x -y)=(x -y)(a 2-4b 2)=(x -y)(a +2b)(a -2b). (4)原式=(2mn +m 2+n 2)(2mn -m 2-n 2)=-(m +n)2(m -n)2.24.解:原式=(x 3m )2+(y 2m )3-(x 3m )2·(y 2m )2=22+33-22×32=4+27-4×9=-5. 25.解:△ABC 是等边三角形.理由如下:∵a 2+2b 2+c 2-2b(a +c)=0,∴a 2-2ab +b 2+b 2-2bc +c 2=0,即(a -b)2+(b -c)2=0.∴a -b =0,且b -c =0,即a =b =c.故△ABC 是等边三角形.26.解:(1)y 2+8y +15=y 2+(3+5)y +3×5=(y +3)(y +5). (2)y 2-8y +15=y 2+(-3-5)y +(-3)×(-5)=(y -3)(y -5). (3)y 2-2y -15=y 2+(-5+3)y +(-5)×3=(y -5)(y +3). (4)y 2+2y -15=y 2+(5-3)y +5×(-3)=(y +5)(y -3).27.解:解:(1)答案不唯一,例如:x 2-8x +4=x 2-8x +16-16+4=(x -4)2-12或x 2-8x +4=(x -2)2-4x.(2)因为x 2+y 2+xy -3y +3=0, 所以⎝⎛⎭⎫x +y 22+34(y -2)2=0, 即x +y2=0,y -2=0,所以y =2,x =-1,所以x y =(-1)2=1.。

华东师大版八年级数学上册《第十二章整式的乘除》单元测试卷及答案

华东师大版八年级数学上册《第十二章整式的乘除》单元测试卷及答案

华东师大版八年级数学上册《第十二章整式的乘除》单元测试卷及答案(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1. 计算(12x4y2+3x3y)÷3x3y的结果是()A. 4xy+1B. 4xyC. 4x2y+3D. 4x3y+3x3y2. 在下列各式中的括号内填入a3后成立的是()A. a12=()2B. a12=()3C. a12=()4D. a12=()63. 把多项式(x+2)(x-2)+(x-2)提取公因式(x-2)后,余下的部分是()A. x+1B. x+3C. 2xD. x+24. 下列多项式中,不能进行因式分解的是()A. x2-2x+1B. x2-9C. x2+1D. 6x2+3x5. 若计算(x+my)(x+ny)时能使用平方差公式,则m,n应满足()A. m,n同号B. m,n异号C. m+n=0D. mn=16. 下列因式分解正确的是()A.2a2-4a+2=2(a-1)2B.a2+ab+a=a(a+b)C.4a2-b2=(4a+b)(4a-b)D.a3b-ab3=ab(a-b)27. 今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-7xy(2y-x-3)=-14xy2+7x2y□,□的地方被钢笔水弄污了,你认为□处应是()A. +21xyB. -21xyC. -3D. -10xy8. 如图1-①,将一张长方形纸板四个角各切去一个同样的正方形,制成图1-①的无盖纸盒,若该纸盒的容积为4a2b,则图①中纸盒底部长方形的周长为()A. 4abB. 8abC. 4a+bD. 8a+2b① ①图19. 已知a=314,b=96,c=275,则a,b,c的大小关系为()A. c>a>bB. a>c>bC. c>b>aD. b>c>a10. 课本第37页“阅读材料”中介绍了贾宪三角,贾宪三角可以看作是对两数和平方公式的推广,也告诉我们二项式乘方展开式的系数规律:…… …………根据上述规律,(a+b)7展开式的系数和是()A. 32B. 64C. 88D. 128二、填空题(本大题共6小题,每小题3分,共18分)11. 多项式x2-9与x2-6x+9的公因式是.12. 火星的体积约为1.35×1020立方米,地球的体积约为1.08×1021立方米,地球体积约是火星体积的__________倍.13. 一个多项式,把它因式分解后有一个因式为(x+1),请你写出一个符合条件的多项式:___________.14. 若2a=5,8b=11,则2a+3b的值为____________.15. 一个正方形的边长增加3 cm,它的面积增加了45 cm2,则原来这个正方形的面积为________cm2.16. 已知:31=3,32=9,33=27,34=81,35=243,36=729,…,设A=2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1,则A的个位数字是______________.三、解答题(本大题共6小题,共52分)17. (每小题4,共8分)因式分解:(1)a2(m-2)-b2(m-2);(2)3m3-6m2n+3mn2;18. (6分)先化简,再求值:(2x+y)2-(2x+y)(2x-y)-2y(x+y),其中x=12,y=2.19.(8分)如图2,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪成两个直角梯形后,再拼成一个等腰梯形.图2(1)通过计算左、右两图的阴影部分面积,可以得到乘法公式:______________;(2)利用上述乘法公式计算:1002-98×102;20. (9分)如图3,小明用若干个长为a,宽为b的小长方形拼出图形,把这些拼图置于图①,②所示的正方形和大长方形内,请解答下列问题.(1)分别求出图①,图②中空白部分的面积S1,S2;(用含a,b的代数式表示)(2)若S1=11,S2=32,求ab的值.①②图321.(9分)发现:任意两个连续偶数的平方和是4的奇数倍.验证:(1)计算22+42的结果是4的倍;(2)设两个连续偶数较小的一个为2n(n为整数),请说明“发现”中的结论正确;拓展:(3)任意三个连续偶数的平方和是4的倍数吗?是(填“是”或“不是”)22. (12分)如图4,阴影部分是一个边长为a的大正方形剪去一个边长为b的小正方形和两个宽为b的长方形之后所剩余的部分.(1)①图1中剪去的长方形的长为_____________ ,面积为_____________.①用两种方式表示阴影部分的面积为__________________或________________,由此可以验证的公式为____________________.图4 图5(2)请设计一个新的图形验证公式:(a+b)2=a2+2ab+b2.(3)如图5,S1,S2分别表示边长为a,b的正方形的面积,且A,B,C三点在一条直线上,若S1+S2=40,AB=8,求图中阴影部分的面积.附加题(20分,不计入总分)形如a2±2ab+b2的式子叫做完全平方式.有些多项式虽然不是完全平方式,但可以通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.配方法在因式分解、代数最值等问题中都有着广泛的应用.(1)用配方法因式分解:a2+6a+8.解:原式=a2+6a+9-1=(a+3)2-1=(a+3-1)(a+3+1)=(a+2)(a+4).(2)用配方法求代数式a2+6a+8的最小值.解:原式=a2+6a+9-1=(a+3)2-1.因为(a+3)2≥0,所以(a+3)2-1≥-1.所以a2+6a+8的最小值为-1.解决问题:(1)因式分解:a2-12a+32= ;(2)用配方法求代数式4x2+4x+5的最小值;拓展应用:(3)若实数a,b满足a2-5a-b+7=0,则a+b的最小值为.参考答案一、1. A 2. C 3. B 4. C 5. C 6. C 7. A 8. D 9. A 10. D二、11. x-3 12. 8 13. x2-1(答案不唯一)14. 55 15. 36 16. 110. D 解析:当n=0时,展开式的系数和为1=20;当n=1时,展开式的系数和为1+1=2=21;当n=2时,展开式的系数和为1+2+1=4=22;当n=3时,展开式的系数和为1+3+3+1=8=23;当n=4时,展开式的系数和为1+4+6+4+1=16=24;当n=5时,展开式的系数和为1+5+10+10+5+1=32=25;……当n=8时,展开式的系数和为28=256.16. 1 解析:A=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1=(32-1)(32+1)(34+1)(38+1)(316+1)(332+1)+1=(34-1)(34+1)(38+1)(316+1)(332+1)+1=(38-1)(38+1)(316+1)(332+1)+1=(316-1)(316+1)(332+1)+1=(332-1)(332+1)+1=364-1+1=364.观察已知等式,个位数字以3,9,7,1循环,且64÷4=16,能整除,所以A的个位数字是1.三、17. 解:(1)原式=(m-2)(a2-b2)=(m-2)(a+b)(a-b);(2)原式=3m(m2-2mn+n2)=3m(m-n)2.18. 解:(2x+y)2-(2x+y)(2x-y)-2y(x+y)=4x2+4xy+y2-4x2+y2-2xy-2y2=2xy.当x=12,y=2时,原式=2×12×2=2.19. 解:(1)(a+b)(a-b)=a2-b2.(2)1002-98×102=1002-(100-2)(100+2)=1002-(1002-22)=1002-1002+22=4.20. 解:(1)S1=(a+b)2-3ab=a2+b2-ab.S2=(2a+b)(a+2b)-5ab=2a2+2b2.(2)因为S1=a2+b2−ab=11,S2=2a2+2b2=32,所以a2+b2=16.所以ab=5.21. 解:(1)5(2)因为两个连续偶数较小的一个为2n(n为整数),则较大的偶数为2n+2.所以(2n)2+(2n+2)2=4n2+4n2+8n+4=8n2+8n+4=4(2n2+2n+1).因为n为整数,所以2n2+2n+1为奇数.所以任意两个连续偶数的平方和是4的奇数倍.(3)是解析:设三个连续偶数较小的一个为2n(n为整数),则中间的偶数为2n+2,最大的偶数为2n+4.所以(2n)2+(2n+2)2+(2n+4)2=4n2+4n2+8n+4+4n2+16n+16=12n2+24n+20=4(3n2+6n+5).所以任意三个连续偶数的平方和是4的倍数.22. 解:(1)①a-b ab-b2①(a-b)2a2-2ab+b2(a-b)2=a2-2ab+b2(2)如图所示:(3)因为S1+S2=40,AB=8,所以a2+b2=40,a+b=8.因为(a+b)2=a2+2ab+b2,所以82=40+2ab.所以ab=12.所以图中阴影部分的面积=2×12ab=ab=12.附加题解:(1)(a-4)(a-8)解析:a2-12a+32=a2-12a+36-4=(a-6)2-4=(a-6+2)(a-6-2)=(a-4)(a-8).(2)4x2+4x+5=4x2+4x+1+4=(2x+1)2+4.因为(2x+1)2≥0,所以(2x+1)2+4≥4.所以4x2+4x+5的最小值为4.(3)3 解析:因为a2-5a-b+7=0,所以a2-4a-a-b+7=0.所以a+b=a2-4a+4+3=(a-2)2+3. 因为(a-2)2≥0,所以(a-2)2+3≥3.所以a+b的最小值为3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12章 整式的乘除检测题
(时间:90分钟,满分:100分)
一、选择题(每小题3分,共30分)
1. 若3·9m ·27m =321
,则m 的值为( )
A .3
B .4
C .5
D .6 2.已知实数满足,则代数式的值为( ) A. B. C. D. 3.若与互为相反数,则的值为( ) A.1 B.9 C.–9 D.27 4.下列运算中,准确的个数是( ) ①,②,③


⑤1
.
A.1
B.2
C.3
D.4 5.将一多项式,除以后,得商式为,余式为0,则( )
A.3
B.23
C.25
D.29 6. 下列运算准确的是( )
A .a +b =ab
B .a 2•a 3=a 5
C .a 2+2ab -b 2=(a -b )2
D .3a -2a =1
7.多项式①;②;③
; ④,分解因式后,结果中含有相同因式的是( ) A.①和② B.③和④ C.①和④ D.②和③ 8.下列因式分解中,准确的是( ) A. B. C. D. 9.设一个正方形的边长为,若边长增加,则新正方形的面积增加了( ) A. B. C. D.无法确定 10.在边长为的正方形中挖去一个边长为的小正方形(如图①),把余下的部分拼成一个矩形(如图②),根据两个图形中阴影部分的面积相等,能够验证( )
A. B. C. D.
二、填空题(每小题3分,共24分)
11. 若把代数式x 2
-2x -3化为(x -m )2
+k 的形式,其中m ,k 为常数,则m +
k = . 12.现在有一种运算:,能够使:
,,如果
,那么
___________.
第10题图
13. 计算:______.
14.如果,,那么代数式的值是________.
15.若,则.
16.若与的和是单项式,则=_________.
17.阅读下列文字与例题:
将一个多项式分组后,可提公因式或使用公式继续分解的方法是分组分解法.
例如:(1)
.
(2)
.
试用上述方法分解因式 .
18.定义运算a⊗b=a(1-b),下面给出了关于这种运算的四个结论:
①2⊗(-2)=6 ②a⊗b=b⊗a
③若a+b=0,则(a⊗a)+(b⊗b)=2ab④若a⊗b=0,则a=0.
其中准确结论的序号是(填上你认为准确的所有结论的序号).
三、解答题(共46分)
19.(6分)(1)已知,求的值.
(2)已知,,求的值.
20.(5分)已知=5,,求的值.
21.(5分)利用因式分解计算:
22.(6分)先化简,再求值:,其中.
23.(6分)已知
24.(6分)请你从下列各式中,任选两式作差,并将得到的式子实行因式分解.
.
25.(6分)现规定一种运算,其中a,b是实数,求的
值.
26.(6分)观察下列等式:
11
11
22
⨯=-,
22
22
33
⨯=-,
33
33
44
⨯=-,……
(1)猜想并写出第n个等式;(2)证明你写出的等式的准确性.
第12章整式的乘除检测题参考答案
1.B 解析: 3•9m•27m=3•32m•33m=31+2m+3m=321,∴ 1+2m+3m=21,解得m=4.故选B.
2.B 解析:由,知
所以
3.D 解析:由与互为相反数,知所以所以
4.A 解析:只有②准确.
5.D 解析:依题意,得,
所以,
所以解得
所以.故选D.
6.B 解析:A.a与b不是同类项,不能合并,故本选项错误;
B.由同底数幂的乘法法则可知,a2•a3=a5,故本选项准确;
C.a2+2ab-b2不符合完全平方公式,故本选项错误;
D.由合并同类项的法则可知,3a-2a=a,故本选项错误.故选B.
7.D 解析:①;②;
③;
④.
所以分解因式后,结果中含有相同因式的是②和③.故选D.
8.C 解析:A.用平方差公式法,应为,故本选项错误;
B.用提公因式法,应为,故本选项错误;
C.用平方差公式法,,准确;
D.用完全平方公式法,应为9,故本选项错误.故选C.
9.C 解析:即新正方形的面积增加了
10.C 解析:图①中阴影部分的面积为图②中阴影部分的面积为,
所以故选C.
11.-3 解析:∵x2-2x-3=x2-2x+1-4=(x-1)2-4,∴m=1,k=-4,
∴m+k=-3.故填-3.
12.解析:因为,且,,
又因为,所以,
所以.
13.13 解析:(1)
14.解析:
15.解析:因为,
所以,,所以.
16.解析:由题意知,与是同类项,所以,解得
所以.
17. 解析:原式

18.①③ 解析:2⊗(
)=2,所以①准确;因为
⊗=⊗=
,所以当时,⊗⊗,所以②错;因为

+

=+=
+=
[
2
]=2
,所
以③准确;若⊗==0,则
,所以④错.
19.解:(1)
(2)
20.解:=5
.
21.解:
22.解:. 当时,原式.
23.解:
(2)
24.解:本题答案不唯一.例如: ;
25.解:
+
=
+
. 26.(1)解:猜想:11n n
n n n n ⨯
=-
++; (2)证明:右边=12+-+n n n n =12+n n =左边,即11
⨯=-
++n n
n n n n .。

相关文档
最新文档