答案圆的解题方法归纳
关于圆的题型归纳和解题技巧

关于圆的题型归纳和解题技巧
一、题型归纳
1、求圆的半径和面积:
有时会给出圆的弦或者其他部分的参数,通过这些参数可以求出圆的半径和面积;有时可以使用圆的性质,如圆的内接三角形、外接三角形等,来求出圆的半径和面积;有时候还可以使用极坐标系来求解;
2、求圆的直径和周长:
一般来说周长=直径×π,可以利用这个公式求圆的周长;有时可以利用圆的性质,如圆的内接三角形、外接三角形等,来求圆的直径;也可以利用极坐标系来求解;
3、求圆心角:
有时给出的是圆的扇形的面积或者弧长,可以通过求出这个面积或者弧长对应的角度来求出圆心角;有时也给出的是圆弧上一点与圆心的连线,可以利用此线段及其他线段的角度来求出圆心角;
4、求圆的外接矩形或者其他图形:
有时给出的是圆的面积和某种图形的面积,可以计算出圆外接图形的面积,从而求出圆的外接矩形;有时也可以使用圆的性质,如圆的内接三角形、外接三角形等,来求出圆的外接矩形或者其他图形。
二、解题技巧
1、多用圆的性质:
圆的性质是圆的重要组成部分,其中有很多性质都可以用来帮助
解答圆的问题,如圆的内接三角形、外接三角形等;
2、注意圆的关键参数:
在回答圆的问题时,要特别注意特殊参数,如半径、直径等,它们可以使用其他参数来求出;
3、利用极坐标系:
极坐标系是求解圆的一种重要方法,它可以帮助我们简化复杂的问题,使得计算更简单、更快捷;
4、利用其他图形的特殊参数:
有些圆的题目可以利用其他图形的特殊参数来求解,例如外接矩形的长和宽,或者外接三角形的边长等。
圆的解题思路和方法

圆的解题思路和方法
圆的解题思路和方法:
圆的概念:圆是由一个特定的中心点和半径构成的一种几何形状。
圆的特征有两个,一是所有的点都等距离其中心点;二是所有的点都
等弧度。
1. 圆的性质:
(1)半径相等:任意两点之间的距离是固定的,这就是圆的最重
要的性质——圆的半径相等,自然定义了圆的等距性。
(2)弧度相等:所有点都等弧度是指任意一点到圆心连接线所组
成的叫锣都是相同角度,即这两条弧都是圆心所在的圆上的一个圆心角,所以也满足圆的弧度等性。
2. 计算:
(1)计算圆的面积:
圆的面积的计算公式为S=πr2,其中S表示圆的面积,r表示圆的半径,π为圆周率,常量。
(2)计算圆的周长:
圆的周长的计算公式为C=2πr,其中C表示圆的周长,r表示圆的半径,π为圆周率,常量。
3. 其他解法:
(1)使用距离公式:可使用距离公式求解,距离公式为
d=(x2−x1)2+(y2−y1)2,若给定两点,求出距离为半径的话,就可以
求出圆的中心点和半径;
(2)使用三角函数:将圆的问题转化为三角函数的求解问题,若
已知一点位置和圆心角,可求出该点在圆上的坐标,根据给定多个点,可还原出圆的中心点和半径;
(3)使用椭圆转换:通过将椭圆转换为圆,可以求出圆的中心点
和半径,即可求出圆的方程;
(4)使用数值方法:使用最小二乘法(Least Square Method)、牛顿法(Newton's Method)等数值方法可求出圆的中心点和半径等参数,从而求出圆的方程。
以上就是关于圆的解题思路和方法的大致概况,可以根据不同情
况选择合适的解题方法,从而解决关于圆的问题。
初中数学 圆的解题方法总结

初中数学圆的解题方法总结情形1. 弦若圆的题目中出现关于弦的相关知识点,要想到弦相关的定理和一些性质,垂径定理、弦心距、勾股定理等.例1.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O 上,且PD∥CB,弦PB与CD交于点F(1)求证:FC=FB;(2)若CD=24,BE=8,求⊙O的直径.分析:(1)根据两平行弦所夹的弧相等,得到弧PC=弧BD,然后由等弧所对的圆周角相等及等角对等边,可以证明FC=FB.(2)连接OC,在Rt△OCE中用勾股定理计算出半径,然后求出直径.证明:(1)∵PD∥CB,∴弧PC=弧BD,∴∠FBC=∠FCB,∴FC=FB.(2)解:如图,连接OC,设圆的半径为r,在Rt△OCE中,OC=r,OE=r﹣8,CE=12,∴r²=(r﹣8)²+12²,解方程得r=13.所以⊙O的直径为26.情形2. 直径出现直径时,要联想圆心角、圆周角等性质,构造等腰三角形、直角三角形等图形。
例2.如图,在⊙O中,将弧BC沿弦BC所在直线折叠,折叠后的弧与直径AB相交于点D,连接CD.(1)若点D恰好与点O重合,则∠ABC=______ °;(2)延长CD交⊙O于点M,连接BM.猜想∠ABC与∠ABM的数量关系,并说明理由.分析:(1)根据折叠的性质和圆周角定理解答即可;(2)作点D关于BC的对称点D',利用对称的性质和圆周角定理解答即可.证明:(1)∵若点D恰好与点O重合,∴∠COD=60°(跳步啦),∴∠ABC=∠OBC=∠COD=30°;(2)∠ABM=2∠ABC,作点D关于BC的对称点D',连接CD',BD',∵对称,∴∠DBC=∠D'BC,DC=D'C,连接CO,D'O,AC,∴∠AOC=2∠ABC,∠D'OC=2∠D'BC,∴∠AOC=∠D'OC,∴AC=D'C,∵DC=D'C,∴AC=DC,∴∠CAD=∠CDA,∵AB是直径,∴∠ACB=90°,∴∠CAD+∠ABC=90°,设∠ABC=α,则∠CAD=∠CDA=90°﹣α,∴∠ACD=180°﹣∠CAD﹣∠CDA=2α,即∠ACD=2∠ABC,∵∠ABM=∠ACD,∴∠ABM=2∠ABC.情形3:切线如果题目给出有切线,我们可以思考添加过切点的半径,连结圆心和切点,利用切线的性质和定理构造出直角或直角三角形,再使用勾股定理解出一些边角关系。
关于圆的题型归纳和解题技巧

关于圆的题型归纳和解题技巧
x
一、圆的主要题型
1、给定一个圆,求该圆的圆心坐标
(1)若给出圆的表达式,则此时只需要求出该表达式中的a和b即可;
(2)若给出圆的三点坐标,则此时可以先由这三点构造三角形,并求出其外接圆的圆心;
(3)若给出圆的中点坐标及半径,则此时圆心即为所给的中点坐标。
2、给定一个圆,求该圆的圆周长及面积
(1)若给出圆的表达式,则此时可以求出圆周长及面积;
(2)若给出圆的三点坐标,则此时可以先求出外接圆的圆心,再求出其圆周长及面积;
(3)若给出圆的中点坐标及半径,则此时可以求出圆周长及面积。
3、给定两个圆,求其交点的坐标
(1)若给出两个圆的表达式,则此时可以进行二次方程的求解,求出其交点;
(2)若给出两个圆的中点和半径,则此时可以先求出两个圆的表达式,再求出其交点;
(3)若给出两个圆的三点坐标,则此时可以先求出两个圆的表
达式,再求出其交点。
二、圆的解题技巧
1、把圆的表达式转换成标准圆的表达式,即x2+y2+2gx+2fy+c=0,把不符合标准圆的表达式变成符合标准圆的表达式;
2、根据题目给出的信息,把圆的参数一步步求出,把圆的中点坐标及其他参数按照题目要求结合起来;
3、要注意把圆的表达式排列整齐,给出圆的表达式后,把整理好的表达式带入到题干中,求出答案;
4、根据已知的信息,结合数学知识,把圆的参数一步步求出,然后结合起来求出圆的面积和圆周长;
5、根据已知的两个圆所在的方程,结合数学知识,构造二次曲线,然后再求出两者的共同点,即为两个圆的交点。
圆压轴题题型归纳及方法

圆压轴题题型归纳及方法
圆压轴题是高中数学中常见的题型之一,本文将对圆压轴题进行归纳总结,并介绍解题方法。
一、题型分类
圆压轴题可分为以下几类:
1.圆的相切问题:给定两个圆,求它们的公切线或内切线的位置关系。
2.圆的切线问题:给定一条直线和一个圆,求这条直线与圆的切点位置。
3.圆的位置问题:给定两个圆的位置关系,求它们的大小关系或者位置。
二、解题方法
1.圆的相切问题:
(1)公切线问题:如果两个圆外切,则两个圆的公切线为它们圆心的连线;如果两个圆内切,则它们的公切线为它们圆心的连线。
(2)内切线问题:如果两个圆内切,则它们的内切线为它们圆心的连线;如果两个圆外切,则它们的内切线为它们圆心的连线的延长线。
2.圆的切线问题:
(1)求切线方程:先求出圆心与直线的距离,然后根据勾股定理求出切点坐标,再根据切点坐标和切线斜率求出切线方程。
(2)判别式:通过判别式判断直线与圆的位置关系,如果判别式
为负,则直线与圆没有交点,如果判别式为0,则直线与圆有一个交点,如果判别式为正,则直线与圆有两个交点。
3.圆的位置问题:
(1)大小关系:判断两个圆的半径大小关系,如果一个圆的半径大于另一个圆的半径,则它的面积也大于另一个圆的面积。
(2)位置关系:根据两个圆的圆心距离和两个圆的半径之和与差的大小关系,判断它们的位置关系,如重合、内含、外离、相交等。
以上是圆压轴题的归纳总结及解题方法,希望对同学们的学习有所帮助。
天津中考数学圆的题的解题技巧

解题技巧一:掌握圆的基本概念1. 圆的定义:平面上与一个定点的距离等于r的全部点的集合,这个定点叫做圆心,距离r叫做半径。
2. 圆的元素:圆心、半径、直径、弧、弦、切线、切点等。
3. 圆的公式:圆的周长C=2πr,圆的面积S=πr²。
4. 圆的相关定理:相交弦定理、相交弧定理等。
解题技巧二:掌握圆的性质1. 圆的性质:相等弧对应的圆周角相等,相等弦对应的圆周角相等,等腰三角形的高与底的积等于弦的二倍等。
2. 圆的判定方法:判定两个角是否为圆周角的方法有:是否在同一个圆内;是否相等;是否有公共点。
判定两条线段是否是圆的切线的条件是:两条直线是否有公共点;是否存在一个等于半径长的线段。
3. 圆的位似性质:圆内接四边形的三对角顶点角之和为360°,圆外接四边形的对角之和为360°。
解题技巧三:掌握圆的作图方法1. 画圆的基本步骤:确定圆心、半径;用圆规或者圆规尺作出圆心;用圆规或者定长圆弧尺作出半径。
2. 圆的相关作图方法:圆的切线、圆的切点、平行于已知直线的直线上某点到圆的切点等。
解题技巧四:掌握圆的相关计算方法1. 计算圆的周长和面积2. 计算圆的相关角度3. 计算圆内接四边形或者外接四边形的顶点位置、角度等。
总结:天津中考数学中关于圆的题目难度适中,主要考核考生对圆的基本概念和性质的掌握程度,以及对圆的相关计算和作图方法的应用能力。
考生在备考过程中需加强对圆的定义、性质、公式的记忆和理解,掌握圆的相关计算和作图方法,并通过大量的练习题来提高解题能力。
通过巩固基础知识、强化实际应用能力,考生们一定能够在中考数学中圆的题目中取得好成绩。
解题技巧五:解题方法与实例分析在解答天津中考数学中关于圆的题目时,考生可以采用以下方法进行解题:1. 圆的基本概念题目当遇到关于圆的基本概念的题目时,首先需要理清题目中圆的定义、元素以及相关公式和定理,然后根据所给定的条件,应用数学知识进行分析和推理,得出结论。
高考数学命题热点名师解密:专题(25)圆的解题方法(文)(含答案)

专题26 圆的解题方法一.【学习目标】1.掌握圆的标准方程和一般方程,会用圆的方程及其几何性质解题.2.能根据所给条件选取适当的方程形式,利用待定系数法求出圆的方程,解决与圆有关的问题.3.能利用直线与圆、圆与圆的位置关系的几何特征判断直线与圆、圆与圆的位置关系,能熟练解决与圆的切线和弦长等有关的综合问题;体会用代数法处理几何问题的思想.二.方法规律总结1.在求圆的方程时,应根据题意,合理选择圆的方程形式.圆的标准方程突出了圆心坐标和半径,便于作图使用;圆的一般方程是二元一次方程的形式,便于代数运算;而圆的参数方程在求范围和最值时应用广泛.同时,在选择方程形式时,应熟悉它们的互化.如果问题中给出了圆心与圆上的点两坐标之间的关系或圆心的特殊位置时,一般用标准方程;如果给出圆上的三个点的坐标,一般用一般方程.2.在二元二次方程中x2和y2的系数相等并且没有xy项,只是表示圆的必要条件而不是充分条件.3.在解决与圆有关的问题时,要充分利用圆的几何性质,这样会使问题简化.涉及与圆有关的最值问题或范围问题时应灵活、恰当运用参数方程.4.处理直线与圆、圆与圆的位置关系常用几何法,即利用圆心到直线的距离,两圆心连线的长与半径和、差的关系判断求解.5.求过圆外一点(x0,y0)的圆的切线方程:(1)几何方法:设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0.由圆心到直线的距离等于半径,可求得k,切线方程即可求出.(2)代数方法:设切线方程为y-y0=k(x-x0),即y=kx-kx0+y0,代入圆方程,得一个关于x的一元二次方程,由Δ=0,求得k,切线方程即可求出.(以上两种方法只能求斜率存在的切线,斜率不存在的切线,可结合图形求得).6.求直线被圆截得的弦长(1)几何方法:运用弦心距、半径及弦的一半构成的直角三角形,计算弦长|AB|=2·r2-d2.(2)代数方法:运用韦达定理.弦长|AB|=[(x A+x B)2-4x A·x B](1+k2).7.注意利用圆的几何性质解题.如:圆心在弦的垂直平分线上,切线垂直于过切点的半径,切割线定理等,在考查圆的相关问题时,常结合这些性质一同考查,因此要注意灵活运用圆的性质解题. 三.【典例分析及训练】例1.圆:与轴正半轴交点为,圆上的点,分别位于第一、二象限,并且,若点的坐标为,则点的坐标为()A. B. C. D.【答案】B【解析】由题意知,,设的坐标为,则, ,,因为,所以,即,又,联立解得或,因为在第二象限,故只有满足,即.故答案为B.练习1.已知圆上的动点和定点,则的最小值为()A. B. C. D.【答案】D【解析】如图,取点,连接,,,,,,,因为,当且仅当三点共线时等号成立,的最小值为的长,,,故选D.【点睛】本题主要考查圆的方程与几何性质以及转化与划归思想的应用,属于难题. 转化与划归思想解决高中数学问题的一种重要思想方法,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,解答本题的关键是将转化为.练习2.已知点为函数的图象上任意一点,点为圆上任意一点,则线段的长度的最小值为()A. B. C. D.【答案】A【解析】依题意,圆心为,设点的坐标为,由两点间距离公式得,设,,令解得,由于,可知当时,递增,时,,递减,故当时取得极大值也是最大值为,故,故时,且,所以,函数单调递减.当时,,,当时,,即单调递增,且,即,单调递增,而,故当时,函数单调递增,故函数在处取得极小值也是最小值为,故的最小值为,此时.故选A.练习3.直线l是圆C1:(x+1)2+y2=1与圆C2:(x+4)2+y2=4的公切线,并且l分别与x轴正半轴,y轴正半轴相交于A,B两点,则△AOB的面积为A. B. C. D.【答案】A【解析】如图,设OA=a,OB=b,由三角形相似可得:,得a=2.再由三角形相似可得:,解得b=.∴△AOB的面积为.故选A.(二)圆的一般方程例2.若由方程x2-y2=0和x2+(y-b)2=2所组成的方程组至多有两组不同的实数解,则实数b的取值范围是( )A.b≥2或b≤-2 B.b≥2或b≤-2 C.-2≤b≤2 D.-2≤b≤2【答案】B练习1.若圆的圆心在第一象限,则直线一定不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】A【解析】因为圆的圆心坐标为,由圆心在第一象限可得,所以直线的斜率,轴上的截距为,所以直线不过第一象限.练习2.若方程a2x2+(a+2)y2+2ax+a=0表示圆,则a的值为A.a=1或a=–2 B.a=2或a=–1 C.a=–1 D.a=2【答案】C【解析】若方程a2x2+(a+2)y2+2ax+a=0表示圆,则,解得a=–1.故答案为:C(三)点与圆的位置关系例3.例3.过点作直线的垂线,垂足为M,已知点,则当变化时,的取值范围是A. B. C. D.【答案】B练习 1.已知点,,是圆内一点,直线,,,围成的四边形的面积为,则下列说法正确的是()A. B. C. D.【答案】A【解析】由已知,四条直线围成的四边形面积,故选A.练习2.设点M(3,4)在圆外,若圆O上存在点N,使得,则实数r的取值范围是()A. B. C. D.【答案】C【解析】如图,要使圆O:x2+y2=r2(r>0)上存在点N,使得∠OMN=,则∠OMN的最大值大于或等于时一定存在点N,使得∠OMN=,而当MN与圆相切时∠OMN取得最大值,此时OM=5,ON=,又点M(3,4)在圆x2+y2=r2(r>0)外,∴实数r的取值范围是.故选:C.(四)圆的几何性质例4.如图,在平面直角坐标系内,已知点,,圆C的方程为,点P为圆上的动点.求过点A的圆C的切线方程.求的最大值及此时对应的点P的坐标.【答案】(1)或;(2)最大值为,.【解析】当k存在时,设过点A切线的方程为,圆心坐标为,半径,,解得,所求的切线方程为,当k不存在时方程也满足;综上所述,所求的直线方程为:或;设点,则由两点之间的距离公式知,要取得最大值只要使最大即可,又P为圆上的点,,,此时直线OC:,由,解得舍去或,点P的坐标为练习1.已知圆心在x轴正半轴上的圆C与直线相切,与y轴交于M,N两点,且.Ⅰ求圆C的标准方程;Ⅱ过点的直线l与圆C交于不同的两点D,E,若时,求直线l的方程;Ⅲ已知Q是圆C上任意一点,问:在x轴上是否存在两定点A,B,使得?若存在,求出A,B两点的坐标;若不存在,请说明理由.【答案】(I);(II)或;(III)存在,或,满足题意.【解析】Ⅰ由题意知圆心,且,由知中,,,则,于是可设圆C的方程为又点C到直线的距离为,所以或舍,故圆C的方程为,Ⅱ设直线l的方程为即,则由题意可知,圆心C到直线l的距离,故,解得,又当时满足题意,因此所求的直线方程为或,Ⅲ方法一:假设在x轴上存在两定点,,设是圆C上任意一点,则即,则,令,解得或,因此存在,,或,满足题意,方法二:设是圆C上任意一点,由得,化简可得,对照圆C的标准方程即,可得,解得解得或,因此存在,或,满足题意.练习2.设点P是函数图象上任意一点,点Q坐标为,当取得最小值时圆与圆相外切,则的最大值为A. B. C. D.【答案】C【解析】根据题意,函数y,即(x﹣1)2+y2=4,(y≤0),对应的曲线为圆心在C(1,0),半径为2的圆的下半部分,又由点Q(2a,a﹣3),则Q在直线x﹣2y﹣6=0上,当|PQ|取得最小值时,PQ与直线x﹣2y﹣6=0垂直,此时有2,解可得a=1,圆C1:(x﹣m)2+(y+2)2=4与圆C2:(x+n)2+(y+2)2=9相外切,则有3+2=5,变形可得:(m+n)2=25,则mn,故选:C.练习3.已知,是单位向量,•0.若向量满足||=1,则||的最大值为()A. B. C. D.【答案】C【解析】∵||=||=1,且,∴可设,,.∴.∵,∴,即(x﹣1)2+(y﹣1)2=1.∴的最大值.故选:C.练习4.设P,Q分别是圆和椭圆上的点,则P,Q两点间的最大距离是( )A. B.C. D.【答案】C【解析】圆的圆心为M(0,6),半径为,设,则,即,∴当时,,故的最大值为.故选C.(五)轨迹问题例 5.已知线段AB的端点B的坐标为(3,0),端点A在圆上运动;(1)求线段AB中点M的轨迹方程;(2)过点C(1,1)的直线m与M的轨迹交于G、H两点,当△GOH(O 为坐标原点)的面积最大时,求直线m的方程并求出△GOH面积的最大值.(3)若点C(1,1),且P在M轨迹上运动,求的取值范围.【答案】(1);(2);(3)【解析】(1)解:设点由中点坐标公式有又点在圆上,将点坐标代入圆方程得:点的轨迹方程为:(2)令,则当,即时面积最大为2又直线过点,,∴到直线的距离为,当直线斜率不存在时,到的距离为1不满足,令故直线的方程为:(3)设点,由于点则,令有,由于点在圆上运动,故满足圆的方程.当直线与圆相切时,取得最大或最小故有所以练习1.已知线段AB的端点B的坐标为(3,0),端点A在圆上运动;(1)求线段AB中点M的轨迹方程;(2)过点C(1,1)的直线m与M的轨迹交于G、H两点,求以弦GH 为直径的圆的面积最小值及此时直线m的方程.学-科网(3)若点C(1,1),且P在M轨迹上运动,求的取值范围.(O 为坐标原点)【答案】(1);(2)圆的面积最小值(3)【解析】(1)解:设点由中点坐标公式有又点在圆上,将点坐标代入圆方程得:点的轨迹方程为:(2)由题意知,原心到直线的距离∴当即当时,弦长最短,此时圆的面积最小,圆的半径,面积又,所以直线斜率,又过点故直线的方程为:(3)设点,由于点法一:所以,令有,由于点在圆上运动,故满足圆的方程. 当直线与圆相切时,取得最大或最小故有所以法二:∴从而练习2.四棱锥P-ABCD中,AD⊥面PAB,BC⊥面PAB,底面ABCD为梯形,AD=4,BC=8,AB=6,∠APD=∠CPB,满足上述条件的四棱锥的顶点P的轨迹是()A.圆的一部分 B.椭圆的一部分 C.球的一部分 D.抛物线的一部分【答案】A练习3.已知椭圆的左右焦点分别为,过的直线与过的直线交于点,设点的坐标,若,则下列结论中不正确的是()A.B.C.D.【答案】A【解析】由椭圆的左右焦点分别为F1(﹣1,0),F2(1,0),过F1的直线l1与过F2的直线l2交于点P,且l1⊥l2,∴P在线段F1F2为直径的圆上,故x02+y02=1,∴1,故A错误,B正确;3x02+2y02>2x02+2y02=2(x02+y02)=2>1,故C正确;由圆x2+y2=1在P(x0,y0)的切线方程为:x0x+y0y=1,如图,∵坐标原点O(0,0)与点()在直线x0x+y0y=1的同侧,且x0×0+y0×0=0<1,∴,故D正确.∴不正确的选项是A.故选:A.练习4.已知圆C: (为锐角) ,直线l:y=kx,则A.对任意实数k与,直线l和圆C相切 B.对任意实数k与,直线l和圆C有公共点C.对任意实数k与,直线l和圆C相交 D.对任意实数k与,直线l和圆C相离【答案】B【解析】由题意,圆心坐标为:,所以圆心的轨迹方程为:,所以圆心与原点的距离为1,所以圆必过原点.由于直线过原点,所以直线与圆必有交点.故选B.(六)直线与圆的位置关系例6.已知抛物线的顶点在坐标原点,其焦点在轴正半轴上,为直线上一点,圆与轴相切(为圆心),且,关于点对称.(1)求圆和抛物线的标准方程;(2)过的直线交圆于,两点,交抛物线于,两点,求证:.【答案】(1)的标准方程为.的标准方程为(2)见证明【解析】(1)设抛物线的标准方程为,则焦点的坐标为.已知在直线上,故可设因为,关于对称,所以,解得所以的标准方程为.因为与轴相切,故半径,所以的标准方程为.(2)由(1)知,直线的斜率存在,设为,且方程为则到直线的距离为,所以,由消去并整理得:.设,,则,,.所以因为,,,所以所以,即.练习1.已知以点为圆心的圆经过点和,线段的垂直平分线交圆于点和,且.(1)求直线的方程;(2)求圆的方程.【答案】(1);(2)或.【解析】(1)直线的斜率,的中点坐标为直线的方程为(2)设圆心,则由点在上,得.①又直径,,.②由①②解得或,圆心或圆的方程为或练习2.已知直线,曲线,若直线与曲线相交于、两点,则的取值范围是____;的最小值是___.【答案】【解析】直线l:kx﹣y k=0过定点(1,),曲线C为半圆:(x﹣2)2+y2=4(y≥0)如图:由图可知:k OP,k PE,∴;要使弦长AB最小,只需CP⊥AB,此时|AB|=22,故答案为:[,];.练习3.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M与两定点A、B的距离之比为λ(λ>0,λ≠1),那么点M的轨迹就是阿波罗尼斯圆.下面,我们来研究与此相关的一个问题.已知圆:x2+y2=1和点,点B(1,1),M为圆O上动点,则2|MA|+|MB|的最小值为_____.【答案】【解析】如图所示,取点K(﹣2,0),连接OM、MK.∵OM=1,OA=,OK=2,∴,∵∠MOK=∠AOM,∴△MOK∽△AOM,∴,∴MK=2MA,∴|MB|+2|MA|=|MB|+|MK|,在△MBK中,|MB|+|MK|≥|BK|,∴|MB|+2|MA|=|MB|+|MK|的最小值为|BK|的长,∵B(1,1),K(﹣2,0),∴|BK|=.故答案为:.练习4.已知直线l:mx﹣y=1,若直线l与直线x+m(m﹣1)y=2垂直,则m的值为_____,动直线l:mx﹣y=1被圆C:x2﹣2x+y2﹣8=0截得的最短弦长为_____.【答案】0或2 .(七)圆与圆的位置关系例1.在平面直角坐标系中,已知点和直线:,设圆的半径为1,圆心在直线上.(Ⅰ)若圆心也在直线上,过点作圆的切线.(1)求圆的方程;(2)求切线的方程;(Ⅱ)若圆上存在点,使,求圆心的横坐标的取值范围.【答案】(Ⅰ)(1)或(2)或(Ⅱ)【解析】(Ⅰ)(1)由得圆心为,∵圆的半径为1,∴圆的方程为:.(2)由圆方程可知过的切线斜率一定存在,设所求圆的切线方程为,即,∴,解之得:或,∴所求圆的切线方程为:或.即或.(Ⅱ)∵圆的圆心在直线:上,设圆心为,则圆的方程为:,又∵,∴设为,则整理得:,设为圆,∴点应该既在圆上又在圆上∴圆和圆有公共点,∴,即:,解之得:即的取值范围为:.练习1.在平面直角坐标系中,已知的顶点坐标分别是,,,记外接圆为圆.(1)求圆的方程;(2)在圆上是否存在点,使得?若存在,求点的个数;若不存在,说明理由.【答案】(1)(2)存在,且个数为2【解析】(1)设外接圆的方程为,将代入上述方程得:解得则圆的方程为(2)设点的坐标为,因为,所以化简得:.即考查直线与圆的位置关系点到直线的距离为所以直线与圆相交,故满足条件的点有两个。
圆的证明题解题技巧

圆的证明题解题技巧圆的证明题解题技巧一、前置知识在学习圆的证明之前,需要掌握以下基础知识:1. 直线的性质:平行、垂直、夹角等概念及其性质。
2. 三角形的性质:内角和为180度、等腰三角形、直角三角形等概念及其性质。
3. 相似三角形:比例关系、相似定理等概念及其应用。
4. 同余三角形:对应边、对应角相等的三角形。
5. 利用构造方法求解几何问题:如作垂线、作中线、作平分线等方法。
二、圆的定义与性质圆是由平面上所有到定点距离相等的点组成的图形。
其中,定点称为圆心,到圆心距离称为半径。
圆上任意两点间的距离称为弧长,弧长所对应的圆心角称为弧度。
1. 圆心角与弧度关系当一个圆心角所对应的弧长恰好为半径时,这个圆心角称为一弧度。
因此,一周360度对应着2π弧度。
2. 圆内接四边形如果一个四边形的四个顶点都在同一圆上,那么这个四边形就是圆内接四边形。
圆内接四边形的两组对角线互相垂直且交点在圆心。
3. 圆的切线与切点如果一条直线与圆相切,那么这条直线称为圆的切线。
与切点相对应的半径垂直于切线。
三、常见证明题型及技巧1. 证明两条直线相交于圆上如果已知两条直线AB、CD分别与一个圆相交于点A、B、C、D,我们需要证明这两条直线相交于圆上。
技巧:连接AC和BD,利用三角形性质和同余三角形定理可以证明AC和BD垂直且交于O(圆心)。
2. 证明一个三角形为等腰三角形如果已知一个三角形ABC中AB=AC,我们需要证明这个三角形是等腰三角形。
技巧:以A为圆心作一个以AB为半径的圆,并延长BC至与该圆相交于D。
连接AD并证明AD垂直BC即可得出结论。
3. 证明一个四边形为菱形如果已知一个四边形ABCD中AB=BC=CD=DA,我们需要证明这个四边形是菱形。
技巧:以A为圆心作一个以AB为半径的圆,并分别延长AD、BC至与该圆相交于E、F。
连接AE、BF并证明AE和BF垂直且交于O(圆心)即可得出结论。
4. 证明一个四边形为矩形如果已知一个四边形ABCD中AB=CD且BC=DA,我们需要证明这个四边形是矩形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BA圆的解题方法归纳1.?遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。
作用:①利用垂径定理;②利用圆心角及其所对的弧、弦和弦心距之间的关系;③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。
1、AB 是的直径,CD 是的一条弦,且CE ⊥AB 于E ,连结AC ,BC 。
若BE=2,CD=8,求AB 和AC 的长。
解:∵AB 是⊙O 的直径,CD ⊥AB ∴CE=ED=4?设⊙O 的半径为r ,OE=OB-BE=r-2? 在Rt △OEC 中,r=5? ∴AB=10 又CD=8, ∴CE=DE=4, ∴AE=8 ∴AC=?2、圆O 的直径AB 和弦CD 交于E ,已知AE=6cm ,EB=2cm ,∠CEA=30求CD 。
答案2.? 遇到有直径时常常添加(画)直径所对的圆周角。
作用:利用圆周角的性质,得到直角或直角三角形。
1、如图,AB 是⊙O 的直径,AB=4,弦BC=2,∠B=2、如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,∠BAC=50°,则∠ADC= ?3.? 遇到90°的圆周角时常常连结两条弦没有公共点的另一端点。
作用:利用圆周角的性质,可得到直径。
1、如图,AB 、AC 是⊙O 的的两条弦,∠BAC=90°,AB=6,AC=8,⊙O 的半径是2、如图,已知在等腰△ABC 中,∠A=∠B=30°,过点C 作CD ⊥AC 交AB 于点D ;求证:BC 是过A ,D ,C 三点的圆的切线解:(1)作出圆心O ,? 以点O 为圆心,OA 长为半径作圆 (2)证明:∵CD ⊥AC ,∴∠ACD=90° ∴AD 是⊙O 的直径连结OC ,∵∠A=∠B=30°, ∴∠ACB=120°, 又∵OA=OC , ∴∠ACO=∠A =30°B∴∠BCO=∠ACB-∠ACO =120°-30°=90°∴BC⊥OC,∴BC是⊙O的切线.?4.? 遇到弦时常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。
作用:①可得等腰三角形;②据圆周角的性质可得相等的圆周角。
1、如图,弦AB的长等于⊙O的半径,点C在弧AMB上,则∠C的度数是________.2、如图,△ABC是⊙O的内接三角形,AD是⊙O 的直径,若∠ABC=50°,求∠CAD的度数。
解:连接CD,∠ADC=∠ABC=50°∵AD是⊙O 的直径,∴∠ACD=90°?∴∠CAD+∠ADC=90°?∴∠CAD=90°-∠ADC=90°-50°= 40°5.? 遇到有切线时(1)常常添加过切点的半径(连结圆心和切点)作用:利用切线的性质定理可得到直角或直角三角形。
1、如图,AB是⊙O的直径,弦AC与AB成30°角,CP与⊙O切于C,交AB•的延长线于D,(1)求证:AC=CP.(2)若CP=6,求图中阴影部分的面积(结果精确到0.1)。
(参考数据:,π=3.14)解:(1)连结OC∵AO=OC?∴∠ACO=∠A=30°?∴∠COP=2∠ACO=60°? ∵PC切⊙O于点C?∴OC⊥PC∴∠P=30°?∴∠A=∠P∴AC=PC 。
(2)在Rt △OCP 中,tan ∠P=∴OC=2∵S △OCP =CP ·OC=×6×2=6且S 扇形COB =∴S 阴影= S △OCP -S 扇形COB =。
? (2)常常添加连结圆上一点和切点 作用:可构成弦切角,从而利用弦切角定理。
2、(1)如图OA 、OB 是⊙O 的两条半径,且OA ⊥OB ,点C 是OB 延长线上任意一点:过点C 作CD 切⊙O 于点D ,连结AD 交DC 于点E .求证:CD=CE(2)若将图中的半径OB 所在直线向上平行移动交OA 于F ,交⊙O 于B’,其他条件不变,那么上述结论CD=CE 还成立吗?为什么?(3)若将图中的半径OB 所在直线向上平行移动到⊙O 外的CF ,点E 是DA 的延长线与CF 的交点,其他条件不变,那么上述结论CD=CE 还成立吗?为什么解题思路:本题主要考查圆的有关知识,考查图形运动变化中的探究能力及推理能力. 解答:(1)证明:连结OD 则OD ⊥CD ,∴∠CDE+∠ODA=90° 在Rt △AOE 中,∠AEO+∠A=90°在⊙O 中,OA=OD ∴∠A=∠ODA , ∴∠CDE=∠AEO 又∵∠AEO=∠CED ,∠CDE=∠CED ∴CD=CE (2)CE=CD 仍然成立.∵原来的半径OB 所在直线向上平行移动∴CF ⊥AO 于F , 在Rt △AFE 中,∠A+∠AEF=90°.连结OD ,有∠ODA+∠CDE=90°,且OA=OD .∠A=∠ODA ∴∠AEF=∠CDE 又∠AEF=∠CED ∴∠CED=∠CDE ∴CD=CE (3)CE=CD 仍然成立.∵原来的半径OB 所在直线向上平行移动.AO ⊥CF 延长OA 交CF 于G ,在Rt △AEG 中,∠AEG+∠GAE=90°连结OD ,有∠CDA+∠ODA=90°,且OA=OD ∴∠ADO=∠OAD=∠GAE ∴∠CDE=∠CED ∴CD=CE考查目标二、主要是指点与圆的位置关系、直线与圆的位置关系以及圆与圆的位置关系的相关内容。
学生要学会用动态的观点理解和解决与圆有关的位置关系的问题。
6.? 遇到证明某一直线是圆的切线时(1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段,再证垂足到圆心的距离等于半径。
1、如图所示,已知AB 是⊙O 的直径,AC⊥L 于C ,BD⊥L 于D ,且AC+BD=AB 。
求证:直线L 与⊙O 相切。
?(2)若直线过圆上的某一点,则连结这点和圆心(即作半径),再证其与直线垂直。
2、如图,四边形ABCD 内接于⊙O ,BD 是⊙O 的直径,AE CD ⊥,垂足为E ,DA 平分. (1)求证:AE 是⊙O 的切线;(2)若301cm DBC DE ∠==,,求BD 的长解题思路:运用切线的判定 (1)证明:连接OA ,DA 平分BDE ∠,BDA EDA ∴∠=∠.OA OD ODA OAD =∴∠=∠,.OAD EDA ∴∠=∠. OA CE ∴∥.AE DE ⊥,9090AED OAE DEA ∴∠=∠=∠=,. AE OA ∴⊥.AE ∴是⊙O 的切线.(2)BD 是直径,90BCD BAD ∴∠=∠=.3060DBC BDC ∠=∠=,,120BDE ∴∠=.DA 平分BDE ∠,60BDA EDA ∴∠=∠=.30ABD EAD ∴∠=∠=.在Rt AED △中,90302AED EAD AD DE ∠=∠=∴=,,. 在Rt ABD △中,903024BAD ABD BD AD DE ∠=∠=∴==,,. DE 的长是1cm ,BD ∴的长是4cm .2、PA 、PB 分别与⊙O 相切于点A 、B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N (1)求证:OM=AN (2)若⊙O 的半径R=3,PA=9,求OM 的长答案【1】链接OA 、OB∵AP 是切线,OA 是半径 ∴OA ⊥AP ∵MN ⊥AP ∴OA//MN∴四边形OANM 是平行四边形∴OM=AN【2】设AN=X所以NP=AP-AN=9-x∴OM=x△MNP是直角△有勾股定理得出MP2=x2-18x+90证△OBM与△MNP相似(这个很简单懒得打字了自己证明)∴OB/MN=OM/MP∴(3/3)2=x2/(x2-18x+90)∴x=5∴OM=5?7.? 遇到两相交切线时(切线长)常常连结切点和圆心、连结圆心和圆外的一点、连结两切点。
作用:据切线长及其它性质,可得到:①角、线段的等量关系;②垂直关系;③全等、相似三角形。
【例9】如图,P是⊙O外一点,PA、PB分别和⊙O切于A、B,C是弧AB上任意一点,过C作⊙O的切线分别交PA、PB于D、E,若△PDE的周长为12,则PA长为______________答案∵PA,PB分别和⊙O切于A,B两点,∴PA=PB,∵DE是⊙O的切线,∴DA=DC,EB=EC,∵△PDE的周长为12,即PD+DE+PE=PD+DC+EC+PE=PD+AD+EB+PE=PA+PB=2PA=12,∴PA=6.8.? 遇到三角形的内切圆时连结内心到各三角形顶点,或过内心作三角形各边的垂线段。
作用:利用内心的性质,可得:①??? 内心到三角形三个顶点的连线是三角形的角平分线;②??? 内心到三角形三条边的距离相等。
1、△ABC的内切圆圆O与AC、AB、BC分别相切于点D、E、F,且AB=5cm,BC=9cm,AC=6cm,求AE、BF和CD的长。
答案解:设AE为X 因为圆O是三角形ABC的内切圆所以AD=AE BE=BF CF=CD那么 AD=AE=X BE=AB-AE=5-X CD=AC-AD=6-X BF=BE=5-X CF=CD=6-X BC=CF+BF=6-X+5-X=9 解得X=1 那么AE=1 BF=4 CD=52、如图,Rt △ABC 中,∠C=90°,AC=6,BC=8,则△ABC 的内切圆半径r=________.设△ABC 的内接圆圆心为点O 。
过点O 作OE 垂直AC 于E ,作OF 垂直BC 于F ,作OG 垂直AB 于G 。
连结AO ,BO ,CO 。
设内接圆的半径为X 。
易知四边形OECF 为正方形。
因此EC 为X 。
AE 为6-X 。
同理可得BF 为8-X 。
易得△AEO 与△AGO 全等。
因此AG =AE =6-X 。
△BFO 与△BGO 全等。
因此BG =BF =8-X 。
根据勾股定理,得AB =10。
即AG BG =10。
因此6-X 8-X =10。
解得X =2。
即内接圆的半径为2。
九.? 遇到三角形的外接圆时1、直角三角形,如果三角形是直角三角形,那么它的外接圆的直径就是直角三角形的斜边. 已知:在△ABC 中,AB =13,BC =12,AC =5,求△ABC 的外接圆的半径.解:∵AB =13,BC =12,AC =5, ∴AB 2=BC 2+AC 2, ∴∠C =90°,∴AB 为△ABC 的外接圆的直径, ∴△ABC 的外接圆的半径为6.5.2、如图,已知,在△ABC 中,AB =10,∠A =70°,∠B =50°,求△ABC 外接圆⊙O 的半径. 分析:可转化为①的情形解题. 解:作直径AD ,连结BD.则∠D =∠C =180°-∠CAB -∠BAC =60°,∠DBA =90°∴AD =D sin AB = 60sin 10=3320∴△ABC 外接圆⊙O 的半径为3310.十.? 遇到三角形的外接圆和内切圆时1、如图,Rt△ABC 中,AC=8,BC=6,∠C=90°,⊙I 分别切AC ,BC,AB 于D ,E ,F ,求Rt△ABC 的内心I 与外心O 之间的距离.1ID ,IE ,IF ,IB ,证四边形CEID 为正方形,求出ID=CE=2,证BF=BE=4,OF=1,再在Rt △IFO 中求IO )在Rt △ABC 中,∠C=90°,AC=3,AB=5,则它的内切圆与外接圆半径分别为( C ) A .1.5,2.5 B .2,5 C .1,2.5 D .2,2.5A。