中考数学函数总复习习题1.docx

合集下载

中考数学总复习《函数基础知识》专题测试卷-含答案

中考数学总复习《函数基础知识》专题测试卷-含答案

中考数学总复习《函数基础知识》专题测试卷-含答案班级:___________姓名:___________考号:___________一、单选题(共12题;共24分)1.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程S(m)与时间t(min)的大致图象是()A.B.C.D.2.下列曲线中,不表示y是x的函数图象的是()A.B.C.D.3.如图1,在等边△ABC中,D是BC的中点,P为AB边上的一个动点,设AP=x,图1中线段DP 的长为y,若表示y与x的函数关系的图象如图2所示,则△ABC的面积为()A.4B.2√3C.12D.4√34.如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是()A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第3分到第6分,汽车行驶了150千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时5.一根弹簧原长12cm,它所挂的重量不超过10kg,并且挂重1kg就伸长1.5cm,写出挂重后弹簧长度y(cm)与挂重x(kg)之间的函数关系式是()A.y=1.5(x+12)(0≤x≤10)B.y=1.5x+12(0≤x≤10)C.y=1.5x+12(x≥0)D.y=1.5(x﹣12)(0≤x≤10)6.某辆汽车每次加油都会把油箱加满..,下表记录了该车相邻两次加油时的情况.(注:“累计里程”指汽车从出厂开始累计行驶的路程)加油时间加油量(升)加油时的累计里程(千米)2020年3月10日15560002020年3月25日5056500这段时间内,该车每100千米平均耗油量为()A.7升B.8升C.10升D.1007升7.如图①,在△ABC中△C=90°,△A=30°点D是AB边的中点,点P从点A出发,沿着AC﹣CB运动,到达点B停止.设点P的运动路径长为x,连DP,记△APD的面积为y,若表示y与x有函数关系的图象如图②所示,则△ABC的周长为()A.6+2√3B.4+2√3C.12+4√3D.6+4√38.若y与x的关系式为y=30x﹣6,当x=13时,y的值为()A.5B.10C.4D.-49.为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同).一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是()A.①③B.②③C.③D.①②③10.小翊早9点从家骑自行车出发,沿一条直路去邮局办事,小翊出发的同时,他的爸爸从邮局沿同一条道路匀速步行回家;小翊在邮局停留了一会后沿原路以原速返回,小翊比爸爸早3分钟到家.设两人离家的距离s(m)与小翊离开家的时间t(min)之间的函数关系如图所示.下列说法:①邮局与家的距离为2400米;②爸爸的速度为96m/min;③小翊到家的时间为9:22分;④小翊在返回途中离家480米处与爸爸相遇.其中,正确的说法有()A.1个B.2个C.3个D.4个11.如图1,△ABC是一块等边三角形场地,点D,E分别是AC,BC边上靠近C点的三等分点.现有一个机器人(点P)从A点出发沿AB边运动,观察员选择了一个固定的位置记录机器人的运动情况.设AP=x,观察员与机器人之间的距离为y,若表示y与x的函数关系的图象大致如图2所示,则观察员所处的位置可能是图1的()A.点B B.点C C.点D D.点E12.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B.C.D.二、填空题(共6题;共7分)13.函数y= √x+1x2−4的自变量x的取值范围是.14.小明骑车回家过程中,骑行的路程s与时间t的关系如图所示.则经15分钟后小明离家的路程为.15.如图①,在△ABC中AB=AC,∠BAC=120°点E是边AB的中点,点P是边BC上一动点设PC=x,PA+PE=y图②是y关于x的函数图象,其中H是图象上的最低点.那么a+b的值为.16.如图,在长方形ABCD中AB=8cm,AD=6cm点M,N从A点出发,点M沿线段AB运动,点N沿线段AD运动(其中一点停止运动,另一点也随之停止运动).若设AM=AN=xcm,阴影部分的面积为ycm2,则y与x之间的关系式为.17.下面是王刚和李明两位同学的行程图,如果两人同时在同一地点出发,沿着200米的环形跑道同向行走,那么分钟后两人首次相遇.18.函数y= √x−3中自变量x的取值范围是;若分式2x−3x+1的值为0,则x=三、综合题(共6题;共79分)19.已知抛物线y=−x2+4x−3与x轴相交于A,B两点(点A在点B的左侧),顶点为P.(1)求A,B ,P三点的坐标;(2)在平面直角坐标系内画出此抛物线的简图,并根据简图写出当x取何值时,函数值大于0.20.模具长计划生产面积为9,周长为m的矩形模具,对于m的取值范围,小陈已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:(1)建立函数模型设矩形相邻两边的长分别为x,y.由矩形的面积为9,得xy=9.即y=9x;由周长为m,得2(x+y)=m,即y=−x+m2,满足要求的(x,y).应是两个函数图象在第象限内交点的坐标.(2)画出函数图象函数y=9x的图象如图所示,而函数y=−x+m2的图象可由直线y=−x平移得到.请在同一直角坐标系中直接画出直线y=−x.(3)平移直线y=−x,观察函数图象①当直线平移到与函数y=9x的图象有唯一交点(3,3),周长m的值为;②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围;(4)得出结论若能生产出面积为9的矩形模具,则周长m的取值范围为21.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y与所挂物体的质量x的几组对应值:所挂物体质量x/kg012345弹簧长度y/cm182022242628(1)上述表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)写出弹簧长度y(cm)与所挂物体质量x(kg)的关系式;(3)若弹簧的长度为30cm时,此进所挂重物的质量是多少?(在弹簧的允许范围内)22.某淘宝店专销某种品牌的运动服,每套进价70元,售价120元/套.为了促销,淘宝店决定凡是一次购买数量不超过10套的,按原价每套120元购买;10套以上的,每多买1套,每套降价1元,每多买2套,每套降价2元……(例如,某人一次性购买15套运动服,多出5套,按每套降价5元购买,共需(15×115)元;但是最低价90元/套.(1)求顾客一次至少买多少套,才能以最低价购买?(2)写出当一次购买x(x>10)件时,利润w(元)与购买量x(件)之间的函数关系式;(3)有一天,一位顾客买了35套运动服,另一位顾客买了40套运动服,淘宝店发现卖了40套反而比卖35套赚的钱少!为了使每次卖的数量多赚的钱也多,在其它促销条件不变的情况下,最低价为90元/套至少要提高到多少?为什么?23.杆称是我国传统的计重工具,如图1,可以用秤砣到秤纽的水平距离x(厘米),来得出秤钩上所挂物体的重量y(斤).如表中为若干次称重时所记录的一些数据.x(厘米)124711y(斤)0.75 1.00 1.50 2.25 3.25(1)请在图2平面直角坐标系中描出表中五组数据对应的点;(2)秤钩上所挂物体的重量y是否为秤纽的水平距离的函数?如果是,请求出符合表中数据的函数解析式;(3)当秤钩所挂物重是4.5斤时,秤杆上秤砣到秤纽的水平距离为多少厘米?24.数学活动课上,小明同学根据学习函数的经验,对函数的图象、性质进行了探究,下面是小明同学探究过程,请补充完整:如图1,已知在Rt△ABC,∠ACB=90°,∠A=30°,BC=2cm ,点P为AB边上的一个动点,连接PC.设BP=xcm,CP=ycm .(1)(初步感知)当CP⊥AB时,则①x=,②y=;(2)(深入思考)试求y与x之间的函数关系式并写出自变量x的取值范围;(3)通过取点测量,得到了x与y的几组值,如下表:x cm⁄00.51 1.5 2. 2.53 3.54y cm⁄2 1.8 1.7_2 2.3 2.6 3.0_①计算并补全表格(说明:补全表格时相关数值保留一位小数)②建立平面直角坐标系,如图2,描出已补全后的表中各对应值为坐标的点,画出该函数的图象;③结合画出的函数图象,写出该函数的两条性质.参考答案1.【答案】C2.【答案】A3.【答案】D4.【答案】C5.【答案】B6.【答案】C7.【答案】A8.【答案】C9.【答案】C10.【答案】D11.【答案】C12.【答案】B13.【答案】x≥﹣1且x≠214.【答案】1.5千米15.【答案】716.【答案】y=- 12x2+4817.【答案】1018.【答案】x≥3;3219.【答案】(1)解:令y=0,得到﹣x2+4x﹣3=0即﹣(x﹣1)(x﹣3)=0解得:x=1或3则A(1,0),B(3,0)根据顶点坐标公式得﹣b2a=﹣4−2=2,4ac−b24a=4×(−1)×(−3)−164×(−1)=1即P(2,1);(2)解:作出图象,如图所示根据图象得:当1<x<3时,y>0.20.【答案】(1)一(2)解:(3)解:①12②由①知:0个交点时,0<m<12;2个交点时,m>12;1个交点时,m=12;(4)m≥1221.【答案】(1)解:上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;(2)解:∵物体每增加1千克,弹簧长度增加2cm∴y=18+2x(3)解:把y=30代入y=18+2x,得18+2x=30∴所挂重物的质量是6kg22.【答案】(1)解:由题意得:(120﹣90)÷1+10=40(套)(2)解:当10<x≤40时,w=x (60﹣x )=﹣x 2+60x ;当x >40时,w=(90﹣70)x=20x(3)解:当x >40时,w=20xw 随x 的增大而增大,符合题意;当10<x≤40时w=﹣x 2+60x=﹣(x ﹣30)2+900∵a=﹣1<0∴抛物线开口向下.对称轴是直线x=30∴10<x≤30,w 随着x 的增大而增大而当x=30时,w 最大值=900;∵要求卖的数量越多赚的钱越多,即w 随x 的增大而增大∴由以上可知,当x=30,最低售价为120﹣(30﹣10)=100元23.【答案】(1)解:如图所示:(2)解:由(1)图形可知,秤钩上所挂物体的重量y 是秤纽的水平距离的函数 设y =kx +b ,把x =1,y =0.75,x =2,y =1代入可得:{k +b =0.752k +b =1解得: {k =14b =12∴y = 14 x + 12; (3)解:当y =4.5时,即4.5= 14 x + 12∴当秤钩所挂物重是4.5斤时,秤杆上秤砣到秤纽的水平距离为16厘米. 24.【答案】(1)1;√3(2)解:过 C 作 CD ⊥AB 于 D由(1)可知BD =1①当 0≤x ≤1 时,如图1-1: PD =1−x∴y =√x 2−2x +4 ;②当 1<x ≤4 时,如图1-2: PD =x −1综合①②可得 y =√x 2−2x +4 (0≤x ≤4) ;(3)解:①当x =1.5时y =√x 2−2x +4=√3.25≈1.8当x =4时 x cm ⁄0.5 1 1.5 2. 2.5 3 3.5 4y cm⁄2 1.8 1.7 1.82 2.3 2.6 3.0 3.5②函数图象如图所示:③由函数图象得:性质一:y的最小值为√3(或1.7);性质二:当0≤x≤1时,y随x增大而减小.。

(完整)初三数学函数专题综合复习题

(完整)初三数学函数专题综合复习题

函数综合复习训练题一.反比率函数、一次函数部分7.如图,已知一次函数y x 1 的图象与反比率函数y ky的图象xA在第一象限订交于点 A ,与x轴订交于点C,AB ⊥ x 轴于点 B ,△ AOB 的面积为1,则AC的长为(保存根号).C O B x8 如图, A、 B 是函数y 2y 的图象上对于原点对称的随意两点,A xBC ∥x轴, AC∥y轴,△ ABC 的面积记为S,则()OxA .S 2B .S 4C.2 S 4D.S 4BC9 如图,点A、B是双曲线 y 3A 、B 两点向x轴、 y 轴作垂线段,上的点,分别经过若S暗影则S2xy.1, S1AS1BS2O x10 如图,直线y=mx与双曲线y= k交于 A、B 两点,过点 A 作 AM⊥ x 轴,x垂足为 M,连结 BM,若S ABM =2,则 k 的值是()A . 2B、 m-2 C 、 m D、 411.将直线y x 向左平移 1 个单位长度后获得直线 a ,如图 3 ,直线a与反比率函数y1x0 的图像订交于 A ,与x轴订交于 B ,则OA2OB 2xyaABxO12.从 2、3、4、5 四个数中,任取两个数p和q p q ,组成函数y px 2和 y x q ,并使两个函数象的交点在直x 2的右,的有序数p,q 共有()A . 12 B .6C. 5 D .315.已知 , A 、 B、 C、 D 、E 是反比率函数16( x>0)象上五个整数点(横、坐均yx整数),分以些点向横或作垂段,由垂段所在的正方形半径作四分之一周的两条弧,成如 5 所示的五个橄形(暗影部分),五个橄形的面和是(用含π的代数式表示)\5 16 如7 所示, P1( x1,y1)、 P2( x2, y2),⋯⋯ P n( x n, y n)在函数 y= 9( x> 0)的象上,△ OP1 A1,△ P2A 1A 2,△ P3A 2A 3⋯⋯△ P n A n-1A n⋯⋯都是等x腰直角三角形,斜OA 1, A 1A 2 ,⋯⋯ A n-1A n,都在 x 上,y1+y 2+⋯ +y n=。

中考数学总复习《函数基础知识》练习题附带答案

中考数学总复习《函数基础知识》练习题附带答案

中考数学总复习《函数基础知识》练习题附带答案一、单选题1.下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.2.如图,点G、D 、C在直线a上,点E、F、A、B 在直线b上,若a∥b,RtΔGEF从如图所示的位置出发,沿直线b向右匀速运动,直到EG与BC重合.运动过程中ΔGEF与矩形ABCD重合部分....的面积(S)随时间(t)变化的图象大致是()A.B.C.D.3.如图是y关于x的一个函数图象,根据图象,下列说法正确的是()A.该函数的最大值为7B.当x≥2时,y随x的增大而增大C.当x=1时,对应的函数值y=3D.当x=2和x=5时,对应的函数值相等4.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家,图中x表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是()A.体育场离林茂家2.5 kmB.体育场离文具店1 kmC.林茂从体育场出发到文具店的平均速度是50 m/minD.林茂从文具店回到家的平均速度是60 m/min5.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C→D的路径运动到点D停止.设点P的运动路程为x(cm),则下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的是()A.B.C.D.6.A、B两地相距90km,甲骑摩托车由A地出发,去B地办事,甲出发的同时,乙骑自行车同时由B地出发沿着同一条道路前往A地,甲办完事后原速返回A地,结果比乙早到0.5小时.甲、乙两人离A地距离y(km)与时间x(h)的函数关系图象如图所示.下列说法:①a=3.5,b=4;②甲走的全路程是90km;③乙的平均速度是22.5km/h;④甲在B地办事停留了0.5小时.其中正确的说法有()A.1个B.2个C.3个D.4个7.如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a千米,小强在玉米地除草比在菜地浇水多用的时间为b分钟,则a,b的值分别为()A.1.1,8B.0.9,3C.1.1,12D.0.9,88.二次函数y=ax2+bx+c的图象如图所示,给出下列说法:①abc<0;②方程ax2+bx+c=0的根为x1=﹣1、x2=3;③当x>1时,y随x值的增大而减小;④当y>0时,﹣1<x<3.其中正确的说法是().A.①;B.①②;C.①②③;D.①②③④9.球的体积V与半径R之间的关系式为V=43πR3,下列说法正确的是()A.变量为V,R,常量为43π,3 B.变量为V,R,常量为43,πC.变量为V,R,π,常量为43D.变量为V,R3,常量为π10.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,下列结论正确的是().A.火车的长度为120米B.火车的速度为30米/秒C.火车整体都在隧道内的时间为35秒D.隧道的长度为750米11.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.12.如图,平行四边形纸片ABCD,CD=5,BC=2,△A=60°,将纸片折叠,使点A落在射线AD上(记为点A′),折痕与AB交于点P,设AP的长为x,折叠后纸片重叠部分的面积为y,可以表示y 与x之间关系的大致图象是()A.B.C.D.二、填空题13.知函数y={(x−2)2−2,x≤4(x−6)2−2,x>4使y=a成立的x的值恰好只有2个时,则a满足的条件是.14.如图,在△ABC中,AC=6,BC=10,tanC=34点D是AC边上的动点(不与点C重合),过点D作DE△BC,垂足为E,点F是BD的中点,连接EF,设CD=x,△DEF的面积为S,则S与x之间的函数关系式为.15.若y+1与x成正比例,且当x=2时,y=3 ,则y与x之间的函数关系为.16.函数y=2√1−x+1x中,自变量x的取值范围是.17.如图为二次函数y=ax2+bx+c(a≠0)的图象,下列说法正确的有.①abc>0;②a+b+c>0;③b2−4ac<0④当x>1时,y随x的增大而增大;⑤方程ax2+bx+c=0(a≠0)的根是x1=−1和x2=3.18.在如图所示的三个函数图象中,近似地刻画如下a、b、c三个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.情境c:小芳从家出发,到学校上学,放学回到了家.情境a,b,c所对应的函数图象分别是(按次序填写a,b,c对应的序号)三、综合题19.如图AD,BC,CD分别与⊙O相切于A,B, E三点,AB是⊙O的直径.(1)连接OC,OD若OC=4,OD=3求CD的长;(2)若AD=x,BC=y ,AB=4 ,请画出y关于x的函数图象.20.李老师一家去离家200千米的某地自驾游,周六上午8点整出发.下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)出发1小时后,在服务区等另一家人一同前往,等到后以每小时80千米的速度直达目的地;求等侯的时间及线段BC的解析式;(3)上午11点时,离目的地还有多少千米?21.小婷家与学校之间是一条笔直的公路,小婷从家步行前往学校的途中发现忘记带昨天的回家作业本,便向路人借了手机打给妈妈,妈妈接到电话后,带上作业本马上赶往学校,同时小婷沿原路返回.两人相遇后,小婷立即赶往学校,妈妈沿原路返回家,并且小婷到达学校比妈妈到家多用了5分钟,若小婷步行的速度始终是每分钟100米,小婷和妈妈之间的距离y与小婷打完电话后步行的时间x之间的函数关系如图所示(1)妈妈从家出发分钟后与小婷相遇;(2)相遇后妈妈回家的平均速度是每分钟米,小婷家离学校的距离为米. 22.如图所示,l1,l2分别为走私船与我公安快艇航行时路程y(nmile)与时间x(min)之间的函数图象,根据图象回答下列问题:(1)请问在刚出发时,我公安快艇距离走私船多少海里?(2)请求出走私船与公安快艇的速度。

中考数学总复习《函数》练习题及答案

中考数学总复习《函数》练习题及答案

中考数学总复习《函数》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.若点A(−3,−2)关于x轴的对称点A′恰好在反比例函数y=k x(k≠0)的图象上,则k的值为()A.6B.−1C.−5D.−62.在平面坐标系中,已知直线y=−43x+4与x轴,y轴分别交于点A、B,线段AB绕点A顺时针方向旋转90°得线段AC,连接BC,则C点坐标为()A.(7,3)B.(6,4)C.(8,5)D.(8,4)3.二次函数y=x2+mx﹣n的对称轴为x=2.若关于x的一元二次方程x2+mx﹣n=0在﹣1<x<6的范围内有实数解,则n的取值范围是()A.﹣4≤n<5B.n≥﹣4C.﹣4≤n<12D.5<n<124.将函数y=6x的图象沿x轴向右平移1个单位长度,得到的图象所相应的函数表达式是()A.y=6x+1B.y=6x−1C.y=6x+1D.y=6x−15.漏刻是我国古代的一种计时工具,据史书记载,西周时期就已经出现了漏刻,这是中国古代人民对函数思想的创造性应用,小明同学依据漏刻的原理制作了一个简单的漏刻计时工具模型,研究中发现水位h(cm)是时间t(min)的一次函数,如下表是小明记录的部分数据,其中有一个h的值记录不符合题意,请排除后利用正确的数据确定当时间t为8时,对应的高度h为()t(min)……0123……h(cm)……0.7 1.2 1.5 1.9……A.3.3B.3.65C.3.9D.4.76.已知抛物线y=ax2+bx+c如图所示,则有:①abc<0;②b<a+c;③4a+2b+c>0;④2c>3b;⑤a+b>m(ma+b) (m≠1)其中正确的有()A.1个B.2个C.3个D.4个7.为展示我国强大的军力,面向青少年渗透爱国爱党教育,在庆祝建党100周年之际,某科技馆在市广场上空组织飞机模型保家卫国的大型公益活动.如图所示的是飞机模型试飞过程中的部分飞行队形,如果A、B两架”飞机模型的平面坐标分别是(-1,1)、(-1,-3),那么飞机模型C的平面坐标是()A.(1,-3)B.(3,-1)C.(-3,1)D.(-1,3)8.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b和反比例函数y =cx在同一平面直角坐标系中的图象可能是()A.B.C.D.9.如图,二次函数y=ax2+bx(a≠0)的图像过点(2,0),下列结论错误的是()A.b>0B.a+b>0C.x=2是关于x的方程ax2+bx=0(a≠0)的一个根D.点(x1,y1),(x2,y2)在二次函数的图象上,当x1>x2>2时,y2<y1<010.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,下列结论中:①abc<0;②9a﹣3b+c <0;③b2﹣4ac>0;④2a+b=0,正确的结论有()个A.1B.2C.3D.411.根据表格中的数据,估计一元二次方程ax2+bx+c=6(a,b,c为常数,a≠0)一个解x的范围为()x0.51 1.523ax2+bx+c28 2818104-2<2D.2<x<312.某商场经营一种小商品,已知进购时单价是20元.调查发现:当销售单价是30元时,月销售量为240件,而销售单价每上涨1元,月销售量就减少10件,但每件商品的售价不能高于40元.当月销售利润最大时,销售单价为()A.35元B.36元C.37元D.36或37元二、填空题13.如图,点A是反比例函数y=2x(x>0)的图象上任意一点,AB//x轴交反比例函数y=−3x的图象于点B,以AB为边作□ABCD,其中C,D在x轴上,则▱ABCD的面积是.14.如图,△OAC和△BAD都是等腰直角三角形,△ACO=△ADB=90°,反比例函数y=k x在第一象限的图象经过点B.若OA2﹣AB2=12,则k的值为.15.如图是一局象棋残局,已知表示棋子“馬”和“車”的坐标分别为(4,3)和(-2,1),则表示棋子“炮”的坐标为.16.在平面直角坐标系中,点A(-2,5),AB //x轴,AB=3,则点B的坐标是.17.如图,反比例函数y=k x(x>0)经过A,B两点,过点A作AC△y轴于点C,过点B作BD△y轴于点D,过点B作BE△x轴于点E,连接AD,已知AC=1,BE=1,S△ACD=32,则S矩形BDOE=.18.一名男生推铅球,铅球行进的高度y(单位:m)与水平距离x(单位:m)之间的关系y=−112x2+23x+53,则这个男生这次推铅球的成绩是.三、综合题19.某品牌童装平均每天可售出40件,每件盈利40元.为了迎接“元旦”,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价0.5元,那么平均每天就可多售出2件.(1)要想平均每天销售这种童装上盈利2400元,那么每件童装应降价多少元?(2)用配方法说明:要想盈利最多,每件童装应降价多少元?20.在平面直角坐标系xOy中,直线y1=x+5与直线y2=0.5x+15相交于点P.(1)求P点的坐标;(2)直接写出y1<y2时x的取值范围.21.二次函数y=−x2−(m−1)x+m的图象与y轴交点坐标是(0,3).(1)求此二次函数解析式;(2)在图中画出二次函数的图象;(3)当−3<x<0时,直接写出y的取值范围为.22.已知正比例函数y=kx与反比例函数y=3x的图象都过点A(m,1).求:(1)正比例函数的表达式;(2)正比例函数图象与反比例函数图象的另一个交点的坐标.23.如图反映的是小华从家里跑步去体育馆,在那里锻炼了一阵后又走到文具店去买笔,然后走回家,其中x表示时间,y表示小华离家的距离.根据图象回答下列问题:(1)小华在体育馆锻炼了分钟;(2)体育馆离文具店千米;(3)小华从家跑步到体育馆,从文具店散步回家的速度分别是多少千米/分钟?24.记面积为24cm2的平行四边形的一条边长为x(cm),这条边上的高线长为y(cm).(1)求y关于x的函数表达式,以及自变量x的取值范围.(2)求当边长满足3<x<8时,这条边上的高线长y的取值范围.参考答案1.【答案】D2.【答案】A3.【答案】C4.【答案】B5.【答案】C6.【答案】C7.【答案】B8.【答案】C9.【答案】D10.【答案】B11.【答案】C12.【答案】C13.【答案】514.【答案】615.【答案】(1,3)16.【答案】(-5,5)或(1,5)17.【答案】418.【答案】1019.【答案】(1)设每件童装应降价x元根据题意得:(40-x)(40+x0.5×2)=2400整理得:x2-30x+200=0,即(x-20)(x-10)=0解得:x=20或x=10(舍去)则每件童装应降价20元;(2)设利润为y元根据题意得:y=(40-x)(40+x0.5×2)=-4x2+120x+1600=-4(x-15)2+2500当x=15时,利润y最大,即要想利润最多,每件童装应降价15元.20.【答案】(1)解:由题意得:{y=x+5y=0.5x+15解得:{x=20y=25∴P 点的坐标(20,25); (2)当 x <20 时21.【答案】(1)解:把 (0,3) 代入 y =−x 2−(m −1)x +m得: m =3∴抛物线解析式为: y =−x 2−2x +3 ; (2)解:当 y =0 时,则 −x 2−2x +3=0 解得: x 1=1 , x 2=−3∴抛物线与x 轴的交点坐标为: (1,0) , (−3,0) ∵y =−x 2−2x +3=−(x +1)2+4 ∴抛物线的顶点坐标为 (−1,4) 抛物线的图象如图(3)0<y ≤422.【答案】(1)解:把x =m ,y =1代入y =3x3m=1,m =3 ∴A(3,1)把x =3,y =1代入y =kx 得3k =1 ∴y =13x (2)解:解方程组{y =13xy =3x解得{x 1=3y 1=1故另一交点的坐标为(−3,−1).23.【答案】(1)15(2)1(3)解:小华从家跑步到体育场的速度为:2.5÷15= 16(千米/分钟);小华从文具店散步回家的速度为:1.5÷(100-65)= 370(千米/分钟).答:小华从家跑步到体育场的速度是16千米/分钟,小华从文具店散步回家的速度为370千米/分钟.24.【答案】(1)解:∵平行四边形的面积为24cm2∴xy=24,即y=24 x;自变量x的取值范围x>0.(2)解:当x=3可得y=243=8;当x=8可得y=248=3;∵24>0∴当3<x<8时,y随x的增大而减少∴y的取值范围为3<y<8.。

中考数学总复习《函数基础知识》专项测试卷(附答案)

中考数学总复习《函数基础知识》专项测试卷(附答案)

中考数学总复习《函数基础知识》专项测试卷(附答案)一、单选题(共12题;共24分)1.在函数y=1√x−2中自变量x的取值范围是()A.x≥2B.x>2C.x≤2D.x<22.如图,M是⊙O上一个定点,将直角三角板的30°角顶点与点M重合,两边与⊙O相交,设交点为A,B,绕点M顺时针旋转三角板,直至其中一个交点与点M重合时停止旋转,设AB= y,旋转角为α,如图所示能反映y与α关系的为()A.B.C.D.3.小华和小明是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校,如图是他们从家到学校已走的路程S(米)和所用时间t(分钟)的关系图,则下列说法中不正确的是()A.小明家和学校距离1200米B.小华乘公共汽车的速度是240米/分C.小华乘坐公共汽车后7:50与小明相遇D.小明从家到学校的平均速度为80米/分4.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m (am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.①②③④D.①③④⑤5.现代物流的高速发展,为乡村振兴提供了良好条件,某物流公司的汽车行驶30km后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶1ℎ到达目的地.汽车行驶的时间x(单位:h)与行驶的路程y(单位:km)之间的关系如图所示,请结合图象,判断以下说法正确的是()A.汽车在高速路上行驶了2.5ℎB.汽车在高速路上行驶的路程是180kmC.汽车在高速路上行驶的平均速度是72km/ℎD.汽车在乡村道路上行驶的平均速度是40km/ℎ6.已知某四边形的两条对角线相交于点O.动点P从点A出发,沿四边形的边按A→B→C的路径匀速运动到点C.设点P运动的时间为x,线段OP的长为y,表示y与x的函数关系的图象大致如图所示,则该四边形可能是()A.B.C.D.7.某人骑自行车从甲地到乙地,到达乙地他马上返回甲地.如图反映的是他离甲地的距离s(km)及他骑车的时间t(h)之间的关系,则下列说法正确的是()A.甲、乙两地之间的距离为60kmB.他从甲地到乙地的平均速度为30km/hC.当他离甲地15km时,他骑车的时间为1hD.若他从乙地返回甲地的平均速度为10km/h,则点A表示的数字为58.下列四个函数图象中当x<0时,y随x的增大而减小的是()A.B.C.D.9.如图,在△ABC中∠C=90°,AC=5和BC=10.动点M,N分别从A,C两点同时出发,点M从点A开始沿边AC向点C以每秒1个单位长度的速度移动,点N从点C开始沿CB向点B以每秒2个单位长度的速度移动.设运动时间为t,点M,C之间的距离为y,△MCN的面积为S,则y与t,S与t满足的函数关系分别是()A.正比例函数关系,一次函数关系B.正比例函数关系,二次函数关系C.一次函数关系,正比例函数关系D.一次函数关系,二次函数关系10.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系是()A.Q=0.2t B.Q=20﹣0.2t C.t=0.2Q D.t=20﹣0.2Q11.某人骑车上路,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上路时间,于是就加快了车速.如图s表示此人离家的距离,t表示时间,在下面给出的四个表示s与t的关系的图象中符合以上情况的是()A.B.C.D.12.某市为了鼓励节约用水,按以下规定收水费:(1)每户每月用水量不超过20m3,则每立方米水费为1.2元,(2)每户用水量超过20m3,则超过的部分每立方米水费2元,设某户一个月所交水费为y(元),用水量为x(m3),则y与x的函数关系用图象表示为()A.B.C.D.二、填空题(共6题;共6分)13.甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示,则甲的速度为每秒米.14.等腰三角形的周长为16cm,底边长为x cm,腰长为y cm,则x与y之间的关系式为.15.如图所示:图象中所反映的过程是:小冬从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x轴表示时间,y轴表示小冬离家的距离.根据图象提供的信息,下列说法正确的有.①体育场离小冬家2.5千米②小冬在体育场锻炼了15分钟③体育场离早餐店4千米④小冬从早餐店回家的平均速度是3千米/小时16.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y单位:L)与时间x(单位min)之间的关系如图所示:则8min时容器内的水量为.17.已知等腰三角形的周长为18,设底边长为x,腰长为y,则y与x之间的函数关系式为:(要求写出自变量x的取值范围).18.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需分钟到达终点B.三、综合题(共6题;共64分)19.已知y是x的一次函数,表中给出了部分对应值.x-124ny5-1m-7(1)求该一次函数的表达式;(2)求m,n的值.20.甲、乙两人沿同一路线从A地到B地进行骑车训练,甲先出发,匀速骑行到B地. 乙后出发,并在甲骑行25分钟后提速到原来速度的1.4倍继续骑行(提速过程的时间忽略不计),结果乙比甲早12分钟到B地. 两人距离A地的路程y(单位:千米) 与甲骑行的时间x(单位:分钟)之间的关系如图所示.(1)求甲的速度和乙提速前的速度.(2)求AB两地之间的路程.21.已知等腰三角形的周长为12,设腰长为x,底边长为y.(1)试写出y关于x的函数表达式,并直接写出自变量x的取值范围.(2)当x=5时,求出函数值.22.快、慢两车分别从相距360千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,快车到达乙地后,停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地,快、慢两车距各自出发地的路程y(千米)与出发后所用的时间x(小时)的关系如图.请结合图象信息解答下列问题:(1)慢车的速度是千米/小时,快车的速度是千米/小时;(2)求m的值,并指出点C的实际意义是什么?(3)在快车按原路原速返回的过程中快、慢两车相距的路程为150千米时,慢车行驶了多少小时?23.A,B两地相距560km,甲车从A地驶往B地,1h后,乙车以相同的速度沿同一条路线从B地驶往A地,乙车行驶1小时后,乙车的速度提高到120km/h,并保持此速度直到A地.在整个行驶过程中甲车到A地的距离y1(km),乙车到A地的距离y2(km)与甲车行驶的时间x(h)之间的关系如图所示,根据图象回答下列问题:(1)图中点P的坐标是,点M的坐标是.(2)甲、乙两车之间的距离不超过240km的时长是多少?24.甲、乙两车从A地驶向B地,甲车比乙车早行驶2h,并且在途中休息了0.5h,休息前后速度相同,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数表达式,并写出相应的x的取值范围;(3)当甲车行驶多长时间时,两车恰好相距40km.参考答案1.【答案】B 2.【答案】A 3.【答案】D 4.【答案】A 5.【答案】D 6.【答案】D 7.【答案】D 8.【答案】C 9.【答案】D 10.【答案】B 11.【答案】C 12.【答案】C 13.【答案】614.【答案】y=8﹣ 12 x (0<x <8)15.【答案】①②④ 16.【答案】2517.【答案】y=﹣ 12 x+9(0<x <9)18.【答案】7819.【答案】(1)解:设一次函数的表达式为y =kx +b由题意可得 {−k +b =52k +b =−1. 解得 {k =−2b =3.∴一次函数的表达式为y =-2x +3 (2)解:当x =4时,代入可得 m =-2×4+3=-5. 当y =-7时,代入可得 -7=-2n +3 解得n =5.∴m =-5,n =5.20.【答案】(1)解:甲的速度为每分钟15÷50=0.3km设乙提速前的速度为vkm/分钟,根据题意得 (25-5)v+85v (50-25)=15解之:v=0.25.(2)解:∵乙提速前的速度为0.25 km/分钟∴乙提速后的速度为85×0.25=0.4 km/分钟∴乙提速前行驶的路程为0,25×20=5km 设AB 的路程为m 千米,根据题意得m 0,3−(m −50.4+25)=12 解之:m=29.421.【答案】(1)解:由题意得12=2x +y∴y =12-2x . ∵x ,y 是三角形的边长 ∴y <2x ,2x >12-2x ∴3<x <6.(2)解:由(1)知y =12-2x ∴当x =5时,y =2.22.【答案】(1)60;120(2)解:由题意得,60m=360×2﹣120(m ﹣1) 解得m= 14360× 143=280km所以,C 点表示 143 小时时,慢车在距离乙地280千米处,快车在距离甲地280千米处;(3)解:设慢车行驶了x 小时由题意得,60x ﹣120(x ﹣ 360120 ﹣1)=150解得x=5.5小时答:慢车行驶了5.5小时.第 11 页 共 11页 23.【答案】(1)(2,480);(6,0)(2)解:∵甲车的速度是5607=80 ∴ON 的解析式为y 1=80x ;当2≤x ≤6时,设PM 函数解析式为y 2=kx +b ,过点P (2,480),M (6,0)∴{2k +b =4806k +b =0,解得{k =−120b =720∴PM 的函数解析式为y 2=−120x +720当−120x +720−80x =240时,得x=2.4;当80x +120x −720=240时,得x=4.8∴甲、乙两车之间的距离不超过240km 的时长是4.8-2.4=2.4(h ).24.【答案】(1)解:由题意120÷(3.5﹣0.5)=40,a=1×40=40(2)解:①当0≤x≤1时,设y 与x 之间的函数关系式为y=k 1x ,把(1,40)代入,得k 1=40 ∴y=40x ;②当1<x≤ 32时,y=40; ③当 32 <x≤7时,设y 与x 之间的函数关系式为y=k 2x+b ,由题意,得: {32k 2+b =4072k 2+b =120,解得: {k 2=40b =−20,∴y=40x ﹣20; 综上所述: y ={40x(0≤x ≤1)40(1<x ≤32)40x −20(32<x ≤7) (3)解:设乙车行驶的路程y 与时间x 之间的解析式为y=mx+n ,由题意,得: {2m +n =072m +n =120 解得: {m =80n =−160,∴y=80x ﹣160,当40x ﹣20﹣(80x ﹣160)=40时,解得:x=2.5. 当80x ﹣160﹣(40x ﹣20)=40时,解得:x=4.5.答:甲车行驶1小时(或1﹣1.5小时)或2.5小时或4.5小时,两车恰好相距40km。

中考数学总复习《函数》专项测试卷-附参考答案

中考数学总复习《函数》专项测试卷-附参考答案

中考数学总复习《函数》专项测试卷-附参考答案一、单选题(共12题;共24分)1.如图所示,抛物线L:y=ax2+bx+c(a<0)的对称轴为x=5,且与x轴的左交点为(1,0)则下列说法正确的有()①C(9,0);②b+c>-10;③y的最大值为-16a;④若该抛物线与直线y=8有公共交点,则a的取值范围是a≤ 1 2.A.①②③④B.①②③C.①③④D.①④2.若y+3与x-2成正比例,则y是x的()A.正比例函数B.不存在函数关系C.一次函数D.以上都有可能3.关于函数y=2x﹣1,下列结论成立的是()A.当x<0时,则y<0B.当x>0时,则y>0C.图象必经过点(0,1)D.图象不经过第三象限4.关于一次函数y=x+2,下列说法正确的是()A.y随x的增大而减小B.经过第一、三、四象限C.与y轴交于(0,2)D.与x轴交于(2,0)5.点P(3,y1)、Q (4,y2)是二次函数y=x2−4x+5的图象上两点,则y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定6.快、慢两车分别从甲、乙两地同时出发,相向匀速行驶,两车在途中相遇时都停留了一段时间,然后分别按原速度原方向匀速行驶,快车到达乙地后休息半小时后,再以另一速度原路匀速返回甲地(掉头的时间忽略不计),慢车到达甲地以后即停在甲地等待快车.如图所示为快、慢两车间的距离y (千米)与快车的行驶时间x(小时)之间的函数图象.则下列说法:①两车在途中相遇时都停留了1小时;②快车从甲地去乙地时每小时比慢车多行驶40km;③快车从乙地返回甲地的速度为120km/h;④当慢车到达甲地的时候,快车与甲地的距离为400km.其中正确的有()A.4B.3C.2D.17.如图,动点A在抛物线y=−x2+2x+3(0≤x≤3)上运动,直线l经过点(0,6),且与y轴垂直,过点A做AC⊥ l于点C,以AC为对角线作矩形ABCD,则另一对角线BD的取值范围正确的是()A.2≤BD≤3B.3≤BD≤6C.1≤BD≤6D.2≤BD≤68.如图,在平面直角坐标系中,函数y=kx,y=−2x的图像交于A,B两点,过A作y轴的垂线,交函数y=3x的图像于点C,连接BC,则ΔABC的面积为()A.2B.3C.5D.69.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点是A,对称轴是直线x=1,且抛物线与x轴的一个交点为B(4,0);直线AB的解析式为y2=mx+n(m≠0).下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=mx+n有两个不相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,则则y1>y2,其中正确的是()A.①②B.①③⑤C.①④D.①④⑤10.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.11.如图,在平面直角坐标系中,ΔA1A2A3,ΔA3A4A5,ΔA5A6A7,…都是等边三角形,其边长依次为2,4,6,…,其中点A1的坐标为(2,0),点A2的坐标为(1,−√3),点A3的坐标为(0,0),点A4的坐标为(2,2√3),…,按此规律排下去,则点A2020的坐标为()A.(1,−1009√3)B.(1,−1010√3)C.(2,1009√3)D.(2,1010√3)12.如图,二次函数y=-x2+bx+c 图象上有三点A(-1,y1 )、B(1,y2) 、C(2,y3),则y1,y2,y3大小关系为()A.y1<y3<y2B.y3<y1<y2C.y1<y2<y3D.y2<y1<y3二、填空题(共6题;共6分)13.点P(1,1)向左平移两个单位后恰好位于双曲线y=k x上,则k=.14.将二次函数y=−x2+3的图像向下平移5个单位长度,所得图像对应的函数表达式为.15.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1)…,则点A2021的坐标为.16.请写出一个二次函数,使它的图象同时满足下列两个条件:①开口向下,②与y轴的交点是(0,1),你写出的函数表达式是.17.若点P(n,1),Q(n+6,3)在正比例函数图象上,请写出正比例函数的表达式. 18.在−3,−2,−1,4,5五个数中随机选一个数作为一次函数y=kx−3中k的值,则一次函数y=kx−3中y随x的增大而减小的概率是.三、综合题(共6题;共67分)19.3−√(−3)2+|√3−2|(1)计算:(−1)2021+√16+√−27(2)如图所示的是某学校的平面示意图,已知旗杆的位置是(−1,2),实验室的位置是(2,3).①根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂,宿舍楼和大门的位置.②已知办公楼的位置是(−2,1),教学楼的位置是(3,1),在①中所画的图中标出办公楼和教学楼的位置.20.汽车出发1小时后油箱里有油40L,继续行驶若干小时后,在加油站加油若干升(加油时间忽略不计).图象表示出发1小时后,油箱中剩余测量(y)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余量y与行驶时间t的函数关系式;(3)若加油前后汽车都以80km/h匀速行驶,则汽车加油后最多能行驶多远?21.凤凰单丛(枞)茶,是潮汕的名茶,已有九百余年的历史.潮汕人将单丛茶按香型分为黄枝香、芝兰香、桃仁香、玉桂香、通天香、鸭屎香等多种.清明采茶季后,某茶叶店准备购买通天香和鸭屎香两种单丛茶进行销售,已知若购买4千克通天香单丛和3千克鸭屎香单丛需要2500元,购买2千克通天香单丛和5千克鸭屎香单丛需要2300元.(1)求通天香、鸭屎香两种茶叶的单价分别为多少元?(2)茶叶专卖店计划购买通天香、鸭屎香两种单丛茶共80千克,总费用不多于26000元,并且要求通天香茶叶数量不能低于10千克,那么应如何安排购买方案才能使总费用最少,最少费用应为多少元?22.为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.23.直线y=kx+b经过A(0,-3))和B(-3,0)两点.(1)求这个一次函数的解析式;(2)画出图象,并根据图象说明不等式kx+b<0的解集.24.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场,下面的函数图象表示“龟兔再次赛跑”时,则乌龟所走路程y1(米)和兔子所走的路程y2(米)分别与乌龟从起点出发所用的时间x(分)之间的函数图象,根据图象解答下列问题:(1)“龟兔再次赛跑”的路程是米,兔子比乌龟晚走了分钟,乌龟在途中休息了分钟,“龟兔再次赛跑”获胜的是.(2)分别求出乌龟在途中休息前和休息后所走的路程y1关于时间x的函数解析式,并写出自变量x的取值范围.(3)乌龟和兔子在距离起点米处相遇.参考答案1.【答案】B 2.【答案】C 3.【答案】A 4.【答案】C 5.【答案】B 6.【答案】B 7.【答案】D 8.【答案】C 9.【答案】B 10.【答案】C 11.【答案】D 12.【答案】A 13.【答案】-114.【答案】y =−x 2−2 15.【答案】(506,﹣505)16.【答案】y =−x 2+x +1 (不唯一) 17.【答案】y =13x 18.【答案】3519.【答案】(1)解:原式=−1+4−3−3+2−√3=−1−√3(2)解:①根据题意,建立如图所示的平面直角坐标系,如下:∴食堂(−4,4),宿舍楼(-5,1),大门(1,−1) ②办公楼和教学楼的位置如图所示.20.【答案】(1)4;35(2)解:设y 与x 的函数关系式为y =kt+b 把(1,40)和(4,10)代入得{k +b =404k +b =10解得 {k =−10b =50∴加油前油箱剩余油量y 与行驶时间t 的函数关系式y =﹣10t+50(3)解:由图象知,汽车加油前行驶了3小时,则用油40﹣10=30(L ) ∴汽车行驶1小时耗油量为 303=10(L/h )加油后邮箱中剩余油量45L ,可以行驶 4510 ×80=360(km ).∴汽车加油后最多能行驶360km .21.【答案】(1)解:设通天香茶叶每千克为x 元,鸭屎香茶叶每千克为y 元,根据题意,得{4x +3y =25002x +5y =2300解得{x =400y =300∴通天香茶叶每千克为400元,鸭屎香茶叶每千克为300元.(2)解:设购买通天香茶叶m 千克,鸭屎香茶叶(80-m )千克,总费用w 元 根据题意,得400m +300(80−m)≤26000 解得m ≤20 ∵m ≥10∴m 的取值范围是:10≤m ≤20总费用w =400m +300(80−m)=100m +24000 ∵100>0∴w 随着m 的增大而增大∴当m =10时,则w 最少,w 最少=1000+24000=25000(元)∴通天香茶叶购进10千克,鸭屎香茶叶购进70千克,总费用最少为25000元.22.【答案】(1)解:由题意可得,y 甲=0.85x ;乙商店:当0≤x≤300时,则y 乙与x 的函数关系式为y 乙=x ; 当x >300时,则y 乙=300+(x-300)×0.7=0.7x+90 由上可得,y 乙与x 的函数关系式为y 乙={x(0≤x ≤300)0.7x +90(x >300)(2)解:由{y 甲=0.85xy 乙=0.7x +90,解得{x =600y 乙=510点A 的坐标为(600,510);(3)解:由点A 的意义,当买的体育商品标价为600元时,则甲、乙商店优惠后所需费用相同,都是510元 结合图象可知当x <600时,则选择甲商店更合算; 当x=600时,则两家商店所需费用相同; 当x >600时,则选择乙商店更合算.23.【答案】(1)解:将A(0,−3),B(−3,0)代入y =kx +b 得{b =−3−3k +b =0解得:k =−1,b =−3∴y =−x −3一次函数的解析式为:y =−x −3. (2)解:作图如下:由图象可知:直线从左往右逐渐下降,即y 随x 的增大而减小 当x =−3时∴kx +b <0的解集为:x >−3.24.【答案】(1)1000;40;10;兔子(2)解:设乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=kx ∴600=30k ,解得k =20∴乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=20x (0≤x≤30) 设乌龟在途中休息后所走的路程y 1关于时间x 的函数解析式为y 1=k′x+b∴{40k ′+b =60060k ′+b =1000,解得{k ′=20b =−200∴乌龟在途中休息后所走的路程y1关于时间x的函数解析式为y1=20x﹣200(40≤x≤60);(3)750第11页共11。

中考函数专题复习(知识点+试题)含答案[1]

中考函数专题复习(知识点+试题)含答案[1]

中考函数专题复习一. 本周教学内容: 函数专题复习 (一)一次函数1. 定义:在定义中应注意的问题y =kx +b 中,k 、b 为常数,且k ≠0,x 的指数一定为1。

2. 图象及其性质 (1)形状、直线()时,随的增大而增大,直线一定过一、三象限时,随的增大而减小,直线一定过二、四象限200k y x k y x ><⎧⎨⎪⎩⎪()若直线::3111222l y k x b l y k x b =+=+当时,;当时,与交于,点。

k k l l b b b l l b 121212120===//()(4)当b>0时直线与y 轴交于原点上方;当b<0时,直线与y 轴交于原点的下方。

(5)当b=0时,y =kx (k ≠0)为正比例函数,其图象是一过原点的直线。

(6)二元一次方程组与一次函数的关系:两一次函数图象的交点的坐标即为所对应方程组的解。

3. 应用:要点是(1)会通过图象得信息;(2)能根据题目中所给的信息写出表达式。

(二)反比例函数 1. 定义:应注意的问题:中()是不为的常数;()的指数一定为“”y kxk x =-1021 2. 图象及其性质: (1)形状:双曲线()对称性:是中心对称图形,对称中心是原点是轴对称图形,对称轴是直线和212()()y x y x ==-⎧⎨⎪⎩⎪ ()时两支曲线分别位于一、三象限且每一象限内随的增大而减小时两支曲线分别位于二、四象限且每一象限内随的增大而增大300k y x k y x ><⎧⎨⎪⎩⎪(4)过图象上任一点作x 轴与y 轴的垂线与坐标轴构成的矩形面积为|k|。

3. 应用()应用在上()应用在上()其它其要点是会进行“数形结合”来解决问题123P FS u S t==⎧⎨⎪⎪⎪⎩⎪⎪⎪(三)二次函数1. 定义:应注意的问题(1)在表达式y=ax2+bx+c中(a、b、c为常数且a≠0)(2)二次项指数一定为22. 图象:抛物线3. 图象的性质:分五种情况可用表格来说明4. 应用:(1)最大面积;(2)最大利润;(3)其它【例题分析】例1. 已知一次函数y=kx+2的图象过第一、二、三象限且与x、y轴分别交于A、B两点,O为原点,若ΔAOB的面积为2,求此一次函数的表达式。

中考数学总复习《函数基础知识》练习题及答案

中考数学总复习《函数基础知识》练习题及答案

中考数学总复习《函数基础知识》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线L:y=x−3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中a的值为()A.7B.9C.12D.132.弹簧挂物体会伸长,测得弹簧长度y(cm)(最长为20cm),与所挂物体质量x(kg)之间有下面的关系:x/kg01234…y/cm88.599.510…A.x与y都是变量,x是自变量,y是x的函数B.所挂物体质量为6kg时,弹簧长度为11cmC.y与x的函数表达式为y=8+0.5xD.挂30kg物体时,弹簧长度一定比原长增加15cm3.甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算.走得最快的是()A.甲B.乙C.丙D.丁4.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ∠CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是()A.2B.95C.65D.15.将水匀速滴进如图所示的容器时,能符合题意反映容器中水的高度(h)与时间(t)之间对应关系的图象大致是()A.B.C.D.6.函数y= √x−1的自变量x的取值范围是()A.x=1B.x≠1C.x≥1D.x≤17.在函数y=√x+2x中,自变量x的取值范围为( )A.x≥-2B.x<-2且x≠0C.x≥-2且x≠0D.x≠0.8.如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a千米,小强在玉米地除草比在菜地浇水多用的时间为b分钟,则a,b的值分别为()A.1.1,8B.0.9,3C.1.1,12D.0.9,89.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量/千克0.51 1.52 2.53 3.54烤制时间/分406080100120140160180 A.140B.138C.148D.16010.下列各曲线中表示y是x的函数的是()A.B.C.D.11.下列函数中自变量x的取值范围是x>1的是().A.y=1√x−1B.y=√x−1C.y=1√x−1D.y=1√1−x12.习近平总书记在全国教育大会上强调,要坚持中国特色社会主义教育发展道路.培养德智体美劳全面发展的社会主义建设者和接班人.枣庄某学校利用周未开展课外劳动实践活动.如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a千米,小强在玉米地除草比在菜地浇水多用的时间为b分钟,则a,b的值分别为()A.1.1,8B.0.9,3C.1.1,12D.0.9,8二、填空题13.一棵树现在高60cm,每个月长高2cm,x月之后这棵树的高度为hcm,则h关于x的函数解析式为.14.甲、乙两车分别从A,B两地同时相向匀速行驶,当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过15小时后两车同时到达距A地300千米的C地(中途休息时间忽略不计).设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数关系如图所示,则当甲车到达B地时,乙车距A地千米.15.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,自变量是.,则自变量x的取值范围是.16.已知函数y= √2x+1x−217.如图1,在平面直角坐标系中,平行四边形ABCD在第一象限,且AB∠x轴.直线y=﹣x从原点出发沿x轴正方向平移,被平行四边形ABCD截得的线段EF的长度y与平移的距离x的函数图象如图2所示,那么平行四边形ABCD的面积为.18.甲、乙两地相距360km,一辆货车从甲地以60km/ℎ的速度匀速前往乙地,到达乙地后停止在货车出发的同时,另一辆轿车从乙地沿同一公路匀速前往甲地,到达甲地后停止.两车之间的路程y(km)与货车出发时间x(ℎ)之间的函数关系如图中的折线CD−DE−EF所示.其中点C的坐标是(0,360),点D的坐标是(2,0),则点E的坐标是.三、综合题19.我国边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防部迅速派出快艇B追赶(如图1).图2中l1、l2分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.根据图象回答问题:(1)直线l1与直线l2中表示B到海岸的距离与追赶时间之间的关系(2)A与B比较,速度快;(3)l1与l2对应的两个一次函数表达式S1=k1t+b1与S2=k2t+b2中,k1、k2的实际意义各是什么?并直接写出两个具体表达式(4)15分钟内B能否追上A?为什么?(5)当A逃离海岸12海里的公海时,B将无法对其进行检查,照此速度,B能否在A逃入公海前将其拦截?为什么?20.为迎接元旦,某食品加工厂计划用三天时间生产某种糕点600斤,其库存量稳定增加,从第四天开始停止生产,进行销售,每天销售150斤,图中的折线OAB表示该糕点的库存量y(斤)与销售时间x(天)之间的函数关系.(1)B点坐标为,线段AB所在直线的解析式为;(2)在食品销售期间,某超市提前预定当天这种糕点150斤的销量,并搭配活动将这批糕点分甲乙两种方式售卖,甲种方式每斤8元,乙种方式每斤12元,同时为了保证甲种方式的数量不低于乙种方式,求该超市卖完全部糕点销售总额的最大值.21.已知y是x 的函数,自变量x的取值范围是x >0,下表是y与x 的几组对应值.x···123579···y··· 1.98 3.95 2.63 1.58 1.130.88···与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为;②该函数的一条性质:.22.沙沙骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校. 以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)沙沙家到学校的路程是多少米?(2)在整个上学的途中哪个时间段沙沙骑车速度最快,最快的速度是多少米/分?(3)沙沙在书店停留了多少分钟?(4)本次上学途中,沙沙一共行驶了多少米?23.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?24.2022年3月23日“天宫课堂”第二课开讲.传播普及空间科学知识,激发了广大青少年不断追求“科学梦”的热情.小明在周末从家骑自行车到晋中市科技馆探索科技的奥秘,他骑行了一段时间后,在某路口等待红绿灯,待绿灯亮起后继续向科技馆方向骑行,在快到科技馆时突然发现钥匙不见了,于是他着急地原路返回,在刚刚等红绿灯的路口处找到了钥匙,使继续前往科技馆.小明离科技馆的距离(m)与离家的时间(min)的关系如图所示,请根据图中提供的信息回答下列问题:(1)小明家到晋中市科技馆的距离是m;(2)小明等待红绿灯所用的时间为min;(3)图中点C表示的意义是;(4)小明在整个途中,哪个时间段骑车速度最快?,最快速度是m/min.(5)小明在整个途中,共行驶了m.参考答案1.【答案】D 2.【答案】D 3.【答案】A 4.【答案】B 5.【答案】D 6.【答案】C 7.【答案】C 8.【答案】D 9.【答案】C 10.【答案】D 11.【答案】A 12.【答案】D 13.【答案】h=60+2x 14.【答案】100 15.【答案】时间 16.【答案】x≥﹣12且x≠217.【答案】12 18.【答案】(3,180) 19.【答案】(1)直线l 1(2)B(3)由题意可得k 1、k 2的实际意义是分别表示快艇B 的速度和可疑船只的速度 S 1=0.5t ,S 2=0.2t+5; (4)15分钟内B 不能追上A理由:当t =15时,S 2=0.2×15+5=8,S 1=0.5×15=7.5 ∵8>7.5∴15分钟内B 不能追上A ; (5)B 能在A 逃入公海前将其拦截 理由:当S 2=12时,12=0.2t+5,得t =35 当t =35时,S 1=0.5×35=17.5∵17.5>12∴B能在A逃入公海前将其拦截.20.【答案】(1)(7,0);y=-150x+1050(2)解:设该超市卖完全部糕点销售总额是y元,甲种方式售卖x斤,则乙种方式售卖(150−x)斤根据题意得:y=8x+12(150−x)=−4x+1800∵甲种方式的数量不低于乙种方式∴x≥150−x∴x≥75而−4<0∴y随x的增大而减小∴x=75时,y最大为−4×75+1800=1500答:该超市卖完全部糕点销售总额的最大值是1500元.21.【答案】(1)解:如下图:(2)2(2.1到1.8之间都正确);该函数有最大值(其他符合题意性质都可以).22.【答案】(1)解:根据图象,学校的纵坐标为1500,小明家的纵坐标为0故沙沙家到学校的路程是1500米(2)解:根据图象,12≤x≤14时,直线最陡故沙沙在12分钟到14分钟最快,最快的速度是1500−60014−12=450米/分(3)解:根据题意,沙沙在书店停留的时间为从8分到12分,12-8=4故沙沙在书店停留了4分钟.(4)解:读图可得:沙沙共行驶了1200+600+900=2700米.23.【答案】(1)解:∵对于每一个摆动时间t,都有一个唯一的ℎ的值与其对应∴变量h是关于t的函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学函数总复习习题[典型例题与练习 ]平面直角坐标系例 1(1)已知 a<b<0,则点 A(a-b, b)在第 _______象限.(2)若点 P(a,b)在第四象限,则点 Q(b,-a)在第 ______象限.(3)若点 M ( 1 + a, 2b –1 ) 在第二象限,则点( 4)已知坐标平面内点 A(m , n)在第四象限,那么点 B(n,m) 在()(A) 第一象限(B)第二象限(C)第三象限(D)第四象限例 2已知点 M( 3x + 2, -x - 2)在第三象限,则 x 的取值范围为.例 3已知点 ( 2m, m –4 )在第四象限,且 m 为偶数,则 m 的值是.例 4如果点 A(m, n)在第三象限,那么点 B(0, m + n)在()例 5(A)x 轴正半轴上(B)x 轴负半轴上 (C)y 轴正半轴上(D)y 轴负半轴上已知点 Q(2m22)在第一象限的角平分线上,则m =.+ 4, m + m + 6例 6( 1)点 A(-1,2)关于 y 轴的对称点的坐标是_______;点 A 关于原点的对称点的坐标是 ________.(2)已知点 A (a, -7), B ( 5, b), 若 A﹑ B 两点关于 x 轴对称,则 a =, b =.( 3)若点 P(m, 2) 与点 Q(3 , n) 关于原点对称,则m、 n 的值分别是、.( 4)将一张坐标纸折叠一次,使得点 (0,2) 与 (-2,0)重合,则点 ( 1 ,0)与 _______重合.2–关于轴的对称点’在第象( 5)已知 a < 0,那么点 P ( - a2x限 .- 2, 2 a )P ( 6)点 (-1,4)关于坐标原点对称的点的坐标是()(A) (-1 ,-4)(B) (1,-4)(C) (1,4)(D) (4,-1)( 7)点 P(2,-3)关于 y 轴的对称点的坐标是 ().(A)(2,3)(B)(-2,-3)(C)(-2,3)(D)(-3,2)例 7(1)点 P 在第二象限,若该点到 x 轴的距离为 3 、到y轴的距离为1,则点 P 的坐标是()(A) (-l ,3 )(B) (- 3,1)(C) ( 3 ,-1)(D) (1,3 )( 2)点 P 坐标为( 2 - a,3a + 6 ),且点 P 到两坐标轴的距离相等,则点P 的坐标是 ().(A)(3,3)(B)(3,-3)(C)(6,-6)(D)(3,3)或(6,-6)例 8如图:如果“士”所在位置的坐标为(-1, -2),“相”所在位置的坐标为 (2,-2),那么,“炮”所在位置的坐标为________.例 9 ★★在上面的网格图中按要求画出图形,并回答问题:(1)先画出△ABC 向下平移 5 格后的△A1B1C1,再画出△ABC 以点 0 为旋转中心,沿顺时针方向旋转90 后的△ A2 B2 C 2;(2)在与同学交流时,你打算如何描述 (1)中所画的△A2B2C2的位置 ?例9题图例 10 ★★ (1)请在如图所示的方格纸中,将△ABC 向上平移 3 格,再向右平移6 格,得△A1 B1C1,再将△ A1 B1C1绕B1按顺时针方向旋转90 ,得△ A2 B1C2,点最后将△A2 B1C 2以点 C 2为位似中心放大到 2 倍,得△A3B3C2;(2)请在方格纸的适当位置画上坐标轴 ( 一个小正方形的边长为 1 个单位长度 ),在你所建立的直角坐标系中,点 C、C1、C2的坐标分别为:点 C(_____)、点 C1(_____)、点 C 2(_____).函数及其图象例 11 (1) 在函数 y =1中,自变量 x 的取值范围是 __________.x2( 2) (苏州市 ) 函数 y = x 3 中自变量 x 的取值范围是 ________.( 3) (常州市 ) 在函数 y = 1 中,自变量 x 的取值范围是 _______.x 2 ( 4)(山东省潍坊课改实验区 ) 函数 y =1 自变量 x 的取值范围是 ______.x1( 5) 在函数 y =1 中,自变量 x 的取值范围是()x4(A) x ≥ 4 (B) x ≤ 4(C) x>4(D) x<4( 6) 函数 y= x中,自变量 x 的取值范围是 ()x 1(A) x ≥ o(B) x>0 且 x ≠ l (C) x>O(D)x ≥o 且 x ≠1例 12(1) 已知 y =3x2,当 x = 3 时,y =,当 x =2 时,y =.x 1(2) 已知 y = -3x + 2,当 y = 4时, x =.例 13 已知 函数 y= 5x + 2,不画图象,判断点 (-2,-8) 、 (-1,3) 、(- 2,0) 、5(0, 2) 在不在这个函数图象上 .5例 14(1) 为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过 l0t 时,水价为每吨 1. 2 元;超过 l0t 时,超过的部分按每吨1.8 元收费.该市某户居民 5 月份用水 xt(x>10) ,应交水费 y 元,则 y 关于 x 的关系式是 。

( 2)公民的月收入超过 1000 元时,超过部分须依法缴纳个人所得税,当超过部分在 500 元以内 ( 含 500 元) 时税率为 5%,那么公民每月所纳税款 y( 元) 与月收入 z( 元) 之间的函数关系式是 ,(不用写出自变量取值范围) . 某人月收人为 1360 元,则该人每月应纳税 元.(3)等腰△ ABC 周长为 l0cm ,底边 BC 长为 ycm ,腰 AB 长为 xcm . ①写出 y 关于 x 的函数关系式;②求 x 的取值范围;③求 y 的取值范围·一次函数1.一次函数的解析式与象上点的坐【用方程思想】例 15 (1)已知一次函数y=kx+b 的象点( 1, 3)、(- 2,- 3),个一次函数的解析式.(2)点 M(-2 ,k)在直 y=2x+1 上, M 到 x y的距离 d=_______.y(3)若一次函数象 A (2, -1)和 B 两点,其中点 B 是另一条直 y = 1x2+ 3 与 y 的交点,求个一次函数的解析式.( 4)已知两条直y1 = (m –1)x + m2–5 与 y2 = x –1 的交点恰在 y 上,且 y1随 x 增大而减小,写出 y1与 x 之的函数关系式及此直与两坐的交点坐 .(5)直 y = kx + b 与直 y = 5 4x 平行,且与直 y = 3( x 6)相交,交点恰在 y 上,求条直的函数解析式 .(6)直与 x 交于点 A( 4, 0),与 y 交于点 B,若点 B 到 x 的距离 2,求条直的函数解析式 .( 7)已知y = 3x –2 的象点(a,b ),且 a + b = 6,求 a、b 的 .2.一次函数中的数形合【用数形合思想】例 16 (1)已知一次函数 y=kx+b 的象(如),当 x< 0 , y 的取范是( A) y > 0(B)y<0( C) - 2 < y < 0(D)y<- 2yO1x -2( 2)已知正比例函数y = kx ( k≠0)第二、四象限,()( A) y 随 x 的增大而减小(B)y随x的增大而增大(C)当 x<0 , y 随 x 的增大而增大;当 x>0 , y 随 x 的增大而减小(D)不 x 如何化, y 不例 17新程准 P36 例 11填表并察下列两个函数的化情况:X12345⋯Y1=50+2xY2 = 5x(1)在同一个直角坐系中画出上面两个函数的象,比它有什么不同;(2)当 x 从 1 开始增大,哪一个函数的先到达100.3.形的移(翻,平移,旋)例 18 (四川省含成都市)在平面直角坐系中,直 y=kx+b( k,b 常数,k≠0,b>0)可以看成是将直y=kx 沿 y 向上平行移 b 个位而得到的,那么将直 y=kx 沿 x 向右平行移m 个位(m> 0),得到的直方程是.例 19 (河南省)如甲, 2 的正方形 ABCD 中,点 A 的坐是 (0,2).一次函数 y = x + t 的像 l 随 t 的不同取化,位于 l 的右下方由 l 和正方形的成的像面 S(阴影部分)(1)当 t 取何, S=3(2)在平面直角坐系下(如乙),画出 S 与 t 的像。

4.与一次函数有关的例某山区的平均气温与山的海拔高度的关系下表:海拔高度(位“米”)010*******⋯平均气温(位“°)C”2221.52120⋯(1)若海拔高度用 x(米)表示,平均气温用 y(°C)表示,写出 y 与 x 之的函数关系式;(2)若某种植物适宜生在 18°C~(包含 18°C,也包含的山区,植物适宜种植在海拔多少米的山区?例 21 甲、乙两人在一次跑中,路程 s 与 t 的关系如所示(甲的路程与的关系像,虚乙的路程与的关系像),小王根据像得到如下四个信息,其中的是:..()(A)是一次 1500 米的跑(B)甲、乙两人中先到达点的是乙(C)甲、乙同起跑(D)甲在次跑中的速度 5m/s例 22 某班同学在探究弹簧的长度跟外力的变化关系是,实验记录得到的相应数据如下表:砝码的质量050100150250300400500(x 克)指针的位置2345677.57.57.5(y 厘米)则 y 关于 x 的函数图像是:()(A)(B)(C)(D)例 23 (1)★★某市的 A 县和 B 县春季育苗,急需化肥分别为该市的 C 县和 D 县分别储存化肥 100 吨和 50 吨,全部调配给 A 90 吨和县和 B60 吨,县,已知 C、D 两县运化肥到 A 、B 两县的运费(元 / 吨)如下表所示。

出发地运费C D 目的地A3540B3045( 1)设 C 县运到 A 县的化肥为 x 吨,求总运费 W 元与 x 吨的函数关系式,并写出自变量 x 的取值范围;( 2)求最低总运费,并说明总运费最低时的运送方案。

相关文档
最新文档