新人教版八年级下数学第二次月考试题及答案
2022-2023学年人教版八年级数学下学期第二次月考卷附答案解析

2022-2023学年八年级数学下学期第二次月考卷(考试时间120分钟,试卷满分120分)卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.)1.函数y =x 的取值范围是()A .1x ≥-B .1x ≥-且3x ≠C .1x >-D .1x ≠-且3x ≠2.球的体积是V ,球的半径为R ,则343V R π=,其中变量和常量分别是()A .变量是V ,R ;常量是43,πB .变量是R ,π;常量是43C .变量是V ,R ,π;常量是43D .变量是V ,3R ;常量是π3.如图,在平行四边形ABCD 中,ABC ∠的平分线交AD 于点E ,BCD ∠的平分线交AD 于点F .若3AB =,4AD =,则EF 的长是()A .2B .1C .3D .3.54.已知点(,)k b 在第二象限内,则一次函数y kx b =-+的图象大致是()A .B .C .D .5.点1(,)A a y ,2(2,)B a y +都在一次函数3y x =-+图象上,则1y ,2y 的大小关系是()A .12y y =B .12y y >C .12y y <D .不确定6.甲、乙、丙、丁四个人所行的路程和所用的时间如图所示,按平均速度计算,走得最快的是()A .甲B .乙C .丙D .丁7.在平面直角坐标系中,直线5y x =-+与直线4y kx =-相交于点(3,)P n ,则关于x ,y 的方程组5,4y x y kx =-+⎧⎨=-⎩的解为()A .3,1x y =⎧⎨=⎩B .3,0x y =⎧⎨=⎩C .3,2x y =⎧⎨=⎩D .4,1x y =⎧⎨=⎩8.如图,折线ABCDE 描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s (km )与行驶时间t (h )之间的函数关系,根据图中提供的信息,判断下列结论正确的选项是()①汽车在行驶途中停留了0.5小时;②汽车在整个行驶过程的平均速度是60km/h ;③汽车共行驶了240km ;④汽车出发4h 离出发地40km .A .①②④B .①②③C .①③④D .①②③④9.如图,在菱形ABCD 中,2AD =,120ABC ∠=︒,E 是BC 的中点,P 为对角线AC 上的一个动点,则PE PB +的最小值为()A B .2C .1D .510.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止,设点P 运动的路程为x ,ABP △的面积为y ,y 关于x 的函数图象如图2所示,若25b a -=,则矩形A BCD 的周长为()图1图2A .20B .18C .16D .2411.若0a <的结果是()A .-B .-C .D .12.如图,在ABC △中,90C ∠=︒,30B ∠=︒.按下列步骤作图:以A 为圆心,适当长为半径画弧,分别交AB ,AC 于点M ,N .再分别以M ,N 为圆心,大于MN 一半的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列说法不正确的是()A .60ADC ∠=︒B .AD BD=C .2BD CD =D .4AB CD=13.如图,P 为线段AB 上任意一点,分别以AP ,PB 为边在AB 同侧作正方形APCD ,PBEF .若28CBE ∠=︒,则AFP ∠的度数为()A .56︒B .62︒C .73︒D .76︒14.在平面直角坐标系中,有四个点(2,5)A ,(1,3)B ,(3,1)C ,(2,3)D --,其中不在同一个一次函数图象上的是()A .点AB .点BC .点CD .点D15.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃20-10-0102030声速/(m/s )318324330336342348下列说法错误的是()A .在这个变化中,自变量是温度,因变量是声速B .空气温度越高,声速越快C .当空气温度为20℃时,声速为342m/sD .当空气温度每升高10℃,声速增加8m/s6.如图,购买一种苹果,所付款金额y (元)与购买量x (千克)之间的函数图象由线段OA 和射线AB 组成,则一次购买6千克这种苹果比分六次购买1千克这种苹果可节省的金额为()A .5元B .6元C .7元D .8元卷Ⅱ(非选择题,共78分)二、填空题(本大题有3个小题,每小题3分,共9分.其中18小题第一空2分,第二空1分;19小题每空1分把答案写在题中横线上)17.在平面直角坐标系中,直线36y x =-沿y 轴向上平移m 个单位长度后,经过点(1,2)A ,则m 的值为________.18.如图9,在ABC △中,90ACB ∠=︒,AC =BC =(1)AB 的长为________;(2)已知D 是AB 上一点,连接CD ,当CD 的长度最短时,AD 的长为________.19.如图,一次函数334y x =+的图象与x 轴、y 轴分别交于点A ,B ,C 是OA 上的一点.(1)点A 的坐标为________,ABO △的面积为________;(2)若将ABC △沿BC 翻折,点A 恰好落在y 轴上的点A '处,则点C 的坐标是________.三、解答题(本大题有7个小题,共69分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)先化简,再求值:263193a a a a +⎛⎫÷+ ⎪--⎝⎭,其中3a =-.21.(本小题满分9分)已知y 关于x 的函数(24)2y m x m =++-.(1)若该函数是正比例函数,求m 的值;(2)若点(1,5)在函数图象上,求m 的值.22.(本小题满分9分)如图,一次函数1:22l y x =-的图象与x 轴交于点D ,一次函数2:l y kx b =+的图象与x 轴交于点A ,且经过点(3,1)B ,两函数图象交于点(,2)C m .(1)求m 的值和一次函数2:l y kx b =+的解析式;(2)根据图象,直接写出22kx b x +<-的解集.23.(本小题满分10分)如图,在ABC △中,AB AC =,点D 在AC 边上(不与点A ,C 重合),连接BD ,BD AB =.(1)当50C ∠=︒时,求ABD ∠的度数;(2)若5AB =,6BC =,求AD 的长.24.(本小题满分10分)学校准备购进一批甲、乙两种办公桌若干张,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲、乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案.25.(本小题满分10分)如图1所示为某一深50cm ,底面为正方形的长方体的容器,底部放入一小长方体铁块,现在以均匀的速度往容器中注水,图2是容器内水面高度y 随时间x 变化的函数关系图象,观察图中所提供的信息,解答下列问题:(1)容器内小长方体铁块的高为________cm ;(2)求直线AB 的函数解析式;(3)该容器注满水需多少分钟?图1图226.(本小题满分12分)在矩形ABCD 中,3AB =,4BC =,点E 是线段BC 上一个动点,连接AE 并延长交线段DC 的延长线于点F ,将ABE △沿AE 翻折到AB E '△,延长AB '与线段CD 相交于点M .(1)如图1,若点E 在线段BC 上,求证:AM MF =;(2)如图2,当点E 是边BC 的中点时,求CM 的长;(3)当2CF =时,求CM 的长.图1图2。
(完整版)八年级数学下学期第二次月考试卷(含解析)新人教版

2015-2016 学年广西南宁四十九中八年级(下)第二次月考数学试卷一、选择题(此题共 12 小题,每题 3 分,共 36分)1.已知是二次根式,则 a 的值可以是()A.﹣ 2 B.﹣ 1 C. 2D.﹣ 72.以下四组木棒中,哪一组的三条可以恰好做成直角三角形的木架()A. 7 厘米, 12 厘米, 15 厘米B. 7 厘米, 12 厘米, 13 厘米C. 8 厘米, 15 厘米, 16 厘米D. 3 厘米, 4 厘米, 5 厘米3.正方形拥有,而菱形不用然拥有的性质是()A.四条边都相等 B .对角线垂直且相互均分C.对角线相等D.对角线均分一组对角4.已知 m=+1,n=,则 m和 n 的大小关系为()A. m=n B. mn=1 C. m=﹣ n D. mn=﹣ 15.在一块平川上,张大爷家屋前9 米远处有一颗大树,在一次强风中,这课大树从离地面6 米处折断倒下,量得倒下部分的长是10 米,大树倒下时能砸到张大爷的房屋吗?()A.必定不会 B .可能会C.必定会D.以上答案都不对6.在平行四边形ABCD中,∠ B=110°,延伸 AD至 F,延伸 CD至 E,连结 EF,则∠ E+∠F=()A.110°B.30° C .50° D .70°7.若=﹣ a 建立,则知足的条件是()A. a> 0 B. a< 0 C . a≥ 0 D . a≤ 08.预计×+的运算结果是()A. 3 到 4 之间B. 4 到 5 之间C. 5 到 6 之间D. 6 到 7 之间9.如图,已知暗影部分是一个正方形,AB=4,∠ B=45°,此正方形的面积()A. 16B. 8C. 4D. 210.如图,由四个边长为 1 的正方形组成的田字格,只用没有刻度的直尺在田字格中最多可以作长为的线段()A. 4 条B. 6 条C. 7 条D. 8 条11.如图,在平面直角坐标系中,以O( 0, 0), A(1, 1),B(3, 0)为极点,结构平行四边形,以下各点中不可以作为平行四边形极点坐标的是()A.(﹣ 3, 1)B.( 4, 1) C.(﹣ 2, 1)D.( 2,﹣ 1)12.如图,分别以直角△ ABC的斜边 AB,直角边 AC为边向△ ABC外作等边△ ABD和等边△ ACE,F 为 AB的中点, DE与 AB 交于点 G, EF 与 AC交于点 H,∠ ACB=90°,∠ BAC=30°.给出以下结论:①EF⊥ AC;②四边形 ADFE为菱形;③ AD=4AG;④ FH=BD;此中正确结论的是()A.①②③B.①②④C.①③④D.②③④二、填空题(此题共 6 小题,每题 3 分,共21 分)13.二次根式是一个整数,那么正整数 a 最小值是.14.一个四边形的边长挨次为a、b、c、d,且 a2+b2+c2+d2﹣2ac﹣ 2bd=0,则这个四边形的形状是.15.已知一个三角形的三条边的长分别为、和,那么这个三角形的最大内角度数为.16.在?ABCD中,∠ABC和∠ BCD的均分线分别交AD于点 E 和点 F,AB=3cm,EF=1cm,则?ABCD 的边 AD的长是.17.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、 3dm、2dm.A 和 B 是这个台阶上两个相对的端点,点 A 处有一只蚂蚁,想到点 B 处去吃爽口的食品,则蚂蚁沿着台阶面爬行到点 B 的最短行程为dm.18.如图,正方形 OABC的边长为 6,点 A、 C 分别在 x 轴, y 轴的正半轴上,点D( 2, 0)在 OA上, P 是 OB上一动点,则 PA+PD的最小值为.三、(此题共 1 小题,共10 分)19.计算:①( 4﹣ 6)÷ 2②﹣(﹣ 2)0+.四、(此题共1 小题,共14 分)20.已知: x=+,y=﹣,求代数式x2﹣ y2+5xy 的值.五、(此题共2 小题,共14 分)21.如图,已知,在四边形ABCD中: AO=BO=CO=DO.求证:四边形ABCD是矩形.22.如图,在Rt △ ABC中,∠ ACB=90°,点D,E 分别是边AB,AC的中点,延伸BC到点 F,使CF= BC.若 AB=12,求 EF的长.六、(此题共1 小题,共7 分)23.如图,在四边形ABCD中, AB∥ CD, AB=12,BC=17, CD=20, AD=15.(1)请你在图中增添一条直线,将四边形ABCD分红一个平行四边形和一个三角形.(2)求四边形ABCD的面积?七、(此题共1 小题,共8 分)24.如图,北部湾海面上,一艘解放军军舰在基地 A 的正东方向且距 A 地 60 海里的 B 处训练,忽然接到基地命令,要该舰前去 C 岛,接送一名病危的渔民到基地医院救治.已知C岛在 A 的北偏东30°方向,且在 B 的北偏西60°方向,军舰从 B 处出发,均匀每小时行驶30 海里,需要多少时间才能把生病渔民送到基地医院.(精准到小时,≈ )八、(此题共2 小题,共10 分)25.以以以下图,四边形 ABCD是正方形, M是 AB延伸线上一点.直角三角尺的一条直角边经过点 D,且直角极点 E在 AB边上滑动(点 E 不与点 A、B 重合),另向来角边与∠ CBM的均分线 BF 订交于点 F.(1)如图 1,当点 E 在 AB 边得中点地点时:①经过丈量DE、 EF的长度,猜想DE与 EF 知足的数目关系是.②连结点 E 与 AD边的中点N,猜想 NE与 BF 知足的数目关系是,请证明你的猜想.(2)如图 2,当点 E 在 AB边上的随意地点时,猜想此时DE与 EF有如何的数目关系,并证明你的猜想.26.如图, BD是菱形 ABCD的对角线,点 E,F 分别在边CD,DA上,且 CE=AF.求证: DE=DF.2015-2016 学年广西南宁四十九中八年级(下)第二次月考数学试卷参照答案与试题分析一、选择题(此题共12 小题,每题 3 分,共 36 分)1.已知是二次根式,则 a 的值可以是()A.﹣ 2 B.﹣ 1 C. 2D.﹣ 7【考点】二次根式的定义.【分析】依据二次根式的被开方数是非负数,可得答案.【解答】解:是二次根式,则 a 的值可以是2,故 C 吻合题意;应选: C.2.以下四组木棒中,哪一组的三条可以恰好做成直角三角形的木架()A. 7 厘米, 12 厘米, 15 厘米B. 7厘米, 12 厘米, 13 厘米C. 8 厘米, 15 厘米, 16 厘米D. 3厘米, 4 厘米, 5 厘米【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只需考证两小边的平方和等于最长边的平方即可.222B、 72+122≠ 132,故不是直角三角形,故此选项错误;222C、 8 +15 =16 ,故不是直角三角形,故此选项错误;222D、 3 +4 =5 ,故不是直角三角形,故此选项正确.应选 D.3.正方形拥有,而菱形不用然拥有的性质是()A.四条边都相等 B .对角线垂直且相互均分C.对角线相等D.对角线均分一组对角【考点】正方形的性质;菱形的性质.【分析】举出正方形拥有而菱形不用然拥有的全部性质,即可得出答案.【解答】解:正方形拥有而菱形不用然拥有的性质是:①正方形的对角线相等,而菱形不用然对角线相等,②正方形的四个角是直角,而菱形的四个角不用然是直角,应选 C.4.已知 m= +1,n=,则m和n的大小关系为()A. m=n B. mn=1 C. m=﹣ n D. mn=﹣ 1【考点】分母有理化.【分析】第一依据分母有理化的方法,把n=分母有理化,此后再把它和m比较大小,判断出 m和 n 的大小关系;最后求出mn的值是多少即可.【解答】解:由于n==,m=+1,因此 m=n;又由于 mn==4因此 mn≠ 1, mn≠﹣ 1,因此选项B、 D 错误.应选: A.5.在一块平川上,张大爷家屋前9 米远处有一颗大树,在一次强风中,这课大树从离地面6 米处折断倒下,量得倒下部分的长是10 米,大树倒下时能砸到张大爷的房屋吗?()A.必定不会 B .可能会C.必定会D.以上答案都不对【考点】勾股定理的应用.【分析】由题意知树折断的两部分与地面形成向来角三角形,依据勾股定理求出BC的长即可解答.【解答】解:以以以下图,AB=10米, AC=6米,依据勾股定理得,BC===8 米< 9 米.应选: A.6.在平行四边形ABCD中,∠ B=110°,延伸 AD至 F,延伸 CD至 E,连结 EF,则∠ E+∠F=()A.110°B.30° C .50° D .70°【考点】平行四边形的性质.【分析】要求∠ E+∠ F,只需求∠ ADE,而∠ ADE=∠ A 与∠ B 互补,因此可以求出∠ A,从而求解问题.【解答】解:∵四边形ABCD是平行四边形,∴∠ A=∠ADE=180°﹣∠ B=70°∵∠ E+∠ F=∠ ADE∴∠ E+∠F=70°应选 D.7.若=﹣ a 建立,则知足的条件是()A. a> 0 B. a< 0 C . a≥ 0 D . a≤ 0【考点】二次根式的性质与化简.【分析】依据=,进行选择即可.【解答】解:∵=﹣ a,∴a≤ 0,应选 D.8.预计×+ 的运算结果是()A. 3 到 4 之间B. 4 到 5 之间C. 5 到 6 之间D. 6 到 7 之间【考点】预计无理数的大小.【分析】先预计的范围,即可解答.【解答】解:原式 =,∵,∴,应选: B.9.如图,已知暗影部分是一个正方形,AB=4,∠ B=45°,此正方形的面积()A. 16B. 8C. 4D. 2【考点】二次根式的应用.【分析】依据特别角的三角函数求得 AC的长,也就是正方形的边长,进一步求得面积即可.【解答】解:∵ AB=4,∠ B=45°,∴A C=AB?sin∠ B=4×=2 ,∴此正方形的面积为2×2=8.应选: B.10.如图,由四个边长为 1 的正方形组成的田字格,只用没有刻度的直尺在田字格中最多可以作长为的线段()A. 4 条B. 6 条C. 7 条D. 8 条【考点】勾股定理.【分析】联合图形,获得1, 2,是一组勾股数,以以以下图,找出长度为的线段即可.【解答】解:依据勾股定理得:=,即 1, 2,是一组勾股数,以以以下图,在这个田字格中最多可以作出8 条长度为的线段.应选 D.11.如图,在平面直角坐标系中,以O( 0, 0), A(1, 1),B(3, 0)为极点,结构平行四边形,以下各点中不可以作为平行四边形极点坐标的是()A.(﹣ 3, 1)B.( 4, 1) C.(﹣ 2, 1)D.( 2,﹣ 1)【考点】坐标与图形性质;平行四边形的性质.【分析】所给点的纵坐标与 A 的纵坐标相等,说明这两点所在的直线平行于x 轴,这两点的距离为: 1﹣(﹣ 3)=4;点 O和点 B 的纵坐标相等,这两点所在的直线平行于x 轴,这两点的距离为: 3﹣ 0,相对的边平行,但不相等,因此 A 选项的点不可以能是行四边形极点坐标.【解答】解:由于经过三点可结构三个平行四边形,即?AOBC1、 ?ABOC2、?AOC3B.依据平行四边形的性质,可知B、C、D正好是C1、C2、C3的坐标,应选 A.12.如图,分别以直角△ ABC的斜边 AB,直角边 AC为边向△ ABC外作等边△ ABD和等边△ ACE,F 为 AB的中点, DE与 AB 交于点 G, EF 与 AC交于点 H,∠ ACB=90°,∠ BAC=30°.给出以下结论:①EF⊥ AC;②四边形 ADFE为菱形;③ AD=4AG;④ FH=BD;此中正确结论的是()A.①②③B.①②④C.①③④D.②③④【考点】菱形的判断;等边三角形的性质;含30 度角的直角三角形.【分析】依据已知先判断△ ABC≌△ EFA,则∠ AEF=∠ BAC,得出 EF⊥ AC,由等边三角形的性质得出∠ BDF=30°,从而证得△ DBF≌△ EFA,则 AE=DF,再由 FE=AB,得出四边形 ADFE为平行四边形而不是菱形,依据平行四边形的性质得出AD=4AG,从而获得答案.【解答】解:∵△ ACE是等边三角形,∴∠ EAC=60°, AE=AC,∵∠ BAC=30°,∴∠ FAE=∠ACB=90°, AB=2BC,∵F 为 AB的中点,∴AB=2AF,∴BC=AF,∴△ ABC≌△ EFA,∴FE=AB,∴∠ AEF=∠BAC=30°,∴EF⊥ AC,故①正确,∵EF⊥ AC,∠ ACB=90°,∴HF∥ BC,∵F 是 AB的中点,∴HF=BC,∵BC=AB, AB=BD,∴HF=BD,故④说法正确;∵AD=BD, BF=AF,∴∠ DFB=90°,∠ BDF=30°,∵∠ FAE=∠BAC+∠CAE=90°,∴∠ DFB=∠EAF,∵EF⊥ AC,∴∠ AEF=30°,∴∠ BDF=∠AEF,∴△ DBF≌△ EFA( AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠ EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=AF,∴AG=AB,∵A D=AB,则AD=4AG,故③说法正确,应选: C.二、填空题(此题共 6 小题,每题 3 分,共 21 分)13.二次根式是一个整数,那么正整数 a 最小值是2.【考点】二次根式的定义.【分析】依据二次根式的乘法,可得答案.【解答】解:由二次根式是一个整数,那么正整数 a 最小值是 2,故答案为: 2.14.一个四边形的边长挨次为a、b、c、d,且 a2+b2+c2+d2﹣2ac﹣ 2bd=0,则这个四边形的形状是平行四边形.【考点】因式分解的应用;平行四边形的判断.【分析】由 a2+b2+c2+d2﹣ 2ac﹣ 2bd=0,可整理为( a﹣ c)2+( b﹣ d)2 =0,即 a=c,b=d,进一步判断四边形为平行四边形即可.2222【解答】解:∵ a +b +c +d ﹣ 2ac﹣ 2bd=0,∴a=c, b=d,∴这个四边形必定是平行四边形.故答案为:平行四边形.15.已知一个三角形的三条边的长分别为、和,那么这个三角形的最大内角度数为90° .【考点】勾股定理的逆定理.【分析】依据勾股定理的逆定理:假如三角形有两边的平方和等于第三边的平方,那么这个是直角三角形,从而可得答案.【解答】解:∵()2+()2=()2,∴三角形为直角三角形,∴这个三角形的最大内角度数为90°,故答案为: 90°16.在?ABCD中,∠ABC和∠ BCD的均分线分别交AD于点 E 和点 F,AB=3cm,EF=1cm,则?ABCD 的边 AD的长是5cm或 7cm.【考点】平行四边形的性质.【分析】第一依据题意画出图形,由在?ABCD中,∠ ABC和∠ BCD的均分线分别交A D于点 E 和点 F,易证得△ ABE与△ CDF是等腰三角形,既而求得AE=DF=3cm,此后分别从图(1)与(2)两种状况去分析,既而求得答案.【解答】解:∵四边形 ABCD是平行四边形,∴AB=CD=3cm, AD∥ BC,∴∠ AEB=∠EBC,∵BE 均分∠ ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3cm,同理: DF=CD=3cm,如图(1),AD=AE+DF﹣EF=3+3﹣1=5(cm);如图( 2),AD=AE+EF+DF=3+1+3=7( cm),∴?ABCD的边 AD的长是: 5cm或 7cm.故答案为: 5cm 或 7cm.17.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、 3dm、2dm.A 和 B 是这个台阶上两个相对的端点,点 A 处有一只蚂蚁,想到点 B 处去吃爽口的食品,则蚂蚁沿着台阶面爬行到点 B 的最短行程为 25 dm.【考点】平面张开 - 最短路径问题.【分析】先将图形平面张开,再用勾股定理依据两点之间线段最短进行解答.【解答】解:三级台阶平面张开图为长方形,长为 20dm,宽为( 2+3)× 3dm,则蚂蚁沿台阶面爬行到 B 点最短行程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到 B 点最短行程为xdm,由勾股定理得:x2=202+[ ( 2+3)× 3] 2=252,解得 x=25.故答案为25.18.如图,正方形 OABC的边长为 6,点 A、 C 分别在 x 轴, y 轴的正半轴上,点D( 2, 0)在 OA上, P 是 OB上一动点,则 PA+PD的最小值为 2.【考点】轴对称 - 最短路线问题;坐标与图形性质.【分析】过 D 点作对于OB的对称点D′,连结 D′A交 OB于点 P,由两点之间线段最短可知D′A即为 PA+PD的最小值,由正方形的性质可求出D′点的坐标,再依据OA=6可求出 A 点的坐标,利用两点间的距离公式即可求出D′A的值.【解答】解:过 D 点作对于OB的对称点 D′,连结 D′A交 OB于点 P,由两点之间线段最短可知 D′A即为 PA+PD的最小值,∵D( 2, 0),四边形OABC是正方形,∴D′点的坐标为(0, 2), A 点坐标为( 6, 0),∴D′A==2,即PA+PD的最小值为2.故答案为2.三、(此题共 1 小题,共10 分)19.计算:①( 4﹣ 6)÷ 2②﹣(﹣ 2)0+.【考点】二次根式的混淆运算;零指数幂.【分析】( 1)先进行二次根式的除法运算,此后归并;(2)分别进行二次根式的化简、零指数幂等运算,此后归并.【解答】解:( 1)原式 =2﹣3;(2)原式 =3﹣1+=4﹣ 1.四、(此题共1 小题,共14 分)20.已知: x=+,y=﹣,求代数式x2﹣ y2+5xy 的值.【考点】二次根式的化简求值.【分析】第一把代数式利用平方差公式因式分解,再进一步代入求得答案即可.【解答】解:∵ x=+,y=﹣,∴x2﹣ y2+5xy=( x+y )( x﹣ y) +5xy=2× 2+5(+)(﹣)=4+5.五、(此题共2 小题,共14 分)21.如图,已知,在四边形ABCD中: AO=BO=CO=DO.求证:四边形ABCD是矩形.【考点】矩形的判断.【分析】第一依据AO=BO=CO=DO判断平行四边形,此后依据其对角线相等判断矩形即可.【解答】证明:∵ AO=C0=BO=DO,∴四边形ABCD是平行四边形,∵AO=C0=BO=DO,∴AC=DB,∴四边形ABCD是矩形.22.如图,在Rt △ ABC中,∠ ACB=90°,点D,E 分别是边AB,AC的中点,延伸BC到点 F,使CF= BC.若 AB=12,求 EF的长.【考点】平行四边形的判断与性质;直角三角形斜边上的中线;三角形中位线定理.【分析】利用三角形中位线定理以及直角三角形的性质得出DE BC,DC= AB,从而得出四边形 DEFC是平行四边形,即可得出答案.【解答】解:连结DC,∵点 D, E分别是边AB, AC的中点,∴DE BC, DC= AB,∵C F= BC,∴DE FC,∴四边形DEFC是平行四边形,∴D C=EF,∴E F= AB=6.六、(此题共1 小题,共7 分)23.如图,在四边形ABCD中, AB∥ CD, AB=12,BC=17, CD=20, AD=15.(1)请你在图中增添一条直线,将四边形ABCD分红一个平行四边形和一个三角形.(2)求四边形 ABCD的面积?【考点】平行四边形的性质;勾股定理的逆定理.【分析】( 1)第一过点 B 作 BE∥ AD,交 CD于点 E,可得四边形ABED是平行四边形;(2)由四边形 ABED是平行四边形,可求得 CE, BE的长,此后利用勾股定理的逆定理证得△BCE是直角三角形,既而求得答案.【解答】解:(1)如图,过点B作BE∥AD,交CD于点E,∵在四边形 ABCD中, AB∥ CD,∴四边形 ABED是平行四边形;(2)∵四边形 ABED是平行四边形,∴D E=AB=12, BE=AD=15,∴C E=CD﹣ DE=20﹣ 12=8,∵B C=17,222∴BE +CE=BC,∴S= ( AB+CD)?BE=×( 12+20)× 15=240 .四边形 ABCD七、(此题共1 小题,共8 分)24.如图,北部湾海面上,一艘解放军军舰在基地 A 的正东方向且距 A 地 60 海里的 B 处训练,忽然接到基地命令,要该舰前去 C 岛,接送一名病危的渔民到基地医院救治.已知C 岛在 A 的北偏东30°方向,且在 B 的北偏西60°方向,军舰从 B 处出发,均匀每小时行驶30 海里,需要多少时间才能把生病渔民送到基地医院.(精准到小时,≈ )【考点】勾股定理的应用;方向角.【分析】依据题意知应求( BC+AC)的长,△ ABC为斜三角形,因此需作高转变为直角三角形求解.【解答】解:依据题意,得∠ A=60°,∠ B=30°作CD⊥ AB于 D,设CD=x,∵=tan60 °∴AD=x∵=tan30 °∴B D= x∵A B=60,∴x+x=60,解得: x=15 海里,∴AC=x=30 海里,BC=2x=30海里,∴A C=2x∴= +1≈ 2.7 小时,答:需要大概 2.7 小时才能把生病渔民送到基地医院.八、(此题共2 小题,共10 分)25.以以以下图,四边形 ABCD是正方形, M是 AB延伸线上一点.直角三角尺的一条直角边经过点 D,且直角极点 E在 AB边上滑动(点 E 不与点 A、B 重合),另向来角边与∠ CBM的均分线 BF 订交于点 F.(1)如图 1,当点 E 在 AB 边得中点地点时:①经过丈量DE、 EF的长度,猜想DE与 EF 知足的数目关系是DE=EF .②连结点 E 与 AD边的中点N,猜想 NE与 BF知足的数目关系是NE=BF ,请证明你的猜想.(2)如图 2,当点 E 在 AB边上的随意地点时,猜想此时DE与 EF有如何的数目关系,并证明你的猜想.【考点】全等三角形的判断与性质;正方形的性质.【分析】( 1)①依据图形可以获得DE=EF,NE=BF,②要证明这两个关系,只需证明△DNE≌△E BF即可.(2) DE=EF,连结 NE,在 DA边上截取 DN=EB,证出△ DNE≌△ EBF即可得出答案.【解答】解:( 1)① DE=EF;②NE=BF;原因以下:∵四边形 ABCD为正方形,∴AD=AB,∠ DAB=∠ABC=90°,∵N,E 分别为 AD, AB中点,∴AN=DN= AD, AE=EB= AB,∴DN=BE, AN=AE,∵∠ DEF=90°,∴∠ AED+∠FEB=90°,又∵∠ ADE+∠AED=90°,∴∠ FEB=∠ADE,又∵ AN=AE,∴∠ ANE=∠AEN,又∵∠ A=90°,∴∠ ANE=45°,∴∠ DNE=180°﹣∠ ANE=135°,又∵∠ CBM=90°, BF均分∠ CBM,∴∠ CBF=45°,∠ EBF=135°,在△ DNE和△ EBF中,∴△ DNE≌△ EBF( ASA),∴D E=EF, NE=BF.(2) DE=EF,原因以下:连结 NE,在 DA边上截取 DN=EB,∵四边形 ABCD是正方形, DN=EB,∴AN=AE,∴△AEN为等腰直角三角形,∴∠ ANE=45°,∴∠ DNE=180°﹣ 45°=135°,∵BF 均分∠ CBM, AN=AE,∴∠ EBF=90° +45°=135°,∴∠ DNE=∠EBF,∵∠ NDE+∠DEA=90°,∠BEF+∠DEA=90°,∴∠ NDE=∠BEF,在△ DNE和△ EBF中,∴△ DNE≌△ EBF( ASA),∴D E=EF.26.如图, BD是菱形 ABCD的对角线,点E,F 分别在边CD,DA上,且 CE=AF.求证: DE=DF.【考点】菱形的性质;全等三角形的判断与性质.【分析】依据菱形的性质可得AD=CD,即可得出结论.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,∵CE=AF,∴DE=DF.。
新人教版二年级数学下册第二次月考综合试题及答案(八套)

新人教版二年级数学下册第二次月考综合试题及答案说明:本套试卷精心编写了各考点和重要知识点,测试面广,难易兼备,仅供参考。
全套试卷共八卷。
目录:新人教版二年级数学下册第二次月考综合试题及答案(一)新人教版二年级数学下册第二次月考考点题及答案(二)新人教版二年级数学下册第二次月考考试卷及答案(三)新人教版二年级数学下册第二次月考考试及答案(四)新人教版二年级数学下册第二次月考考试及答案(五)新人教版二年级数学下册第二次月考考试及答案(六)新人教版二年级数学下册第二次月考考试及答案(七)新人教版二年级数学下册第二次月考考试及答案(八)新人教版二年级数学下册第二次月考综合试题及答案一班级:姓名:满分:100分考试时间:90分钟一、填空题。
(20分)1、1张可以换(____)张,或换(____)张,或换(____)张。
2、6个4相加的和是________。
3、同学们排队,小丽前面有14名同学,后面有16名同学,她所在的这队共有(____)名同学。
4、6个9相加的和是(____),7个5相加的和是(____)。
5、丽丽用4米长的竹竿量井深,竹竿露出井沿部分是1米.井深_______米.6、35里面有(____)个5,63是7的(______)倍。
从40里连续减去(______)个8,得0。
7、1米=(____)厘米200厘米=(____)米7厘米+6厘米=(____)厘米42米-20米=(____)米8、在一个乘法算式中,积是其中一个因数的12倍,另一个因数是(______)。
9、一根铁丝先用去一半,再用去剩下的一半,还剩9米。
这根铁丝原来长___米。
10、8050读作:(_________________);二千零二写作:(____________)二、我会选(把正确答案前面的序号填在()里)(10分)1、3个人每人做6朵花,共做了多少朵花?列式不正确的为()。
A.3+3+3 B.6+6+6 C.6×32、把一个长方形的框架拉成了一个平行四边形,这个平行四边形的周长与原长方形的周长相比()。
北师大版2021-2022学年八年级数学下册第二次月考测试题(附答案) (2)

2021-2022学年八年级数学下册第二次月考测试题(附答案)一、选择题(共30分)1.把a2﹣a分解因式,正确的是()A.a(a﹣1)B.a(a+1)C.a(a2﹣1)D.a(1﹣a)2.如图,数轴上所表示的不等式的解集是()A.x≥2B.x>2C.x<2D.x≤23.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为()A.105°B.100°C.95°D.90°5.要使分式有意义,则x的取值范围是()A.x=1B.x≠1C.x=﹣1D.x≠﹣16.如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为()A.12B.15C.18D.217.若(a+3)x>a+3的解集为x<1,则a必须满足()A.a<0B.a>﹣3C.a<﹣3D.a>38.如图,把一块三角板ABC的直角顶点B放在直线EF上,∠C=30°,AC∥EF,则∠1=()A.30°B.45°C.60°D.75°9.如图,一次函数y1=x+b与一次函数y2=kx+3的图象交于点P(1,2),则关于不等式x+b>kx+3的解集是()A.x>0B.x>1C.x<1D.x<010.如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD长度的最小值为()A.B.3C.4D.5二、填空题(共24分)11.分解因式:ab2﹣9a=.12.若一个多边形的每一个内角都是150°,则它是边形.13.如图所示,△DEF是由△ABC通过平移得到的,且点B,E,C,F在同一条直线上,若BF=14,EC=8,则从△ABC到△DEF的平移距离为.14.若分式有意义,则x的取值范围为.15.平行四边形ABCD中,E、F是对角线BD上不同的两点,写出一个能使四边形AECF 一定为平行四边形的条件.(用题目中的已知字母表示)16.如图,∠AOB=120°,点P为∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM=PN;②OM+ON=OP;③四边形PMON的面积保持不变;④△PMN的周长保持不变.其中说法正确的是(填序号).三、计算题(共18分)17.解方程:.18.解不等式组并把解集在数轴上表示出来.19.先化简:,再选一个你喜欢的a的值代入求值.四、解答题(共48分)20.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于原点对称的△A1B1C1;(2)请画出△ABC绕点B逆时针旋转90°后的△A2B2C2,并写出A2的坐标.21.如图,在等边△ABC中,AB=6,D是AC的中点,E是BC延长线上的一点,CE=CD,DF⊥BE,垂足为F.(1)求BD的长;(2)求证:BF=EF.22.如图:在Rt△ABC中,∠A=90°,过B作BH∥AC.(1)按尺规作图要求作BC的垂直平分线,交AC于E,交BH于D,(保留作图痕迹,不写作法),连接BE、CD.(2)求证:四边形BECD是平行四边形.23.为了做好防疫工作,学校准备购进一批消毒液.已知每瓶B型消毒液比A型贵2元,用56元购A型消毒液与72元购B型消毒液的瓶数相同.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的,请设计出最省钱的购买方案,并求出最少费用.24.如图,在▱ABCD中,对角线AC,BD相交于点O,BD=2AD,点E在线段OC上,且OE=CE.(1)求证:∠OBE=∠ADO;(2)若F,G分别是OD,AB的中点,且BC=10,①求证:△EFG是等腰三角形;②当EF⊥EG时,求▱ABCD的面积.25.如图,在平面直角坐标系xOy中,已知点A(5,1),B(1,1),C(0,5).直线m平行于x轴且经过C,D,E三点.直线l的关系式为y=﹣2x+b.(1)若△ABD是以AB为底的等腰三角形,且直线l过点D,求b的值;(2)若b=9,直线l与▱ABDE的边DE相交时,求点E的横坐标n的取值范围;(3)若点F为▱ABDE的对角线BE与DA的交点,当直线l经过点F时,求点D的横坐标q与b之间的函数关系式.参考答案与试题解析一、选择题(共30分)1.解:a2﹣a=a(a﹣1).故选:A.2.解:∵2处是实心圆点且折线向右,∴不等式的解集是x≥2.故选:A.3.解:A.该图形既不是轴对称图形,又不是中心对称图形,故此选项不合题意;B.该图形既不是轴对称图形,又不是中心对称图形,故此选项不合题意;C.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;D.该图形既是轴对称图形,又是中心对称图形,故此选项符合题意.故选:D.4.解:由题意可得:MN垂直平分BC,则DC=BD,故∠DCB=∠DBC=25°,则∠CDA=25°+25°=50°,∵CD=AC,∴∠A=∠CDA=50°,∴∠ACB=180°﹣50°﹣25°=105°.故选:A.5.解:∵分式有意义,∴x﹣1≠0.解得;x≠1.故选:B.6.解:由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°,又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,由折叠可得,∠E=∠D=∠B=60°,∴∠DAE=60°,∴△ADE是等边三角形,∴△ADE的周长为6×3=18,故选:C.7.解:∵(a+3)x>a+3的解集为x<1,∴a+3<0,解得:a<﹣3.故选:C.8.解:∵AC∥EF,∠C=30°,∴∠C=∠CBF=30°,∵∠ABC=90°,∴∠1=180°﹣∠ABC﹣∠CBF=180°﹣90°﹣30°=60°,故选:C.9.解:当x>1时,x+b>kx+3,即不等式x+b>kx+3的解集为x>1.故选:B.10.解:由作法得EF垂直平分AB,∴MB=MA,∴BM+MD=MA+MD,连接MA、DA,如图,∵MA+MD≥AD(当且仅当M点在AD上时取等号),∴MA+MD的最小值为AD,∵AB=AC,D点为BC的中点,∴AD⊥BC,∵S△ABC=•BC•AD=10,∴AD==5,∴BM+MD长度的最小值为5.二、填空题(共24分)11.解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案为:a(b+3)(b﹣3).12.解:360÷30=12,则它是12边形.13.解:∵△DEF是由△ABC通过平移得到,∴BE=CF,∴BE=BF﹣EC,∵BF=14,EC=8,∴BE=14﹣8=3.故答案为:3.14.解:∵分式有意义,∴x2﹣4≠0,∴x≠±2.故答案为:x≠±2.15.解:连接AC交BD于点O,如图:在平行四边形ABCD中,OA=OC,OB=OD,∵AE∥CF,∴∠OAE=∠OCF,∵∠AOE=∠COF,AO=CO,∴△AOE≌COF(ASA),∴OE=OF,∴四边形AECF为平行四边形;故答案为:AE∥CF.16.解:过点P作PE⊥OA,垂足为E,过点P作PF⊥OB,垂足为F,∴∠PEO=90°,∠PFO=90°,∵∠AOB=120°,∴∠EPF=360°﹣∠AOB﹣∠PEO﹣∠PFO=60°,∵∠MPN+∠AOB=180°,∴∠MPN=180°﹣∠AOB=60°,∴∠MPN﹣∠EPN=∠EPF﹣∠EPN,∴∠MPE=∠NPF,∵OP平分∠AOB,PE⊥OA,PF⊥OB,∴PE=PF,∵∠MEP=∠NFP=90°,∴△MEP≌△NFP(ASA),∴PM=PN,ME=NF,故①正确;∵OP=OP,∴Rt△PEO≌Rt△PFO(HL),∴OE=OF,∴OM+ON=OE+ME+OF﹣NF=2OE,∵OP平分∠AOB,∴∠EOP=∠AOB=60°,∴∠EPO=90°﹣∠EOP=30°,∴PO=2OE,∴OM+ON=OP,故②正确;∵△MEP≌△NFP,∴四边形PMON的面积=四边形PEOF的面积,∴四边形PMON的面积保持不变,故③正确;∵PM=PN,∠MPN=60°,∴△PMN是等边三角形,∵MN的长度是变化的,∴△PMN的周长是变化的,故④错误;所以,说法正确的是:①②③,故答案为:①②③.三、计算题(共18分)17.解:方程两边同乘以(x+1)(x﹣1)得(x+1)2﹣6=(x+1)(x﹣1)(2分)整理,得2x=4x=2(4分)检验,把x=2代入(x+1)(x﹣1)=3≠0.所以,原方程的根是x=2.(5分)18.解:解不等式x+4≤3(x+2),得:x≥﹣1,解不等式3x﹣3<2x,得:x<3,则不等式组的解集为﹣1≤x<3,将不等式的解集表示在数轴上如下:19.解:原式=[﹣]•=•=•=,当a=﹣1时,原式=﹣1.四、解答题(共48分)20.解:(1)如图,△A1B1C1;即为所求;(2)如图,△A2B2C2即为所求,A2的坐标(﹣2,2).21.(1)解:∵△ABC是等边三角形,∴∠BCD=60°,AB=BC=AC=6,又∵AB=6,点D为AC的中点,∴CD=3,BC⊥CD,∴BD===3;(2)证明:∵△ABC是等边三角形,D为AC的中点,∴∠CBD=,又∵CE=CD,∴∠CDE=∠E,又∵∠BCD=60°,∴∠E=,∴∠CBD=∠E,∴BD=DE,又∵DF⊥BC,垂足为F.∴BF=EF.22.(1)解:如图,直线DE为所求;(2)证明:DE交BC于F,如图,∵DE垂直平分BC,∴BF=CF,EB=EC,又∵BH∥AC,∴∠1=∠2,∠3=∠4在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形.23.解:(1)设A型消毒液的单价是x元,B型消毒液的单价是y元,得,解得.答:A型消毒液的单价是7元;B型消毒液的单价是9元.(2)设购进A型消毒液a瓶,则购进B型消毒液(90﹣a)瓶,费用为w元,依题意可得:w=7a+9(90﹣a)=﹣2a+810,∵k=﹣2<0,∴w随a的增大而减小.∵B型消毒液的数量不少于A型消毒液数量的,∴90﹣a≥a.解得a≤67 ,∴当a=67时,w取得最小值,此时w=﹣2×67+810=676,90﹣a=23.答:最省钱的购买方案是购进A型消毒液67瓶,购进B型消毒液23瓶;最低费用为676元.24.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,DO=BO=BD,∴∠ADB=∠DBC,∵BD=2AD,∴AD=DO,∴BC=BO,∵E是CO中点,∴∠OBE=∠OBC,∴∠OBE=∠ADO;(2)①证明:∵BC=BO,∴△BOC是等腰三角形,∵E是CO中点,∴EB⊥CO,∴∠BEA=90°,∵G为AB中点,∴EG=AB,∵四边形ABCD是平行四边形,∴AB=CD,∵E、F分别是OC、OD的中点,∴EF=CD∴EG=EF,∴△EFG是等腰三角形;②解:由①得EF∥AB,∵EF⊥EG,∴EG⊥AB,∵G是AB的中点,∴AE=BE,设CE=x,则AO=CO=2CE=2x,∴BE=AE=3x,在Rt△BEC中,BC=10,∴EC2+BE2=BC2,即x2+(3x)2=102,解得x=,∴AC=,BE=,∴S▱ABCD=2S△ABC=.25.解:(1)∵A(5,1),B(1,1),DA=DB,∴D(3,5),将x=3,y=5代入y=﹣2x+b,∴b=11;(2)∵四边形ABDE为平行四边形,∴DE=AB=4,∵E(n,5),∴D(n﹣4,5),当5=﹣2x+9时,x=2,∵直线y=﹣2x+9与边DE有交点,∴2≤n≤6;(3)∵四边形ABDE为平行四边形,∴DF=F A,∵D(q,5),A(5,1),∴,即,将,y=3代入y=﹣2x+b,∴q=b﹣8.。
人教版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)

2022-2023学年第一学期九年级数学第二次月考测试题(附答案)一、单选题(共18分)1.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.直角三角形C.正五边形D.正六边形2.在平面直角坐标系中,将二次函数y=x2的图象向左平移2个单位长度,再向上平移1个单位长度所得抛物线对应的函数表达式为()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x+2)2﹣1D.y=(x﹣2)2﹣1 3.若点P(2,n﹣1)与点Q(m+1,3)关于原点对称,则m+n的值为()A.﹣5B.﹣1C.1D.54.电影《长津湖》一上映,第一天票房2.05亿元,若每天票房的平均增长率相同,三天后累计票房收入达10.53亿元,平均增长率记作x,方程可以列为()A.2.05(1+2x)=10.53B.2.05(1+x)2=10.53C.2.05+2.05(1+x)2=10.53D.2.05+2.05(1+x)+2.05(1+x)2=10.535.如图,在⊙O中,CD是直径,AB是弦,AB⊥CD于E,AB=8,OD=5,则CE的长为()A.4B.2C.D.16.如图,矩形ABCD中,AB=8,BC=14,M,N分别是直线BC,AB上的两个动点,AE =2,△AEM沿EM翻折形成△FEM,连接NF,ND,则DN+NF的最小值为()A.14B.16C.18D.20二、填空题(本大题共6小题,每小题3分,共18分)7.一元二次方程(x﹣2)(x+1)=0的根是.8.如图,AB是⊙O的直径,∠D=32°,则∠BOC等于.9.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=mx+n(m≠0)的图象相交于点A(﹣1,6)和B(5,3),如图所示,则使不等式ax2+bx+c<mx+n成立的x的取值范围是.10.一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是.11.如图,将正方形ABCD绕点A逆时针旋转60度得到正方形AEGF,连接EF,BF,点M,N分别为EF,BF的中点,连接MN,若MN的长度为1,则EF的长度为.12.如图所示,已知二次函数y=ax2+bx+c(a≠0)的部分图象,下列结论中:①abc>0;②4a+c>0;③若t为任意实数,则有a﹣bt≥at2+b;④若函数图象经过点(2,1),则a+b+c=;⑤当函数图象经过(2,1)时,方程ax2+bx+c﹣1=0的两根为x1,x2(x1<x2),则x1﹣2x2=﹣8.其中正确的结论有.三、解答题(共84分)13.解方程:x2+2x=0.14.如图,已知:A、B、C、D是⊙O上的四个点,且=,求证:AC=BD.15.如图,在平面直角坐标系中,二次函数y=x2﹣2x+c的图象经过点C(0,﹣3),与x 轴交于点A、B(点A在点B左侧).(1)求二次函数的解析式及顶点坐标;(2)根据图象直接写出当y>0时,自变量x的取值范围.16.如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:△AEB≌△ADC;(2)连接DE,若∠ADC=110°,求∠BED的度数.17.已知关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实数根x1,x2.(1)求k的取值范围;(2)若x1x2=5,求k的值.18.在△ABC中,AB=AC,点A在以BC为直径的半圆外.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图①中作弦EF,使EF∥BC;(2)在图②中以BC为边作一个45°的圆周角.19.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC绕点A顺时针旋转90°后得到的图形△AB1C1;(2)请画出将△ABC关于原点O成中心对称的图形△A2B2C2;(3)当△ABC绕点A顺时针旋转90°后得到△AB1C1时,点B对应旋转到点B1,请直接写出B1点的坐标.20.如图,△ABC内接于⊙O,AB是⊙O的直径.直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.(1)求证:直线DC是⊙O的切线;(2)若BC=2,∠CAB=30°,求图中阴影部分的面积(结果保留π).21.恰逢新余桔子成熟的时节,为增加农民收入,助力乡村振兴.某驻村干部指导某农户进行桔子种植和销售,已知桔子的种植成本为1元千克,经市场调查发现,今年销售期间桔子的销售量y(千克)与销售单价x(元/千克)(1≤x≤12)满足的函数图象如图所示.(1)根据图象信息,求y与x的函数关系式;(2)请同学们求一下这位农户销售桔子获得的最大利润.22.如图所示,抛物线y=ax2+bx+c的对称轴为直线x=3,抛物线与x轴交于A(﹣2,0)、B两点,与y轴交于点C(0,4).(1)求抛物线的解析式;(2)连接BC,在第一象限内的抛物线上,是否存在一点P,使△PBC的面积最大?最大面积是多少?23.我们知道,与三角形各边都相切的圆叫做三角形的内切圆,则三角形可以称为圆的外切三角形.如图1,⊙O与△BC的三边AB,BC,AC分别相切于点D,E,F则△ABC叫做⊙O的外切三角形,以此类推,各边都和圆相切的四边形称为圆外切四边形.如图2,⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,则四边形ABCD叫做⊙O的外切四边形.(1)如图2,试探究圆外切四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系,猜想:AB+CD AD+BC(横线上填“>”,“<”或“=”);(2)利用图2证明你的猜想;(3)若圆外切四边形的周长为36.相邻的三条边的比为2:6:7.求此四边形各边的长.24.如图,已知二次函数L1:y=ax2﹣4ax+4a+4(a>0)和二次函数L2:y=﹣a(x+2)2+1(a>0)图象的顶点分别为M,N,与y轴分别交于点E,F.(1)函数y=ax2﹣4ax+4a+4(a>0)的最小值为,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是;(2)当EF=MN﹣1时,直接写出a的值;(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程﹣a(x+2)2+1=0的解.参考答案一、单选题(共18分)1.解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、不一定是轴对称图形,不是中心对称图形,故本选项不合题意;C、是轴对称图形,但不是中心对称图形,故本选项不合题意;D、是轴对称图形,也是中心对称图形,故本选项符合题意.故选:D.2.解:将二次函数y=x2的图象向左平移2个单位长度,得到:y=(x+2)2,再向上平移1个单位长度得到:y=(x+2)2+1.故选:B.3.解:∵点P(2,n﹣1)与点Q(m+1,3)关于原点对称称,∴m+1=﹣2,n﹣1=﹣3,∴m=﹣3,n=﹣2.∴m+n=﹣3﹣2=﹣5.故选:A.4.解:∵第一天票房约2.05亿元,且以后每天票房的增长率为x,∴第二天票房约2.05(1+x)亿元,第三天票房约2.05(1+x)2亿元.依题意得:2.05+2.05(1+x)+2.05(1+x)2=10.53.故选:D.5.解:连接OA,如图,∵AB⊥CD,∴AE=BE=AB=4,在Rt△OAE中,OE===3,∴CE=OC﹣OE=5﹣3=2.故选:B.6.解:如图作点D关于BC的对称点D′,连接ND′,ED′.在Rt△EDD′中,∵DE=12,DD′=16,∴ED′==20,∵DN=ND′,∴DN+NF=ND′+NF,∵EF=EA=2是定值,∴当E、F、N、D′共线时,NF+ND′定值最小,最小值=20﹣2=18,∴DN+NF的最小值为18,故选:C.二、填空题(共18分)7.解:(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故答案为:x1=2,x2=﹣1.8.解:∵∠D=32°,∴∠BOC=2∠D=64°,故答案为:64°.9.解:观察函数图象知,当﹣1<x<5时,直线在抛物线的上方,即ax2+bx+c<mx+n,故答案为:﹣1<x<5.10.解:圆锥的母线l===10,∴圆锥的侧面积=π•10•6=60π.11.解:如图所示,连接BE,∵点M,N分别为EF,BF的中点,∴MN是△BEF的中位线,∴BE=2MN=2,由旋转可得,AB=AE,∠BAE=60°,∴△ABE是等边三角形,∴AE=BE=2=AF,又∵∠EAF=90°,∴EF===2.故答案为:2.12.解:由抛物线开口向上,因此a>0,对称轴是直线x=﹣=﹣1,因此a、b同号,所以b>0,抛物线与y轴的交点在负半轴,因此c<0,所以abc<0,故①不正确;由对称轴x=﹣=﹣1可得b=2a,由图象可知,当x=1时,y=a+b+c>0,即a+2a+c>0,∴3a+c>0,又∵a>0,∴4a+c>0,因此②正确;当x=﹣1时,y最小值=a﹣b+c,∴当x=t(t≠﹣1)时,a﹣b+c<at2+bt+c,即a﹣bt<at2+b,∴x=t(t为任意实数)时,有a﹣bt≤at2+b,因此③不正确;函数图象经过点(2,1),即4a+2b+c=1,而b=2a,∴2a+3b+c=1,∴a+b+c=,因此④正确;当函数图象经过(2,1)时,方程ax2+bx+c=1的两根为x1,x2(x1<x2),而对称轴为x =﹣1,∴x1=﹣4,x2=2,∴x1﹣2x2=﹣4﹣4=﹣8,因此⑤正确;综上所述,正确的结论有:②④⑤,故答案为:②④⑤.三、解答题(共84分)13.解:由原方程,得x(x+2)=0,则x=0或x+2=0,解得,x1=0,x2=﹣2.14.证明:∵=,∴=,∴AC=BD.15.解:(1)将C(0,﹣3)代入y=x2﹣2x+c得,c=﹣3,∴y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4);(2)令y=0得x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∴当y>0时,自变量x的取值范围是x<﹣1或x>3.16.(1)证明:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB=∠DAC.在△EAB和△DAC中,,∴△EAB≌△DAC(SAS).(2)解:如图,∵∠DAE=60°,AE=AD,∴△EAD为等边三角形.∴∠AED=60°,∵△EAB≌△DAC,∴∠AEB=∠ADC=110°.∴∠BED=50°.17.解:(1)根据题意得Δ=(2k+1)2﹣4(k2+1)>0,解得k>;(2)根据题意得x1x2=k2+1,∵x1x2=5,∴k2+1=5,解得k1=﹣2,k2=2,∵k>,∴k=2.18.解:(1)如图①,EF为所作;(2)如图②,∠PBC为所作.19.解:(1)如图,△AB1C1即为所求;(2)如图,△A2B2C2即为所求;(3)根据(1)的图可得B1的坐标(2,﹣2).20.(1)证明:连接OC,∵直线l与⊙O相切于点A,∴∠DAB=90°,∵DA=DC,OA=OC,∴∠DAC=∠DCA,∠OAC=∠OCA,∴∠DCA+∠ACO=∠DAC+∠CAO,即∠DCO=∠DAO=90°,∴OC⊥CD,∴直线DC是⊙O的切线;(2)解:∵∠CAB=30°,∴∠BOC=2∠CAB=60°,∵OC=OB,∴△COB是等边三角形,∴OC=OB=BC=2,∴CE=OC=2,∴图中阴影部分的面积=S△OCE﹣S扇形COB=﹣=2﹣.21.解:(1)当1≤x≤9时,设y=kx+b(k≠0),则,解得:,∴当1≤x≤9时,y=﹣300x+3300,当9<x≤12时,y=600,∴y=.(2)设利润为W,则:当1≤x≤9时,W=(x﹣1)y=(x﹣1)(﹣300x+3300)=﹣300x2+3600x﹣3300=﹣300(x﹣6)2+7500,∵开口向下,对称轴为直线x=6,∴当1≤x≤9时,W随x的增大而增大,∴x=5时,W最大=7500元,当9<x≤12时,W=(x﹣1)y=600(x﹣1)=600x﹣600,∵W随x的增大而增大,∴x=12时,W最大=6600元,∵7500>6600,∴最大利润为7500元.22.解:(1)∵抛物线的对称轴为直线x=3,A(﹣2,0),∴B点坐标为(8,0),设抛物线解析式为y=a(x+2)(x﹣8),把C(0,4)代入得4=a×2×(﹣8),解得a=﹣,∴抛物线解析式为y=﹣(x+2)(x﹣8),即y=﹣x2+x+4;(2)存在.设点P的坐标为(x,﹣x2+x+4),设直线BC的解析式为y=kx+m(k≠0).将B(8,0)、C(0,4)代入y=kx+m,得:,解得:,∴直线BC的解析式为y=﹣x+4.过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),如图.∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∵S△PBC=S△PCD+S△PBD,∴△PCD与△PBD可以看作成以PD为底,两高之和为OB的三角形,∴S△PBC=PD•OB=×8×(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16.∵﹣1<0,∴当x=4时,△PBC的面积最大,最大面积是16.此时P点的坐标为(4,6).23.解:(1)∵⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,∴猜想AB+CD=AD+BC,故答案为:=;(2)已知:四边形ABCD的四边AB,BC,CD,DA都于⊙O相切于G,F,E,H,求证:AD+BC=AB+CD,证明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圆外切四边形的对边和相等;(3)∵相邻的三条边的比为2:6:7,∴设此三边为2x,6x,7x,根据圆外切四边形的性质得,第四边为2x+7x﹣6x=3x,∵圆外切四边形的周长为36,∴2x+6x+7x+3x=18x=36,∴x=2,∴此四边形的四边的长为2x=4,6x=12,7x=14,3x=6.即此四边形各边的长为:4,12,14,6.24.解:(1)∵y=ax2﹣4ax+4a+4=a(x﹣2)2+4,a>0,∴y min=4,∵时,二次函数L1,L2的y值同时随着x的增大而减小,∴﹣2<x<2,故答案为:4,﹣2<x<2;(2)∵M(2,4),N(﹣2,1),∴MN==5,∵E(0,4a+4),F(0,﹣4a+1),∴EF=8a+3,∴8a+3=5﹣1,∴a=;(3)当AM=MN时,(m﹣2)2+42=25,∴m1=5,m2=﹣1,当m=5时,﹣a(x+2)2+1=0的解为:x=5,x=﹣9,当m=﹣1时,﹣a(x+2)2+1=0的解为:x=﹣1或x=﹣3,当AN=AM时,(m﹣2)2+42=(﹣2﹣m)2+12,∴m=,∴﹣a(x+2)2+1=0的解为:x=或x=,当AN=MN时,(m+2)2+1=25,∴m=﹣2﹣2(舍去),m=﹣2+2,∴﹣a(x+2)2+1=0的解为:x=﹣2+2,x=﹣2﹣2,综上所述:方程﹣a(x+2)2+1=0的解是:x=﹣1或x=﹣3;x=或x=;x=﹣2+2,或x=﹣2﹣2.。
初二数学月考试题及答案

2015年秋学期八年级数学第二次月度检测试题(考试时间:120分钟 满分:150分)一、选择题(每小题3分,共18分) 1.25的值为 ( )A .5B .5-C .5±D .25 2.下列图形中,是轴对称图形是( )3.一次函数y =2x+1的图像不经过 ( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列各组线段能构成直角三角形的一组是( )A .5 cm , 9 cm ,12 cmB . 7 cm ,12 cm ,13 cmC .30 cm ,40 cm ,50 cmD . 3 cm , 4 cm , 6 cm5.已知点A 4(-,1y ),B (2,)2y 都在直线221+-=x y ,则1y 、2y 大小关系是( ) A .21y y > B .21y y = C .21y y < D .不能比较6.如图,在△ABC 中,∠A =36°,AB =AC ,BD 是△ABC 的角平分线。
若在边AB 上截取BE =BC ,连接DE ,则图中等腰三角形共有( ) A .2个 B .3个 C .4个 D .5个 二、填空题(每题3分,共30分) 7. 23-的相反数是 .8. 点A (—1,—2)关于x 轴对称的点的坐标为 .9. 一个等腰三角形两边的长分别为2 cm 、5 cm ,则它的周长为____cm .10.下列两个条件:① y 随x 的增大而减小;②图象经过点(1,3)-.写出1个同时具备条件①、②的一个一次函数表达式 .A .D .(第6题图) AEBCD11.如图,已知△ACE ≌△DBF ,CE =BF ,AE =DF ,AD =8,BC =2,则AC = . 12.已知线段CD 是由线段AB 平移得到的,且点A (-1,4)的对应点为C (4,7),则点B(—4,—1)的对应点D 的坐标是 .13.如图,在△ABC 中,∠ACB =90°,AB =10 cm ,点D 为AB 的中点,则CD = cm . 14.若一次函数kx y 2=与b kx y +=(0≠k ,)0≠b 的图像相交于点(2,-4),点(m ,n )在函数b kx y +=的图像上,则222n mn m ++= .15.如图,在平面直角坐标系xOy 中,已知点A (3,4),将OA 绕坐标原点O 逆时针旋转90°至OA ′,则点A ′的坐标是 .16.已知,△ABC 中,AC =BC ,∠ACB =90°,CD 为中线,点E 在射线CA 上,作DF ⊥DE交直线BC 于点F ,且AE =3 cm,EF =5 cm .则AC 的长为 . 三、解答题(共102分)17.(本题共2小题,每小题6分,共12分)(1)计算:3089)1(3+-++-π; (2)已知:16)1(2=+x ,求x .18.(本题8分)下表中是一次函数的自变量x 与函数y 的部分对应值.求:(1)一次函数的解析式;(2)求p 的值.19.(本题8分)如图,C 为线段AB 上一点,AD ∥EB ,AC =BE ,AD =BC .CF 平分∠DCE . 求证:(1)△ACD ≌△BEC ;(2)CF ⊥DE .DADEBCF(第11题图)BADC(第13题图)(第15题图)4)ADFCEB(第19题图)20.(本题8分)已知点A 、B 的坐标分别为(—1,0)、B (3,0),点C 在y 轴正半轴上,且△ABC 的面积为6. (1)求点C 的坐标;(2)以点A 、B 、C 为顶点作□ABCD ,写出点D 的坐标.21.(本题10分)如图,点E 、 F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O . (1)求证:AF =DE ;(2)连接AD ,试判断△OAD 的形状,并说明理由.22.(本题10分)如图,在△ABC 中,∠C =90º,CB =6,AB 的垂直平分线分别交AB 、AC 于点D 、E , CD =5. (1)求线段AC 的长; (2)求线段AE 的长.23.(本题10分)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x 名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y (元)与x (人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(第21题图)BADCFE OB(第22题图)(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?24.(本题10分)在平面直角坐标系xOy 中,直线y =-2x +1与y 轴交于点C ,直线y =x +k (k ≠0)与y 轴交于点A ,与直线y =—2x +1交于点B ,设点B 的横坐标为x 0. (1)如图,若x 0=-1.①求点B 的坐标及k 的值;②求直线y =-2x +1、直线y =x +k 与y 轴所围成的△ABC 的面积;(2)若—2<x 0<-1,求整数k 的值.25.(本题12分)如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地距离y (千米)与行驶时间x (小时)之间的函数关系图象.(1)填空:甲,丙两地相距_______千米; 高速列车的速度为 千米/小时; (2)当高速列车从甲地到乙地时,求高速列车离乙地的距离y 与行驶时间x 之间的函数关系式.(3)在整个行驶过程中,请问高速列车离乙地的距离在100千米以内的时间有多长?26.(本题14分)如图,在平面直角坐标系中,A、B 两点的坐标分别为(-3,4)、(-6,0).(1)求证:△ABO 是等腰三角形;(2)过点B 作直线l ,在直线l 上取一点C ,使AC ∥x 轴,且AC =AB .① 若直线l 与边AO 交于E点,求直线l 的相应函数关系式及点E的坐标;(第24题图)(第25题图)图①小时)图②②设∠AOB =α, ∠ACB =β,直接写出α与β的关系.八年级数学试题参考答案一、选择题1。
人教版九年级数学上第二次月考试题及答案

九年级数学第二次月考试题班级: 姓名: 座号: 成绩: 一、选择题(每小题3分,共42分)1.下列图形中,是中心对称图形的是( )A .B .C .D . 2.一元二次方程01x x 22=+-的一次项系数和常数项依次是( ) A 、-1和1 B 、1和1 C 、2和1 D 、0和1 3.方程x 2﹣2x+3=0的根的情况是( )A .有两个相等的实数根B .只有一个实实数根C .没有实数根D .有两个不相等的 4.如图1,A ,B ,C 是⊙O 上的三个点,∠ABC=25°,则∠AOC 的度数是( ) A .25° B .50° C .60° D .90°5.⊙O 的半径为7cm ,点P 到圆心O 的距离OP=10cm ,则点P 与⊙O 的位置关系为( ) A .点P 在圆上 B .点P 在圆内 C .点P 在圆外 D .无法确定 6.在平面直角坐标系中,⊙P 的圆心坐标为(4,8数根),半径为5,那么x 轴与⊙P 的位置关系是( ) A .相交B .相离C .相切D .以上都不是7.对于二次函数y=(x-1)2+2的图象,下列说法正确的是( ) A .开口向下 B .对称轴是x=-1 C .顶点坐标是(1,2) D .与x 轴有两个交点8.一个扇形的弧长是20πcm,面积是240πcm 2,则这个扇形的圆心角等于( ) A .160° B .150° C .120° D .60°9.如图2所示,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA=15,则△PCD 的周长为( ) A .15 B .12 C .20 D .3010.关于x 的方程kx 2+2x ﹣1=0有实数根,则k 的取值范围是( ) A .k≥﹣1 B .k≥﹣1且k≠0 C .k≤﹣1 D .k≤1且k≠0 11.已知点A (1,a )、点B (b ,2)关于原点对称,则a+b 的值为( ) A .1 B .3 C .﹣1 D .﹣312.如图3,AB 是⊙O 的直径,弦CD⊥AB 于点E ,已知,CD=8,AE=2,则⊙O 的半径长是( ) A .10cmB .6cmC .5cmD .3cm13.二次函数y=ax 2+bx+c 的图象如图4所示,则下列结论正确的是( ) A .a <0 B .b 2-4ac <0 C .当-1<x <3时,y >0 D .-b2a=114.如图5,在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是的中点,点D在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为2时,则阴影部分的面积为( )A .2π﹣8B .4π﹣8C .2π﹣4D .4π﹣4 二、填空题(每小题4分,共16分)15.关于x 的一元二次方程x 2+mx+3=0的一个根是1,则m 的值为 。
最新新版人教八年级数学下册第二次月考试卷及答案

)
A ①②
B ① ③ C ③ ④ D ①②③ ④
6.把分式方程 1
1 x 1的两边同时乘以 (x-2), 约去分母,得 (
)
x2 2x
A .1-(1-x)=1
B. 1+(1-x)=1
C . 1-(1-x)=x-2
D . 1+(1-x)=x-2
7.如图,正方形网格中的 △ABC ,若小方格边长为 1,则 △ ABC 是(
)
A 、直角三角形 B 、锐角三角形 C、钝角三角形 D、以上答案都不对
D
C
B
C
A
A
B
(第 7 题)
(第 8 题)
(第 9 题)
8.如图,等腰梯形 ABCD 中,AB ∥DC,AD=BC=8,AB=10,CD=6,则梯形 ABCD 的面积是(
)
A 、 16 15 B、 16 5 C、 32 15 D、 16 17
86
80
75
83
85
利用表中提供的数据,解答下列问题:
( 1)填写完成下表:
( 2)张老师从测验成绩记录表中,求得王军 10 次测
77 77
王军 张成
78
84
83
79
80
80
平均成绩 80 80
中位数 79.5
验成绩的方差 S王2 =33.2 ,请你帮助张老师计算张成 10 次测验成绩的方差 S张2 ;
精品文档
精品文档
26 .甲、乙两个工程队合做一项工程,需要 16 天完成,现在两队合做 9 天,甲队因有其他任务调走,乙队再 做 21 天完成任务。甲、乙两队独做各需几天才能完成任务?
27: E 是正方形 ABCD 的对角线 BD 上一点, EF⊥ BC, EG⊥ CD ,垂足分别是 F、G.求证: AE=FG 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D A BC08年春2009级第二次月考数学试卷一、选择题(每题4分,共40分) 1.下列各式中,分式的个数有( )31-x 、12+a b 、πy x +2、21--m 、a +21、22)()(y x y x +-、x12-、115-A 、2个B 、3个C 、4个D 、5个 2.如果把223y x y-中的x 和y 都扩大5倍,那么分式的值( )A 、扩大5倍B 、不变C 、缩小5倍D 、扩大4倍 3.已知正比例函数y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是( )A. (2,1)B. (-2,-1)C. (-2,1)D. (2,-1)4.一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为A .10米B .15米C .25米D .30米5用含30º角的两块同样大小的直角三角板拼图形,下列四种图形,①平行四边形 ②菱形,③矩形,④直角梯形。
其中可以被拼成的图形是( ) A ① ② B ① ③ C ③ ④ D ①②③ ④ 6.把分式方程12121=----xxx 的两边同时乘以(x-2), 约去分母,得( ) A .1-(1-x)=1 B .1+(1-x)=1 C .1-(1-x)=x-2 D .1+(1-x)=x-2 7.如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是( ) A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、以上答案都不对 (第7题) (第8题) (第9题)8.如图,等腰梯形ABCD 中,AB ∥DC ,AD=BC=8,AB=10,CD=6,则梯形ABCD 的面积是( )A 、1516B 、516C 、1532D 、17169.如图,一次函数与反比例函数的图像相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( )A 、x <-1B 、x >2C 、-1<x <0,或x >2D 、x <-1,或0<x <2 10.小明通常上学时走上坡路,途中平均速度为m 千米/时,放学回家时,沿原路返回,通常的速度为n 千米/时,则小明上学和放学路上的平均速度为( )千米/时 A 、2n m + B 、 n m mn + C 、 n m mn +2 D 、mnnm + 二、填空题(每题3分,共30分) 11.当x 时,分式15x -无意义;当m= 时,分式2(1)(3)32m m m m ---+的值为零 12.各分式121,1,11222++---x x x x x x 的最简公分母是_________________13.已知双曲线xky =经过点(-1,3),如果A (a 1,b 1),B (a 2,b 2)两点在该双曲线上,且a 1<a 2<0,那么b 1 b 2.A B C D EGF 14.梯形ABCD 中,AD ∥BC ,AB=CD=AD=1,∠B=60°,直线MN 为梯形ABCD 的对称轴,P 为MN 上一点,那么PC+PD 的最小值 。
(第14题)(第16题)17题)15.已知任意直线l 把□ABCD 分成两部分,要使这两部分的面积相等,l 所在位置需满足的条件是 。
16.如图,把矩形ABCD 沿EF 折叠,使点C 落在点A 处,点D 落在点G 处,若∠CFE=60°,且DE=1,则边BC 的长为 . 17.如图,在□ABCD 中,E 、F 分别是边AD 、BC 的中点,AC 分别交BE 、DF 于G 、H ,试判断下列结论:①ΔABE ≌ΔCDF ;②AG=GH=HC ;③EG=;21BG ④S ΔABE =S ΔAGE ,其中正确的结论是_ _个.18.点A 是反比例函数图象上一点,它到原点的距离为10,到x 轴的距离为8,则此函数表达式可能为_________________19,.小林在初三第一学期的数学书面测验成绩分别为:平时考试第一单元得84分,第二单元得76分,第三单元得92分;期中考试得82分;期末考试得90分.如果按照平时、期中、期末的权重分别为10%、30%、60%计算,那么小林该学期数学书面测验的总评成绩应为_____________分。
20.如图,已知在平面直角坐标系中,O 为坐标原点,四边形 OABC 是矩形 点A ,C 的坐标分别是A (10,0),C (0,4),点D 是OA 的中点,点P在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为(m,n),且点P 在反比例函数y=x 32上,则m =_____________,n= 。
三、解答题(本大题6个小题,每小题10分,共80分)解答时必须给出必要的过程和推理步骤。
21. (1)先化简,再求值 )1(1xx x x -÷-,其中x=2-1 (2)解分式方程:22416222-+=--+x x x x x - 22 .作图题:如图,RtΔABC 中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形。
(保留作图痕迹,不要求写作法和证明)23 .如图,已知四边形ABCD 是平行四边形,∠BCD 的平分线CF 交边AB 于F ,∠ADC 的平分线DG 交边AB 于G 。
(1)求证:AF=GB ;(2)请你在已知条件的基础上再添加一个条件,使得△EFG 为等腰直角三角形,并说明理由. 24张老师为了从平时在班级里数学比较优秀的王军、张成两位同学中选拔一人参加“全国初中数学联赛”,对两位同学进行了辅导,并在辅导期间进行了10次测验,两位同学测验成绩记录如下表:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 第9次 第10次 王军 68 80 78 79 81 77 78 84 83 92 张成86807583857779808075利用表中提供的数据,解答下列问题:AEDHCB F G DAM NC(1)填写完成下表:(2)张老师从测验成绩记录表中,求得王军10次测验成绩的方差2S 王=33.2,请你帮助张老师计算张成10次测验成绩的方差2S 张;(3)请你根据上面的信息,运用所学的统计知识,帮助张老师做出选择,并简要说明理由。
25 .制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y (℃),从加热开始计算的时间为x (分钟).据了解,设该材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃. (1)分别求出将材料加热和停止加热进行操作时,y 与x 关系式; (2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?26 .甲、乙两个工程队合做一项工程,需要16天完成,现在两队合做9天,甲队因有其他任务调走,乙队再做21天完成任务。
甲、乙两队独做各需几天才能完成任务?27: E 是正方形ABCD 的对角线BD 上一点,EF ⊥BC ,EG ⊥CD ,垂足分别是F 、G .求证:AE=FG 。
28如图11,一次函数y=kx+b 的图象与反比例函数y=m x的图象交于A 、B 两点。
(1)利用图中条件,求反比例函数的解析式及n 的值。
yA (-2,1) xB (1,n) 图11(2)求一次函数的解析式。
(3)根据图象写出使一次函数的值大于反比例函数值的x 的取值范围参考答案:一、选择题1、C2、B3、A4、B5、B6、D7、A8、A9、D 10、D 11、C 12、C 二、填空题13、5x =,3 14、2(1)(1)x x x +- 15、< 16、3 17、经过对角线的交点 18、3 19、320、48y x =或48y x=- 21、A =2,B =-2 22、(42,0) 23、88分 24、4 三、解答题25、解:22213211143a a a a a a a +-+-⨯+-++=213(1)1(1)(1)(1)(3)a a a a a a a +--⨯++-++平均成绩中位数 众数王军 80 79.5张成8080A DCBEGF(第32题)=21(1)1(1)a a a --++=2221a a ++ ∵a 2+2a -8=0,∴a 2+2a =8 ∴原式=281+=2926、解:22(2)16(2)x x --=+经检验:2x =-不是方程的解 ∴原方程无解27、1°可以作BC 边的垂直平分线,交AB 于点D ,则线段CD 将△ABC 分成两个等腰三角形 2°可以先找到AB 边的中点D ,则线段CD 将△ABC 分成两个等腰三角形3°可以以B 为圆心,BC 长为半径,交BA 于点BA 与点D ,则△BCD 就是等腰三角形。
28、(1)证明:∵四边形ABCD 为平行四边形 ∴AB ∥CD ,AD ∥BC ,AD =BC ∴∠AGD =∠CDG ,∠DCF =∠BFC ∵DG 、CF 分别平分∠ADC 和∠BCD ∴∠CDG =∠ADG ,∠DCF =∠BCF ∴∠ADG =∠AGD ,∠BFC =∠BCF ∴AD =AG ,BF =BC ∴AF =BG(2)∵AD ∥BC ∴∠ADC +∠BCD =180° ∵DG 、CF 分别平分∠ADC 和∠BCD∴∠EDC +∠ECD =90° ∴∠DFC =90°∴∠FEG =90° 因此我们只要保证添加的条件使得EF =EG 就可以了。
我们可以添加∠GFE =∠FGD ,四边形ABCD 为矩形,DG =CF 等等。
29、1)78,80(2)13(3)选择张成,因为他的成绩较稳定,中位数和众数都较高30、(1)915(05)300(5)x x y x x+≤<⎧⎪=⎨≥⎪⎩ (2)20分钟31、解:设甲、乙两队独做分别需要x 天和y 天完成任务,根据题意得:111169301x y x y⎧+=⎪⎪⎨⎪+=⎪⎩ 解得:24x =,48y = 经检验:24x =,48y =是方程组的解。
答:甲、乙两队独做分别需要24天和28天完成任务。
32、证明:连接CE∵四边形ABCD为正方形∴AB=BC,∠ABD=∠CBD=45°,∠C=90°∵EF⊥BC,EG⊥CD∴四边形GEFC为矩形∴GF=EC在△ABE和△CBE中∴△ABE≌△CBE∴AE=CE∴AE=CF。