钢中非金属夹杂物观察和评级
钢中非金属夹杂物观察和评级.

钢中的非金属夹杂1. 试验目的非金属夹杂物破坏金属基体的连续性,其形态、数量、尺寸和分布影响钢的塑性、韧性、焊接性能、疲劳性能和耐蚀性等,因此,夹杂物的数量和分布被认为是评定钢材质量的一个重要指标。
2. 相关标准标准GBT 10516 2005,该标准代替GBT 10516 1989,于2005年5月13日发布,2005年10月1日实施。
夹杂物试样不经腐蚀,在明场下放大100倍,80mm 直径的视场下进行观察,选取夹杂物污染最严重的视场,与其钢种的相应标准评级图对比评定。
夹杂物分类:硫化物类,标准图谱命名为A 类。
属于塑性夹杂,较宽范围形态比(长度/宽度)的单个灰色夹杂物,一般端部呈圆角,经锻、轧后沿加工方向变形,呈纺锤形或线段形,例如FeS 、MnS 。
氧化铝类:标准图谱命名为B 类。
属于脆性夹杂,形态比(一般<3),为黑色或带蓝色的颗粒,沿轧制方向排成一行(至少有3个颗粒)。
硅酸盐类:标准图谱命名为C 类。
是具有高延展性,较宽范围形态比(一般≥3)的单个呈黑色或深灰色的夹杂物,一般端部呈锐角。
例如2MnO ·SiO 2球状氧化物类:标准图谱命名为D 类。
不变形,带角或圆形的,形态比较小(一般<3),黑色或带蓝色,表现为无规则分布的颗粒。
例如SiO 2单颗粒球状类:标准图谱命名为DS 类。
为圆形或近似圆形,直径≥13μm的单颗粒夹杂物。
非传统类型夹杂物的评定也可以通过其形状与上述五类夹杂物进行比较,并注明其化学特征。
沉淀相类如碳化物、氮化物、硼化物的评定,也可以根据它们的形态与上述五类夹杂物进行比较,并按上述方法表示其化学特征。
钢中的非金属夹杂物测定夹杂物类别评级图级别A 总长度μmB 总长度μm 17 77 184 343 555 822 (<1147)C 总长度μm 18 76 176 320 510 746 (<1029)D 数量个 1 4 9 16 25 36 (<49)DS 直径μm 13 19 27 38 53 76 (<107)i0.5 1 1.5 2 2.5 337 127 261 436 649 898 (<1181)注:D 类夹杂物的最大尺寸定义为直径类别最小宽度μm细系最大宽度μm 4 9 5 8最小宽度μm >4 >9 >5 >8粗系最大宽度μm 12 15 12 13A B C D2 2 2 3注:D 类夹杂物的最大尺寸定义为直径3. 试样制备3.1 试样尺寸夹杂物形态很大程度上取决于钢材压缩变形程度,只有在变形度相似的试样坯制备的截面上才能进行结果的比较。
ASTM_E45-1997钢中非金属夹杂物评定方法中文[1]
![ASTM_E45-1997钢中非金属夹杂物评定方法中文[1]](https://img.taocdn.com/s3/m/31d090226edb6f1afe001f17.png)
ASTM E45-05 钢中夹杂物含量的评定方法1 范围1.1 本标准的试验方法为测定锻钢中非金属夹杂物含量的方法。
宏观试验法包括微蚀、断口、台阶和磁粉法。
显微试验法通常包括5种检测。
根据夹杂物形状而不是化学特点,显微法将夹杂物划分为不同类型。
这里主要讨论了金相照相技术,它允许形状类似的夹杂物之间略有不同。
这些方法在主要用来评定夹杂物的同时,某些方法也可以评估诸如碳化物、氮化物、碳氮化物、硼化物和金属间化合物的组成。
除了钢以外,其它合金在有些情况下也可以应用这些方法。
根据这些方法在钢中的应用情况,将分别给予介绍。
1.2 本标准适用于人工评定夹杂物含量。
其他ASTM标准介绍了用JK评级图的自动法(ASTM E1122 )和图像分析法(ASTM E1245 )。
1.3 按照钢的类型和性能要求,可以采用宏观法或显微法,也可以将二者结合起来,以得到最佳结果。
1.4 这些试验方法仅仅为推荐方法,对任何级别的钢而言,这些方法都不能作为合格与否的判据。
1.5 本标准未注明与安全相关的事项,如果有的话,也只涉及本标准的使用。
标准使用者应建立适当的安全和健康操作规程,并且在使用标准前应确定其适用性。
2 参考文献2.1 ASTM标准:A 295 高碳耐磨轴承钢技术条件A 485 强淬透性耐磨轴承钢技术条件A 534 耐磨轴承用渗碳钢技术条件A 535 特种性能的滚珠和滚柱轴承钢技术条件A 756 耐磨轴承用不锈钢技术条件A 866 耐磨轴承用中碳钢技术条件D 96 用离心法分离原油中水和沉淀物的试验方法E 3 制备金相试样指南E 7 金相显微镜术语E 381 钢棒,钢坯,钢锭和锻件的宏观试验法E 709 磁粉检测指南E 768 自动测定钢中夹杂物的试样的制备和评定操作规程E 1122 用自动图像分析法获得JK夹杂物等级的操作规程E 1245 用自动图像分析法确定金属中夹杂物或第二相含量的操作规程2.2 SAE标准:J421,磁粉法测定钢的清洁度等级J422,钢中夹杂物评定的推荐操作规程2.3 航空材料技术条件2300,高级飞行性能钢的清洁度:磁粉检测程序2301,飞行性能钢的清洁度:磁粉检测程序2303,飞行性能钢的清洁度:耐腐蚀马氏体钢磁粉检测程序2304,特种飞行性能钢的清洁度:磁粉检测程序2.4 ISO标准:ISO 3763,锻钢——非金属夹杂物的宏观评定法ISO 4967,钢——使用标准图谱的非金属夹杂物显微评定方法2.5 ASTM附加标准:钢中夹杂物评级图Ⅰ-r和评级图Ⅱ低碳钢的4张显微照片3 术语3.1 定义:3.1.1 本标准中用到的定义,见ASTM E7 。
钢中非金属夹杂实验报告

实验报告姓名:班级:冶金1401班学号: 20142019实验名称:钢中非金属夹杂物观察与分析实验实验日期: 2017.11.7实验:钢中非金属夹杂物观察与分析实验一、实验目的1.掌握钢的磨制方法。
2.了解球磨机的使用方法。
3.了解金相显微镜的原理及使用。
4.对钢中的非金属夹杂物进行分析。
二、实验原理。
A钢中夹杂物的分类分类方法很多,但常见的有以下四种:1.按来源分类,可分为两类:(1)外来夹杂物:耐火材料、熔渣或两者的反应产物混入钢中并残留在钢中的颗粒夹杂称为外来夹杂。
包括从炉衬或包衬、或从汤道砖、中包绝热板、保护渣进入钢水中的夹杂物(有人还将钢水二次氧化生成的夹杂物包括在内)。
这类夹杂颗粒较大,易于上浮,但在钢中,它们的出现带着偶然性且不规则。
(2)内生夹杂物:在冶炼、浇注和凝固过程中,钢液、固体钢内进行着各种化学反应,对于在冶炼过程中所形成的化合物、脱氧时产生的脱氧产物、或在钢水凝固过程产生的化合物,当这些化合物来不及从钢水中彻底排出而残存在钢中者,叫做内在的非金属夹杂物。
内生夹杂物形成的时间可分为四个阶段:①一次夹杂(原生夹杂):钢液脱氧反应时生成的脱氧产物;②二次夹杂:在出钢和浇注过程中温度下降平衡移动时生成的夹杂物;③三次夹杂(再生夹杂):凝固过程中生成的夹杂;④四次夹杂:固态相变时因溶解度变化生成的夹杂。
一般说来外来夹杂物颗粒较大,在钢中比较集中,而内生夹杂物则与此相反。
从组成来看,内生夹杂物可以是简单组成,也可以是复杂组成;可以是单相的,也可以是多相的。
在铸坯凝固以及随后的冷却过程中,夹杂物不仅与钢基体保持平衡,而且夹杂物本身也不断发生改变,例如析出新的化合物以趋于稳定状态。
在轧制或热处理时,每次加热都为夹杂物和钢基体之间趋向平衡提供了条件,在室温下所观察到的夹杂物,实际上是经过了一系列复杂变化的结果。
2.按化学成分分类,一般分三类。
(1)氧化物:如FeO, Si02 , Al2O3等,有时它们各自独立存在,有时形成尖晶石(如MnO.Al203)或固溶体 (如FeO 和MnO)。
钢中非金属夹杂物及其检测法

钢中非金属夹杂物及其检测法夹杂物的评级问题:不计较其组成成分和性能以及它们可能的来源等;只注意它们的数量、形状、大小和分布情况。
一般在明视场下放大100倍时检验即可。
现在采用的方法有:瑞典Jernkontoret(简称JK)夹杂物评级图。
美国试验及材料学会(ASTM)夹杂物评级标准亦采用JK评级图。
此外还有SAE(美国汽车工程师学会)夹杂物评级图等等。
中国冶金部YB25-59规定,夹杂物的评级有甲乙两种方法。
即:长度指数和与标准级别图对比评级法。
非金属夹杂的鉴定:(一)金相法:借助金相显微镜的明场、暗场及偏振光来观察夹杂物的形状、分布、色彩及各种特征,从而对夹杂物作出定性或半定性的结论。
但金相法不能获得夹杂物的晶体结构及精确成分的数据。
1.夹杂物的形状:鉴定夹杂物首先注意的是它们的形状,从它们的形状特点上,有时可以估计出它们属于那类夹杂物,这有利于考虑下一步应采取的鉴定方法。
如:玻璃质SiO2呈球形;TiN一般呈淡黄色的四方形。
在铸态时呈球形的夹杂物很多,但这些夹杂物有的具有一定的塑性,当钢在锻轧后,它们被压延拉长,如FeO 和2FeOSiO2共晶夹杂物,铸态时为球状,锻轧后被拉成长条状。
2.夹杂物分布:夹杂物的分布情况也有一定的特点,有的夹杂物成群,有的分散。
成群的夹杂物经锻轧后,即沿锻轧方向连续成串,Al2O3夹杂就属此类。
有的夹杂物,如FeS 及FeS-FeO共晶夹杂物等。
因其熔点低,所以钢凝固时,这类夹杂物多沿晶界分布。
3.夹杂物的色彩和透明度:观察夹杂物的色彩及透明度一般应在暗场或偏振光下进行。
可分为透明和不透明两大类。
透明的还可分为透明和半透明两种。
透明的夹杂物在暗场下显得十分明亮。
如果夹杂物是透明的并有色彩,则在暗场下将呈现它们的固有色彩。
各种夹杂物都有其固有的色彩和透明度,再结合其它特征来进行判断。
如某种夹杂物,它们的分布及外形呈有棱的细小颗粒并沿轧制方向连续成群,在明场下这些夹杂物多呈深灰略带紫色,而在暗场下则为透明发亮的黄色。
钢中非金属夹杂物的检测

钢中非金属夹杂物的检测一.概述非金属夹杂物是钢中不可避免的杂质,它的存在使金属基体的均匀连续性受到破坏。
非金属夹杂在钢中的形态、含量和分布情况都不同程度地影响着各种性能,诸如常规力学性能、疲劳性能、加工性能等。
因此,非金属夹杂物的测定与评定引起人们的普遍重视。
夹杂物的含量和分布状况等往往被认为是评定钢的冶金质量的一个重要指标,并被列为优质钢和高级钢的常规项目之一。
钢中非金属夹杂物按其来源和大小,大体可分为两大类:1.显微夹杂物或称内在夹杂物,这类夹杂物是钢冶炼和凝固过程中,由于一系列物理和化学反应所生成。
例如,在冶炼过程中,由于加入脱氧剂而形成氧化物和硅酸盐等。
这些夹杂物来不及完全上浮进入钢渣,而残留在钢液中,即为内在夹杂。
如:Al、Fe-si等脱氧剂可以形成下列夹杂:3FeO+2Al 3Fe+ Al2O32FeO+ Si SiO2+2FenFeO+mSiO2 nFeO·mSiO2nAl2O3+mSiO2 nAl2O3·mSiO2另外,钢在凝固冷却过程中,S、N等元素,由于溶解度的降低而生成硫化物、氮化物等也将残留在钢中。
2.宏观夹杂物或称外来夹杂物,这类夹杂物是在钢的冶炼或浇铸过程中,由于耐火材料等外来物混入造成。
其特点是大而无固定形状。
就对钢而言,宏观夹杂物的危害更大。
夹杂物的检验方法也有宏观检验法和显微检验法两种。
非金属夹杂物的显微检验法是指借助于金相显微镜在规定的实验条件下,检验金相试样中非金属夹杂物的方法。
该法的主要优点是可以确定夹杂物的类型、分布、数量和大小,可以发现极细小的夹杂物。
但是,由于受试样尺寸及取样位置、数量的限制。
所以显微检验法的评定结果在很大程度上存在偶然性。
往往会过分夸大细小夹杂物的重要性而将那些试样以外或检验面以外的较大夹杂物遗漏,所以,显微检验法总是与宏观检验法相辅相成、互相补充的。
如果非金属夹杂物的宏观检验对优质钢来说是必不可少的检验项目之一,那么显微检验法则是特殊用途钢(如轴承钢、重要用途的合金结构钢等)广泛采用的检验方法。
钢中非金属夹杂物含量的测定标准评级图显微检验法介绍

钢中非金属夹杂物含量的测定标准评级图显微检验法介绍GB/T 10561—2005—何群雄,孙时秋:介绍了钢中非金属夹杂物含量测定显微检验法的概况,并对国标等同采用国际标准ISO4967:1998后变化的技术内容作了简要说明。
:非金属夹杂物;标准评级图显微检验法 0钢中非金属夹杂物的评定是衡量钢内在质量的一种重要方法,通过该方法的检验能反映钢中非金属夹杂物的含量、沾污度以及类型,为满足产品设计要求或改进生产工艺提供可靠的依据,尤其是非金属夹杂物的显微检验方法,更是各国冶金学家长期研究的课题。
随着显微技术和电子金相技术的不断发展,采用自动图像仪及计算机软件来评定非金属夹杂物的方法已经越来越多的被用于进行科学研究和实际生产检验。
目前美国金属材料协会(ASTM)E4委员会已有3个显微检验方法来评定非金属夹杂物含量的方法标准,即ASTM E45-97《用评级图谱评定非金属夹杂物的人工方法》、ASTM E1122-1986《自动图像分析法检查非金属夹杂物级别的方法》和ASTM E1245-2000《采用自动图像分析法测定钢中非金属夹杂物或第二相含量的方法》。
但是,应用光学显微镜测定钢中非金属夹杂物的标准图谱评级方法,至今还是在被最广泛地采用。
随着钢铁冶金技术的不断发展和对钢铁材料质量的要求不断提高,标准图谱评级的显微方法检验标准也在不断地修改和完善之中,如现行的国际标准ISO4967-1998《用标准图谱评定钢非金属夹杂物的显微方法》和美国ASTME45-97《钢中非金属夹杂物含量测定方法》对标准图谱和评定方法都作了较大的修改和变动,较好地解决了用光学显微镜评定钢中非金属夹杂物评定的一系列问题,使标准图谱的显微评定方法日趋完善。
GB/T10561-1989《钢中非金属夹杂物显微评定方法》标准是我国钢检测领域的一项重要的基础标准,也是钢中非金属夹杂物含量的主要检测方法之一。
该标准已颁布了一项重要的基础标准,也是钢中非金属夹杂物含量的主要检测方法之一。
钢中非金属夹杂物的鉴定

钢中非金属夹杂物的鉴定随着现代工程技术的发展,对钢的综合性能要求也日趋严格,相应地对钢的材质要求也越来越高。
非金属夹杂物作为独立相存在于钢中,破坏了钢基体的连续性,加大了钢中组织的不均匀性,严重影响了钢的各种性能。
例如,非金属夹杂物导致应力集中,引起疲劳断裂[1-3];数量多且分布不均匀的夹杂物会明显降低钢的塑性、韧性、焊接性以及耐腐蚀性;钢中呈网状存在的硫化物会造成热脆性。
因此,夹杂物的数量和分布被认定是评定钢材质量的一个重要指标,并且被列为优质钢和高级优质钢出厂的常规检测项目之一。
非金属夹杂物的性质、形态、分布、尺寸及含量不同,对钢性能的影响也不同。
所以提高金属材料的质量,生产出洁净钢,或控制非金属夹杂物性质和要求的形态,是冶炼和铸锭过程中的一个艰巨任务。
而对于金相分析工作者来说,如何正确判断和鉴定非金属夹杂物也因此变得十分重要。
1 钢中非金属夹杂物的来源分类1.1 内生夹杂物钢在冶炼过程中,脱氧反应会产生氧化物和硅酸盐等产物,若在钢液凝固前未浮出,将留在钢中。
溶解在钢液中的氧、硫、氮等杂质元素在降温和凝固时,由于溶解度的降低,与其他元素结合以化合物形式从液相或固溶体中析出,最后留在钢锭中,它是金属在熔炼过程中,各种物理化学反应形成的夹杂物[10-15]。
内生夹杂物分布比较均匀,颗粒也较小,正确的操作和合理的工艺措施可以减少其数量和改变其成分、大小和分布情况,但一般来说是不可避免的。
1.2 外来夹杂物钢在冶炼和浇注过程中悬浮在钢液表面的炉渣、或由炼钢炉、出钢槽和钢包等内壁剥落的耐火材料或其他夹杂物在钢液凝固前未及时清除而留于钢中。
它是金属在熔炼过程中与外界物质接触发生作用产生的夹杂物[10-15]。
如炉料表面的砂土和炉衬等与金属液作用,形成熔渣而滞留在金属中,其中也包括加入的熔剂。
这类夹杂物一般的特征是外形不规则,尺寸比较大,分布也没有规律,又称为粗夹杂。
这类夹杂物通过正确的操作是可以避免的。
钢中非金属夹杂物含量的测定 标准评级图显微检验法

—— 直径或边长大于 25mm、小于或等于 40mm 的钢棒或钢坯:检验面为通过直径的截面的一 半(由试样中心到边缘,图 2);
—— 直径或边长小于或等于 25mm 的钢棒:检验面为通过直径的整个截面,其长度应保证得 到约 200mm2 的检验面积(图 3);
形态比 aspect ratio 二维平面上微观形貌的长宽比 3.2 不连续条状 discontinuous stringer 在一平行于热加工轴向的平面上成直线排列的三个或三个以上,并且任意两个相邻的夹杂物之 间的横向间距不超过 15μm,纵向间距小于 40μm 的夹杂物 3.3 细条状夹杂物 strIp inclusion 在变形方向被高度拉长的单个夹杂物,或者在一平行于热加工轴向的平面上成直线排列的,并 且任何两个最邻近的夹杂物之间的横向距离不超过 15μm,纵向间距小于 40μm 的三个或三个以上的 夹杂物 3.4 聚集类夹杂物 gather inclusion 相邻夹杂物的横向距离 s(夹杂物中心之间的距离)≤15μm 呈簇状分布的夹杂物 3.5 非传统夹杂物 non-traditional inclusion 除传统硫化物、氧化物、硅酸盐夹杂物外,炼钢过程中经过添加稀土元素或钙处理后形成的稀 土夹杂物、钙夹杂物以及复合夹杂物。 3.6 沉淀相类 types of precipitate 饱和固溶体温度降低时析出的或固溶处理后得到的过饱和固溶体在时效时析出的相。这类析出 相包括氮化钛、硼化物、碳化物、碳氮化合物、氮化物或其他金属间化合物。
—— 厚度小于或等于 25mm 的钢板:检验面位于宽度 1/4 处的全厚度截面(见图 4); —— 厚度大于 25mm、小于或等于 50mm 的钢板:检验面为位于宽度的 1/4 和从钢板表面到中
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8. 实例
10CrNi5Mo 钢热轧薄板非金属夹杂物评级。
D 类粗系 0.5 级
D 类细系 1.0 级
B 类 1.5 级
DS 类 1.5 级
4. 观察方法
4.1 明场观察 抛光试样,不需侵蚀,在光学显微镜下观察,记录夹杂物的数量、形状、尺寸和分布,
以及反光色和形变能力。
4.2 暗场观察 记录夹杂物的固有色彩和透明度,
暗黑色,有时可看到一亮边。
透明夹杂物在暗场下发亮, 不透明夹杂物在暗场下呈
4.3 偏光观察 主要是用来鉴别夹杂物是各项同性,
特征。沉淀相类如碳化物、氮化物、硼化物的评定,也可以根据它们的形态与上述五类夹杂
物进行比较,并按上述方法表示其化学特征。
钢中的非金属夹杂物测定
评级图级别
A
B
i
总长度
总长度
μm
μm
0.5
37
17
1
127
77
1.5
261
184
2
436
343
2.5
649
555
898
822
3
(< 1181)
(< 1147)
钢中的非金属夹杂
1. 试验目的
非金属夹杂物破坏金属基体的连续性, 其形态、 数量、 尺寸和分布影响钢的塑性、 韧性、 焊接性能、 疲劳性能和耐蚀性等, 因此, 夹杂物的数量和分布被认为是评定钢材质量的一个 重要指标。
2. 相关标准
标准 GBT 10516 2005 ,该标准代替 GBT 10516 1989 ,于 2005 年 5 月 13 日发布, 2005
每类夹杂物按细系和粗系记下
5.3 A 法和 B 法的通则
将每一个观察的视场同标准评级图谱进行对比,若一个视场处于两个标准图片之间时, 应记录较低一级。
非传统类型夹杂物按与其形态最接近的 A 、 B、 C、D 、DS 类夹杂物评定,应在表示这 些夹杂物的符号加下标,注明其为非传统类型夹杂物。
6. 结果表示方法
球状氧化物 类:标准图谱命名为 D 类。不变形,带角或圆形的,形态比较小(一般<
3),
黑色或带蓝色,表现为无规则分布的颗粒。例如
SiO 2
单颗粒球状 类:标准图谱命名为 DS 类。为圆形或近似圆形,直径≥ 13μm的单颗粒夹杂物。
非传统类型夹杂物的评定也可以通过其形状与上述五类夹杂物进行比较,
并注明其化学
3.1 试样的取样部位和方向
直径或边长大于 40mm 的钢棒或钢坯,检验面为钢材外表面到中心的中间位置的部分 径向截面。
直径或边长大于 25mm、小于或等于 40mm 的钢棒或钢坯, 检验面为通过直径的截面的 一半。
直径或边长小于或等于 25mm 的钢棒,检验面为通过直径的整个截面,其长度应保证 得到约的检验面积 200mm2 的检验面积。
FeS、
MnS 。 氧化铝 类:标准图谱命名为 B 类。属于脆性夹杂,形态比(一般<
3),为黑色或带蓝色的
颗粒,沿轧制方向排成一行(至少有 3 个颗粒)。
硅酸盐 类:标准图谱命名为 C 类。是具有高延展性,较宽范围形态比(一般≥ 3)的单个呈
黑色或深灰色的夹杂物,一般端部呈锐角。例如
2MnO · SiO 2
3.3 试样制备
试样应切割加工,以获得检测面。为使检测面平整,避免抛光时试样边缘磨成圆角,试 样可用夹具或镶嵌的方法加以固定。
试样抛光时, 要避免夹杂物的剥落、 变形或抛光表面被污染, 使检验面尽可能干净和夹 杂物形态不受影响。 当夹杂物细小时, 尤其要注意以上几点。 需要时可使用金刚石磨料抛光。
某些情况下试样硬度较小时可先进行淬火处理,以增加基体硬度,并且使硬度均匀。
还是各向异性, 还可以观察夹杂物透明度和固有色
彩,可代替暗场观察,但灵敏度低于暗场观察。
5. 检测方法
5.1 A 法
检验整个抛光面。 对于每一类夹杂物, 按细系和粗系记下与所检测面上最恶劣视场相符 合的标准图片的级别数。
5.2 B 法 检验整个抛光面。 将试样每一个视场同标准图片相对比,
与检验视场相最符合的级别数。
年 10 月 1 日实施。夹杂物试样不经腐蚀,在明场下放大
100 倍, 80mm 直径的视场下进行
观察,选取夹杂物污染最严重的视场,与其钢种的相应标准评级图对比评定。
夹杂物分类:
硫化物 类,标准图谱命名为 A 类。属于塑性夹杂,较宽范围形态比(长度 /宽度)的单个灰
色夹杂物,一般端部呈圆角,经锻、轧后沿加工方向变形,呈纺锤形或线段形,例如
注: D 类夹杂物的最大尺寸定义为直径
夹杂物类别 C
总长度 μm 18 76 176 320 510 746
(< 1029)
D 数量
个 1 4 9 16 25 36 (< 49)
DS 直径 μm
13 19 27 38 53 76 (< 107)
类别
细系
最小宽度
最大宽度
μm
μm
A
2
4
B
2
9
C
2
5
D
3
8
注: D 类夹杂物的最大尺寸定义为直径
粗系
最小宽度
最大宽度
μm >4 >9 >5 >8
μm 12 15 12 13
3. 试样制备
3.1 试样尺寸 夹杂物形态很大程度上取决于钢材压缩变形程度, 只有在变形度相似的试样坯制备的截
面 上 才 能 进 行 结 果 的 比 较 。 用 于 测 量 夹 杂 物 的 试 样 的 抛 光 面 面 积 约 为 200mm2 (20mm×10mm ),并且平行于钢材纵轴,位于钢材外表面到中心的中间位置。
6.1 通则 用每个试样的级别以及在此基础上所得的每炉钢每类和每个宽度系列夹杂物的算术平
均值来表示结果。
6.2 A 法
表示与每类夹杂物和每个宽度系列夹杂物最恶劣视场相符合的级别。
在每类夹杂物代号
后再加上最恶劣视场的级别,用 e 表示粗系夹杂物,用 s 表示超尺寸夹杂物。
6.2 B 法
表示给定观察视场数中每类夹杂物和每个宽度系列夹杂物在给定级别上的视场总数。
厚度小于或等于 25mm 的钢板,检验面位于宽度 1/4 处的全厚度截面。 厚度大于 25mm、小于或等于 40mm 的钢板,检验面位于宽度 1/4 处和从钢板表面到中 心的位置,检验面位于钢板厚度的 1/2 处截面。 厚度大于 50mm 的钢板, 检验面位于宽度 1/4 处和从钢板表面到中心的位置, 检验面位 于钢板厚度的 1/4 处截面。 具体取样示意图可见标准 GBT 10516 2005 。
对
于所给定的各类夹杂物级别,可以用所有视场的全套数据,按专门的方法表示其结果。
7. 试验报告内容
( 1)标准编号 ( 2)钢的牌号、炉号、热处理方法等 ( 3)产品类型和尺寸 ( 4)取样方向和检测面位置 ( 5)观察方法、检测方法、结果表示法 ( 6)放大倍率(大于 100 倍时) ( 7)观察的视场数或总检验面积 ( 8)各项检测结果 ( 9)对非传统类型夹杂物所采用的下表的说明 ( 10)试验编号和日期 ( 11)试验员姓名