聚烯烃的改性技术进展
关于聚烯烃(聚丙烯、聚乙烯)共混改性的现代研究

关于聚烯烃(聚丙烯、聚乙烯)共混改性的现代研究摘要随着当今社会的快速发展和科学技术的不断进步,高分子材料在工农业中应用的比重也在不断增加,并得到了广泛的应用。
由于塑料是高分子材料发展的重要内容之一,PP在使用过程中,不仅应该具有较高的强度,也应该有良好的韧性。
因此对通用大品种树脂聚丙烯(PP)和聚乙烯(PE)开展改性研究一直是高分子材料科学研究领域的重要课题。
关键词聚烯烃;聚丙烯;聚乙烯;共混改性前言众所周知,PP和PE是重要的通用大品种树脂,聚丙烯(PP)具有比重小、耐应力开裂性和耐磨性能突出、较好的耐热性和化学稳定性等优点,但脆性和低温抗冲击性能差。
聚乙烯(PE)具有优良的电绝缘性、耐化学性、耐低温性和良好的加工流动性等特点,但耐热性差、耐大气老化性能差以及易应力开裂等缺点也相当突出。
因此聚丙烯和聚乙烯的改性研究已经成为目前高分子材料科学研究的重点,本文主要对聚丙烯(PP)与聚乙烯(PE)的共混改性进行研究与探讨。
1 聚烯烃概述1.1 聚丙烯聚丙烯(即)是非常重要的廉价通用高分子材料,它具有比重小、耐应力开裂性和耐磨性能突出、较好的耐热性和化学稳定性等优点,广泛用于薄膜、管材、板材、注射产品及中空制品中。
聚丙烯相对低的价格和适宜的特性提高了它的市场效能,不仅用做其他材料的替代物,而且也不断地开发出一些新的应用[1]。
1.2 聚乙烯聚乙烯工艺化已有60多年的歷史,聚乙烯现在是世界上产量最大、品种繁多的最重要的合成树脂之一。
其应用已深入到国民经济的各个部门和人们的日常生活中。
历经半个多世纪的开发,现在已能生产各种类型和品级的聚乙烯树脂,可以做成不同形式、不同用途的系列制品。
在满足最终用途的前提下,与其他聚合物和非聚合物材料相比,聚乙烯树脂以其价廉质优而具有强劲的市场竞争力,已发展成生产量大、用途宽广的最重要的一类通用树脂。
2 聚烯烃(聚丙烯,聚乙烯)共混改性方法2.1 塑料增韧PP采用塑料类作为PP增韧改性的改性剂,不仅可以达到增韧的目的,而且可使材料的耐磨性、染色性等得到改善,且价格低廉。
聚烯烃共混改性

聚烯烃共混改性摘要:聚丙烯(PP)和聚乙烯(PE)是重要的通用大品种树脂,PP具有比重小、耐应力开裂性和耐磨性能突出、较好的耐热性和化学稳定性等优点,但脆性和低温抗冲击性能差。
PE具有优良的电绝缘性、耐化学性、耐低温性和良好的加工流动性等特点,但耐热性差、耐大气老化性能差以及易应力开裂等缺点也相当突出。
因此对通用大品种树酯PP和PE开展改性研究一直是高分子材料科学研究领域的重要课题。
本文分别就蒙脱土(MMT)、纳米二氧化硅(SiO2)、β晶型成核剂、尼龙6(PA6)和聚氨酯(PU)对PP与PE的共混改性进行研究与探讨。
选用几种不同型号MMT(未经处理的M-5和经有机化处理的DK4,DK1N)分别与PP进行熔融共混,制得PP/MMT复合材料。
讨论了共混复合材料的力学性能、耐热性及流动性,同时考察了PP-g-MAH的不同含量对复合体系相容性的影响。
关键词:聚烯烃,共混,改性。
正文:一、共混改性的目的与作用:1、对提高材料的综合性能,使用性能,改善加工性能,制备新材料满足特定需要,降低生产成本等有非常重要的意义。
2、综合均匀各聚合物组分的性能,取长补短,消除各单一聚合物组分性能上得弱点,获得综合性能较为理想的聚合物材料。
二、研究进展:1 接枝改性PE和PP均为部分结晶的非极性聚合物,表面能低,印刷性、染色性及与极性高聚物(如尼龙6、聚碳酸酯(PC)等)、无机填料或金属的相容性较差,很难进行复合或黏接。
通过含有碳碳不饱和双键极性功能单体与聚烯烃进行接枝改性可增加聚烯烃的极性和反应性,实现功能化。
一般认为,功能基团趋向于在聚烯烃基质的表面排列,这样更有利于增强聚烯烃与其他基质的相互作用和物理相容性。
马来酸酐(MAH)、甲基丙烯酸缩水甘油酯(GMA)、丙烯酸(AA)、甲基丙烯酸及其酯类、丙烯腈、苯乙烯及其同系物和富马酸等作为聚烯烃的接枝单体均有研究,接枝物的黏接性、亲水性及其与极性高分子的相容性显著提高。
其中,MAH 熔融接枝聚烯烃早在20世纪80年代国外研究者就利用挤出和密炼等不同的方式进行了大量的研究,并被广泛用作聚烯烃与尼龙、聚酯、聚氨酯、无机矿物填料、无机盐晶须、二氧化硅、玻璃纤维(GF)、蒙脱土(MMT)、淀粉、木质素等共混体系的界面改性剂。
聚烯烃锂电隔膜表面改性技术研究进展

3【参考文献】[1]蒋蓓蓓,杨建军,吴庆云,等.UV 固化水性聚氨酯概述及最新研究进展[J].涂料工业,2010,40(2): 66-69.[2]孙家娣,陈卫东,刘雪锋.紫外光固化涂料的研究进展[J].现代涂料与涂装,2019,22(5): 23-26,52.[3]宋文迪.紫外光固化水性聚氨酯丙烯酸酯的制备及性能研究[D].北京:北京化工大学,2018.[4]陆银秋,吴培龙,陈建国,等.紫外光固化涂料及其研究进展[J].信息记录材料,2018,19(12): 18-19.[5]卓民权,韦少平,阮恒,等.紫外光固化水性聚氨酯丙烯酸酯涂料的研究进展[J].化工技术与开发,2019,48(3): 35-39.[6]WITTER F M. Radiation-Curable Powder Coatings[J]. Europe Coatings,1996(3): 115-117.[7]唐二军,姚蒙蒙,郭晓峰,等.水性环氧丙烯酸酯乳液涂层成膜性能[J].化工学报,2018,69(S1): 143-147.[8]张亚军.水溶性UV 环氧丙烯酸酯预聚物的研究与制备[D].河北:河北工业大学,2013.[9]邹啸虎.丙烯酸酯改性环氧树脂乳液的合成及性能研究[D].湖北工业大学硕士论文,2018.[10]何明俊,胡孝勇,柯勇.有机硅改性水性聚氨酯丙烯酸酯的研究进展[J].中国胶粘剂,2016,25(10): 55-58.[11]张文君,张海召,杨永登,等.新型水性紫外光固化聚氨酯丙烯酸酯的制备及性能[J].涂料工业,2016,46(8): 58-63.[12]DECKER C, MASSON F, SCHWALM R. Weathering resistance of waterbased UV-cured polyurethane-acrylate coatings[J]. Polymer Degradation and Stability,2004,83(2).[13]陈志康,马腾飞,苏嘉辉,等.聚醚型环氧改性UV 水性聚氨酯的制备及表征[J].化工新型材料,2019,47(6): 121-125.[14]岳鑫,张瑞霞.紫外光固化水性聚氨酯丙烯酸酯树脂的合成及性能研究[J].现代涂料与涂装,2014,17(6): 5-9.[15]黄萍.水性高固体份及双重固化紫外光涂料[D].广州:华南理工大学,2012.[16]王黎,闫福安.羟基型水性聚酯-丙烯酸树脂杂化体的合成研究[J].中国涂料,2019,34(4): 40-45.[17]宁春花,陈钦越,雍寒羽,等.UV 固化超支化聚酯丙烯酸酯的合成及其固化性能[J].涂料工业,2018,48(3): 23-27.[18]沈明月,张子才,贺丹丹,等.影响水性UV 木器涂料性能的因素探讨[J].中国涂料,2016,31(6): 27-33.[19]王鹏,陈传印,罗文兴.LED 冷光源固化水性UV 涂料的探索与研究[J].中国涂料,2017,32(5): 46-49,66.[20]WISNIEWSKA M, CHIBOWSKI S, URBAN T. Adsorption and thermodynamic properties of the alumina-polyacrylic acid [J]. Colloid Interface Sci, 2009,334(2): 146-152.[21]曾国屏,王刚,张军,等.UV LED 固化水性UV 涂料的研究进展[J].涂层与防护,2019,40(3): 24-30.基金项目:河北省创新创业训练项目(S201910104007,S201910104004,S201910104006,X201910104038,S202010104005,S202010104007, S2020101040010);教育部高教司产学合作协同育人项目(201801071001);邢台市科技局科技计划项目(2018ZC031,2018ZC227,2019ZC007,2019ZX07,2019ZZ023);河北省高等学校科学研究项目(ZD2018311, ZD2020417);中央引导地方科技发展基金项目(206Z1402G)。
聚烯烃功能化研究的新进展-董金勇

聚烯烃功能化研究的新进展董金勇(中国科学院化学研究所高分子科学与材料联合实验室工程塑料重点实验室,北京100080, E-mail:jydong@)聚烯烃作为通用塑料的大宗品种,因为其力学性能优良、加工性能好、电气绝缘性强、化学性能稳定以及价格低廉等优点而在日常生活、包装行业、汽车、建筑、农业及军事等领域得到广泛的应用。
然而,由于聚烯烃主要是由C、H两种原子组成,属于非极性的聚合物,大分子链的非极性以及半结晶性使聚烯烃树脂具有非常低的表面能,导致其在与其它大多数聚合物或无机材料共混或复合时的界面很难实现有效粘接和相容,使共混物或复合材料的性能难以得到保障。
并且,非极性本身也限制了聚烯烃树脂在染色、印刷和粘接等领域的应用。
可以说,聚烯烃的非极性已经成为阻碍提高聚烯烃材料的性能、扩大其应用范围的瓶颈问题。
传统上对聚烯烃进行功能化改性必须要依靠高能发生源(分子自由基、辐照和等离子体等)使稳定的C-H键断裂,在聚合物链上形成自由基,然后通过这些大分子自由基与体系中存在的极性化学试剂进行加成或偶联反应而将极性基团与聚烯烃结合。
一般来讲,由于聚烯烃大分子链上没有明显的反应点,以这种方法进行聚烯烃的功能化的效率非常低,所得到的功能化聚烯烃产物结构复杂,功能基团的分布不均一(主要分布于低分子量部分)。
并且,由于聚合物链上的大分子自由基非常容易发生β-分裂(β-scission)和相互之间的偶联反应(coupling reaction),使聚合物发生降解或交联,极大地破坏聚烯烃材料原有的优良力学性能和加工性能。
近年来,随着新型烯烃聚合催化剂(包括高效Ziegler-Natta催化剂、茂金属、非茂和后过渡金属催化剂等)的出现与发展,以及由催化剂的发展而不断深入的对烯烃聚合反应过程和机理的理解,根据性能的要求进行聚烯烃结构的设计已经成为可能。
基于此,中国科学院化学研究所聚烯烃课题组开展了深入系统的利用新型烯烃聚合催化剂进行聚烯烃功能化的研究工作。
聚烯烃化学接枝改性方法的研究进展

杭州 化工
20 .7 2 07 3 ( )
聚烯烃化学接枝改性方法 的研究进 展
龚 春 锁 , 巧 宾 刘
( 天津科技大学材料科 学与化 学工程学院, 天津 305 ) 047
摘要: 接枝 改性是聚烯烃功能化的一种重要手段 , 在赋 予聚烯烃各种官能团方面是一种相 '有效的 3 - 方 法。本 文综述 了聚烯 烃化 学接 枝 改性 方法 的研 究进 展 , 讨 论 了接枝 改性机 理 和 一 些重 要 的控 并
进行 化学 接枝 改性 , 其进行 接枝 极性单 体 , 其 对 使 极性 化 , 用 极性 基 团的极性 和 反应性 , 善其 性 利 改
自由基的反应性, 由于立构位阻, 次甲基 自由基反 应性 低 于亚 甲基 自由基 。综合 考 虑 以上结 果 , 可 以知 道亚 甲基 含 量 高 的聚 烯 烃 其 接枝 更 容 易 , 接
制 接枝 过程 的 因素 。 关 键词 : 烯 烃 ; 学接枝 ; 聚 化 接枝 改性 ; 接枝 机理 聚烯 烃作 为通 用塑 料 , 以产量 大 、 用 面广 以 应 浓度 、 单体 种类 与浓度 等 。大 量研 究 表 明 , 枝 位 接 置与 下列 因素 有关 :1 碳 氢 脱 除 的容 易 程 度 , () 次 甲基 氢 >亚 甲基氢 >甲基 氢 ;2 碳氢 的数量 ;3 () ()
产生聚烯烃 自由基。偶氮型引发剂脱氢能力低于 有机过氧化物型引发剂。在不存在反应单体时, 甲基 与亚 甲基脱氢后 , 向于交联 , 甲基脱氢 倾 次 后, 由于立构位阻而倾 向于裂解。因此在过氧化 物引发剂 的存在下, 聚烯烃 的接枝反应往往伴随
着 副反应 的发 生 , 且与 聚合 物种 类有 关 。P P容 易
表14种pp化学接枝方法的特点项目溶液接枝法熔融接枝法固相接枝法悬浮接枝法原料状态宏观特点常用单体反应温度反应时间溶剂用量副反应后处理脱单体生产方式生产成苓环境保护粉末颗粒粉末颗粒粉末粉末均相整体改性蕊霉酬入丙烯酸湍涨揪甘糍瓣姒aa长大于lh短约l嘶曲无少量无或少量多较少较少非均相整体改性非均相局部改性非均相局部改性删等油酯gmast苯乙烯等苯乙烯等
官能化聚烯烃的进展和应用

化工进展Chemical Industry and Engineering Progress2022年第41卷第5期官能化聚烯烃的进展和应用余世勤1,2,赵鑫鹏2,郑艳2,严亮3,贾建洪1,余海斌2(1浙江工业大学化学工程学院,浙江杭州310014;2中国科学院宁波材料技术与工程研究所,浙江宁波315201;3宁波捷傲创益新材料有限公司,浙江宁波315040)摘要:官能化聚烯烃是由聚烯烃改性后得到的产物,一般通过交联改性、共聚改性、固相力化学改性和接枝改性等方法制备,可应用于黏附、能源和封装等多重领域。
基于聚烯烃高通量低成本的优势,聚烯烃接枝改性利用自由基反应直接向聚烯烃链上引入极性单体,较为经济便捷。
聚烯烃接枝改性按反应条件的不同,又可分为溶液接枝、熔融接枝、辐射接枝、固相接枝和悬浮接枝。
在接枝改性过程中,接枝率和接枝效率受多种因素影响,如聚烯烃型号、接枝单体、引发剂、共单体和反应条件等。
本文综述了聚烯烃接枝改性不同接枝方法的研究进展,分析了各种接枝方法的优势和短板,并将接枝改性过程中的影响因素进行了总结。
文章依据聚烯烃的可控自由基接枝改性和金属催化改性以及官能化聚烯烃的应用,展望了聚烯烃可控改性和官能化聚烯烃规模化生产。
关键词:聚烯烃;官能化聚合物;接枝改性;合金;复合材料中图分类号:TQ325文献标志码:A文章编号:1000-6613(2022)05-2487-17Progess and application of functional polyolefinYU Shiqin 1,2,ZHAO Xinpeng 2,ZHENG Yan 2,YAN Liang 3,JIA Jianhong 1,YU Haibin 2(1College of Chemical Engineering,Zhejiang University of Technology,Hangzhou 310014,Zhejiang,China;2NingboInstitute of Materials Technology &Engineering,Chinese Academy of Sciences,Ningbo 315201,Zhejiang,China;3NingboJeeao Company of Limited Liability,Ningbo 315040,Zhejiang,China)Abstract:Functionalized polyolefin is a modified product of polyolefin that can be applied to multiplefields,such as adhesion,energy and packaging.It is generally prepared by grafting,cross-linking,copolymerization,etc .Based on the large scale and low price of polyolefin,polyolefin grafting modification directly introduces the wide range of functional groups onto a polyolefin backbone by radical-induced grafting,which is the most economical and convenient.Due to the differences of reaction condition,polyolefin graft modification can be divided into solution grafting,melt grafting,irradiation grafting,solid phase grafting and suspension grafting.In the process of graft modification,the grafting degree and grafting efficiency are affected by many factors,such as polyolefin type,grafting monomer,initiator,comonomers and reaction conditions.This paper reviews the research progress of the grafting methods,the advantages and shortcomings of different grafting methods and analyzes the influence factors in the process of graft modification.According to the controllable free radical grafting modification and metalcatalyzes modification of polyolefins,as well as the application of functionalized polyolefins,the综述与专论DOI :10.16085/j.issn.1000-6613.2021-1223收稿日期:2021-06-10;修改稿日期:2021-08-31。
聚烯烃表面改性对润湿性影响的研究进展

S M 和 AF 来 检 测 Ar等 离 子 体 对 E M P P表 面 的润 湿 性 、表 面 化 学 成 分 和
表 面 形态 的影 响 。研 究 结 果 表 明 ,未
显 微 镜 (E 分 析 可 以 发现 ,经过 一 S M)
湿 性 提 高 ,然 而 , 由于 等 离子 体 改 性 润 湿 性 的 不 稳 定性 ,接 触 角 减t, i lf 第 l 五 天 ,之后 开 始 恢复 ,稳 步上 升 。
乙 二 醇 的 接 触 角 从 8 . 。 减 小 到 05
8 . 。极 性 分 量 和总 表 面 能增 加 。光 01 接 枝 后 ,C P薄 膜表 面 产 生 了 大量 的 P
1 。 。结 果 表 明 ,这 些薄 膜 的表 面 的 6
极 性 随 着 功 能 化 聚 合 物 的 增 加 而 增
C. 一K.J n u g等 [ 常 温 下 采 用 4 1 在 O 等 离 子 体 法 , 时 间 在 30 0 s内 ,功
个 大 气压 氦气 /空 气 D D处 理 过 后 , B
等 离 子 体 作 用 对 样 品 表 面 有 刻 蚀 作 用 ,氦 气 /空 气 DB 等离 子 体 中的 D
. - _ _ _ — 憎 _— —r0 z 广 0,o c _ . _ _ . _ — 暑—| 工 o o 、 刀 ● . lm
文 综 述 了常 用 的表 面 改 性 方 法对 聚 烯
烃 润 湿 性 影 响 的研 究进 展 。
N. n i a E cn s等 [ 了 提 高 HDP 5 1 为 E、 L E、P DP P的表 面 润 湿 性 ,采 用 常压 等 离子 体 方 法对 它们 进 行 了处 理 。用
独 立 因 素 , 分 别 是 射 频 功 率 、压 强 、
聚烯烃改性研究

二、聚烯烃改性1、聚乙烯改性(1)国际上现用少量高密度聚乙烯掺入到低密度聚乙烯中以达到防止或减少封拈效果。
(2)加入少量(0.05~0.1%)油酸胺化物,可大为减少薄膜封粘。
如果加入0.5~2%的聚丙烯,可提高其透明度(3)用二氧化硅、碳素、粘土、碳酸钙,甚至一些工业废渣作为填充剂,填充量可达1:1,虽增强刚性,但抗张强度、延伸率、抗裂强度却有所下降,然而脆性化温度有所提高。
(4)以交联剂交联改性,为目前欧美研完的一种聚乙烯聚联改性新方法。
交联工艺有下列几种:A、有机过氧化物交联厂B、叠氦化物交联C、放射线交联D、热交联F、烷硅交联,H、发泡交联。
(5)光氯化聚乙烯薄膜生产已经工业化,其可分为二种光氯化方法(①日本采用光氯化照射室方法,即将聚乙烯薄膜在照射室内二面用氯气与之接触,并在一面用紫外线照射,这样氯原子不断扩散,紫外线也溅射到薄膜上,即使不直接接触光的面,同样得以光氯化。
②利用透过室方法,即将聚乙烯薄膜在透过室内,在绝对抽真空情况下一面用光照射,仅只有一面与氯气接触,并在同一面用紫外线进行光照。
除上述两种光氯化方法外,若二面同时用紫外线照射,效果更佳。
经光氯化改性的聚乙烯薄膜,改变其表面不活泼而难于印刷的问题,不需进行表面处理即可印刷。
聚丙烯改性聚丙烯(PP)是五大通用塑料之一,由于其原料来源丰富、价格便宜、易于成型加工、产品综合性能优良,用途非常广泛,已成为发展最快的塑料品种之一。
但PP也存在一些不足,最大缺点是耐寒性差,低温易脆裂;其次是收缩率大,抗蠕变性差,容易产生翘曲变形。
与传统工程塑料相比,PP还存在耐候性差,涂饰、着色和黏合等二次加工性能差,与其他极性聚合物和无机填料的相容性差等缺陷,从而限制了其应用范围。
PP的高性能化、工程化、功能化是目前改性PP的主要研究方向。
PP改性可分为化学改性和物理改性。
化学改性主要指共聚、接枝、交联等,通过改变P的分子结构以达到改性目的。
物理改性主要包括共混、填充、复合填强、表面改性等,通过改变PP的分子聚集态结构,以达到改善材料性能的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚烯烃的改性技术进展
【摘要】聚烯烃材料具有原料来源丰富、价格低廉、加工成型方便、综合性能好等许多优点,已经成为目前市面上产量最大、应用最广的一类高分子材料。
然而聚烯烃材料本身所存在的耐热性能差、加工尺寸精度差、易老化等缺陷严重影响了应用领域的拓展,为了改善这些不足,对聚烯烃材料进行改性备受关注。
对聚烯烃进行改性的常用方法可分为填充改性、共混改性、形态控制改性、界面相容化改性几大类。
【关键词】导热塑料;国内外;研究进展
1 填充改性技术的研究进展
填充改性具有效果明显、工艺简单、成本低等优点,是工业上最常用的塑料改性方法。
能当作填充改性填料的物质必须满足一些基本条件[1]:耐热性好,加工过程不分解而损害材料使用性能;分散性好,加入后不过多损害加工性能;不与基体材料发生不良化学反应;在成型后的制品中不会发生表面析出;价格便宜,来源丰富等。
填充改性按填充物种类可分为无机填充和有机填充两类。
无机填充改性指在材料中添加无机填料。
常被用做无机填料改性聚烯烃材料的主要有:氧化物类;氢氧化物类;碳酸盐类;硫酸盐类;碳素;硅酸盐。
有机填充改性是在材料中添加有机填料物质。
常被用作有机填料填充聚烯烃的主要有:天然纤维素纤维类、有机合成纤维类以及有机阻燃剂类等。
其中用天然有机木粉填充聚烯烃材料制备的木塑复合材料是目前许多国家致力于工业化的一个热点,这类复合材料综合了植物纤维和聚烯烃塑料二者的优点,能有效地缓解过度开发而引发的资源贫乏、木材短缺等问题,是一种资源节约型、环境友好型的复合材料[2]。
除此之外,目前一些国内外学者也致力于开发一些有机-无机杂化填充的聚烯烃复合材料,以在成本和性能等方面求得平衡。
如Mohanty [3]等人通过熔融挤出制备了一种剑麻纤维和玻璃纤维杂化增强的PP复合材料,最终得到一种成本低廉、综合性能很好的有机-无机纤维杂化增强PP材料。
2 共混改性技术的研究进展
共混改性是在树脂基体中混入一种或多种其他高分子物质,因此共混物也被称为聚合物合金。
共混改性是开发新型高分子材料的一种最有效途径,它主要应用于以下几个方面:
2.1 综合各组分材料的性能
当单一材料难满足应用要求时,可通过共混改性引入其他材料来取长补短。
如尼龙(PA)具有很好的机械强度和刚度,但其制品往往因为强吸湿性而引发强度下降、尺寸稳定性变差等缺陷。
聚丙烯材料价格便宜、加工性能好,并且几乎完全不会吸水。
将二者共混制备PP/PA合金,既可以改善PA的耐水性,又能提高PP的力学性能[4]。
2.2 赋予材料一些特殊性能
PP是一种易燃材料,极限氧指数(LOI)只有17%,在PP中加入本身具有阻燃性的PVC树脂,可赋予材料阻燃性能[5]。
2.3 改善材料的韧性
共混是对聚烯烃材料进行增韧改性的最常见最有效的方法。
按照共混物的组成,可分为塑-塑共混增韧和橡-塑共混增韧。
塑-塑共混增韧是指往基体材料中添加其他塑料。
比如,将PET树脂加入到PP中大幅度地增加PP的韧性[6]。
橡-塑增韧是将塑料基体与橡胶类弹性体共混。
常用于增韧聚烯烃的橡胶弹性体有:SEBS、POE、EPDM等。
2.4 改善加工性能
为了改善某些难以加工的高分子材料的加工性能,可以往其中添加一些容易加工的材料使加工方便。
例如LLDPE树脂具有较好的机械性能,热性能和耐候性,但由于熔融温度较高,加工成型困难。
而LDPE有较低的熔融温度,成型方便。
将LLDPE与LDPE共混,可以获得性能优异、加工性良好的LLDPE材料[7]。
2.5 降低成本
满足性能要求的前提下,在价高的功能型树脂材料中混入廉价的通用性树脂,是常被用来降低材料成本的方法。
3 形态控制改性技术的研究进展
形态控制改性指通过成型工艺或配方设计来控制高分子链段的聚集或者排列状态,从而影响最终材料的力学、光学、热学等各方面的性能的。
形态控制改性按照类别主要可以分为控制结晶形态改性和控制取向形态改性两大类。
3.1 控制结晶形态改性
大部分聚烯烃材料或多或少具有一定的结晶性。
但由于高分子材料本身大分子链段的特性,所形成晶体具有许多种晶型和晶系。
不同晶型和晶系所对应的材料具有不同性能。
以PP为例,通过对条件的控制可使PP形成单斜球晶(α型)、六方球晶(β型)、三斜球晶(γ型)。
α型PP是最稳定的一种结晶形态,这类PP具有较好的拉伸性能,刚性和硬度。
β型PP具有比α型PP更高的冲击韧性和热变形温度,高含量β型PP需要要特定条件下制备形成,如添加β成核剂、
温度梯度和高的剪切应力等。
γ型PP很不稳定,仅在十分特殊的条件下才能制得,目前关于γ晶型PP的研究很少。
因此可以根据材料用途要求可以选择不同的成型加工手段来制备不同晶型的PP。
3.2 控制取向形态改性
目前控制取向形态的改性方法有两种:一种是加工作用力取向改性,取向沿聚合物熔体的流动方向发生。
另一种是外加拉伸力作用取向,取向沿着外加的作用力方向发生,仅适合于薄壁制品。
通过取向形态改性,塑料在取向方向的力学性能、热学性能、光学性能、阻隔性能、密度等会发生很大改善。
4 界面相容化改性技术的研究进展
相容性是指共混物各组分之间相互容纳、在宏观上形成均匀材料的能力,最终影响共混物的加工和应用性能。
由于不同聚合物材料之间的分子链组成结构、极性、分子量等存在着很大差异,因此能够达到完全相容的共混物很少,绝大部分高分子材料都是互不相容的[8],因此如何改善共混物各组分之间的相容性已经成为开发新材料的关键。
目前常用相容化改性的方法有添加大分子相容剂、加入低分子量偶联剂以及反应挤出技术等。
【参考文献】
[1]王文广.塑料改性实用技术[M].中国轻工业出版社,1999:7-10.
[2]Fernanda MBC,Thais HSC. Performance of polypropylene-wood fiber composites[J]. Polymer Testing,1999,18(8):581-587.
[3]Mishraa S,Mohantyb AK,Drzalb LT,et al. Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites[J]. Composites Science and Technology,2003,63(10):1377–1385.
[4]吴清鹤,谭寿再,吴健文,等.PA6/PP合金的研制[J].工程塑料应用,2007,6:12-15.
[5]王勋林,高明瑞.聚丙烯/聚氯乙烯共混物阻燃性能的研究[J].塑料工业,2010,9:57-59.
[6]蔡炳松,刘宝玉,崔亚勇,等.PP/r-PET共混物的力学性能[J].合成树脂及塑料,2009,2:66-68.
[7]李冬霞,张绪华,方宏,等.LDPE与mLLDPE共混改善mLLDPE的流变性能[J].合成树脂及塑料,2009,5:81-84.
[8]王经武.塑料改性技术[M].化学工业出版社,2004:39-70.。